二元溶液完全标度理论及临界指前因子普适标度关系的光散射实验检验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计、构建了适于研究临界现象的高控温精度静/动态光散射仪,测量了苯甲腈+十一烷,苯甲腈+十二烷,苯甲腈+十三烷,苯甲腈+十四烷,苯甲腈十十五烷,苯甲腈+十六烷六个体系在临界点附近共存两相的散射光强,得到关联长度ξ和渗透压缩系数χ,并分析两相ξ和χ的不对称性。结果显示:关联长度无明显不对称性,而渗透压缩系数存在显著的不对称性。计算出渗透压缩系数不对称因子Aχ,并从完全标度理论出发,推导出Aχ的表达式,拟合结果发现Aχ可用和γ分别是与共存曲线和渗透压缩系数相关的临界指数)描述,|△T|β是主导项,从而首次从共存两相渗透压缩系数的不对称性的角度验证了完全标度理论,并说明完全标度理论在对不同热力学量(共存曲线直径和渗透压缩系数)的不对称行为的描述上的一致性。本文结果同时发现|△T|γ-1+β对于准确描述渗透压缩系数的不对称性是不可忽略的。
     本文还测量了硝基苯+十一烷,硝基苯+十二烷,硝基苯+十三烷,硝基苯+十四烷,和苯甲腈+十一烷,苯甲腈+十二烷,苯甲腈+十三烷,苯甲腈+十四烷,苯甲腈+十五烷,苯甲腈+十六烷,苯甲腈+十七烷共十一个体系在一相区的浊度,得到一相区关联长度和渗透压缩系数的临界指数υ和γ以及指前因子ξ0和χ0.由于实验仪器和数据分析方法的改进,所得关联长度的指前因子的精确度显著提高。结合由量热实验得到的临界热容的指前因子A+,计算了普适性标度关系和的值,结果与理论预测一致。
A static/dynamic light scattering setup with high temperature control precision was designed and constructed,which is suitable for the study of the c ritical phenomena.The scattered light intensities of the coexisting phases for systems{benzonitrile+undecane},{benzonitrile+dodecane),{benzonitrile+tridecane},{benzonitrile+tetradecane),{benzonitrile+pentadecane),and{benzonitrile+hexadecane}in the critical region were measured,from which the values of the correlation1ength and osmotic compressibility were deduced and no asymmetry was observed for the correlation length,while the asymmetric behavior was clearly detected for the osmotic compressibility.The asymmetry ratio Ax was calculated.An expression of the asymmetry ratiO Ax was derived from the frame of complete sealing theory and used to fit the experimental data.It was found for the first time that the experimental data can be well described by (where△T=(T-Tc)/Tc,β and γ are the critical exponents for the coexistence curve and the susceptibility respectively)and the term|△T|β was dominant,which supports the complete scaling theory and also indicates the consistency Of the complete scaling theory in the description of different asymmetric behaviors(diameter of the coexistence curve and the osmotic compressibility). Moreover, it was found that the contribution of the heat capacity-related term|△T|γ-1+β was also important in precise description of the asymmetric behaviors of the osmotic compressibility.
     We also measured the turbidities of{nitrobenzene+undecane},{nitrobenzene+dodecane},{nitrobenzene+tridecane},{nitrobenzene+tetradecane},{benzonitrile+undecane},{benzonitrile+dodecane},{benzonitrile+tridecane},{benzonitrile+tetradecane},{benzonitrile+pentadecane},{benzonitrile+hexadecane},and{benzonitrile+heptadecane}in the critical one-phase region,from which the critical exponents v,and γ and the critical amplitudes ζ0and χ0were deduced for the correlation length and osmotic compressibility,respectively.The higher precision for measurement of the critical amplitudes was achieved because of the improvements of the experimental setup and the data analysis method. The critical amplitudesζ0and χ0together with the critical amplitudes related to the coexistence curve B and the heat capacity in one-phase region A+were used to test the universal ratios and which were in well agreements with the theoretical predictions.
引文
[1]胡英.物理化学.高等教育出版社.2007.
    [2]于禄,郝柏林,陈晓松.边缘奇迹——相变与临界现象.科学出版社.2005.
    [3]J.V.Sengers, J.M.H.Levelt Sengers. Critical Phenomena in Classical Fluids. Progress in Liquid Physics.1978, Chapter 4.
    [4]苏汝铿.统计物理学.高等教育出版社.2006.
    [5]A.Kumar, H.R.Krishnamurthy, E.S.R. Gopal. Equilibrium Critical Phenomena in Binary Liquid Mixtures. Phys. Rep.1983,98 (2):57-143.
    [6]C. Bagnuls, C. Bervillier, D.I. Meiron, B.G. Nickel. Nonasymptotic Critical Behavior from Field Theory at d=3. II. The Ordered-Phase Case. Phys. Rev. B.1987,35 (7):3585-3607.
    [7]A. J. Liu, M.E. Fisher. The Three-dimensional Ising Model Revisited Numerically. Physica A.1989,156 (1):35-76.
    [8]M.E. Fisher, S.Y. Zinn. The Shape of the van der Waals Loop and Universal Critical Amplitude Ratios. J. Phys. A.1998,31 (37):L629-L635.
    [9]M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari. Improved High-temperature Expansion and Critical Equation of State of Three-dimensional Ising-like Systems. Phys. Rev. E.1999, 60 (4):3526-3563.
    [10]L.P. Kadanoff. Phase Transitions and Critical Phenomena.1976,5A:Chapter 1.
    [11]M.A.Anisimov, S.B.Kiselev, J.V.Sengers, S.Tang. Crossover Approach to Global Critical Phenomena in Fluids. Physica A.1992,188 (4):487-525.
    [12]Z.Y.Chen, A.Abbaci, S.Tang, J.V.Sengers. Global Thermodynamics Behavior of Fluids in the Critical Region. Phys. Rev. A 1990,42 (8):4470-4484.
    [13]M.A.Anisimov, J.V.Sengers. Equations of State for Fluids and Fluid Mixtures. Elsevier(Amsterdam).2000.
    [14]Kim Christensen, Nicholas R.Moloney. Complexity and Criticality.复旦大学出版社. 2006,116-119.
    [15]C.N.Yang, T.D.Lee. Statistics Theory of Equations of State and Phase Transitions. I.Theory of Condensation. Phys. Rev.1952,87 (3):404-409.
    [16]C.N.Yang, T.D.Lee. Statistics Theory of Equations of State and Phase Transitions. Ⅱ,Lattice Gas and Ising Model. Phys. Rev.1952,87 (3):410-419.
    [17]Ising E. Eeitrag zur Theorie des Ferromagnetismus. Z. Phys.1925,31:253-258.
    [18]Onsager L. Crystal Statistics. I. A Two-dimensional Model with an Order-disorder Transition. Phys. Rev.1944,6 (3-4):117-149.
    [19]Widom B. Equation of State in the Neighborhood of the Critical Point. J. Chem. Phys. 1965,43 (11):3898-3905.
    [20]Fisher M.E. The Theory of Equilibrium Critical Phenomena. Rep. Prog. Phys.1967,30 (2):615-730.
    [21]Kadanoff L.P. Static Phenomena near Critical Points:Theory and Experiments. Rev. Mod. Phys.1967,39 (2):395-431.
    [22]Anneke Levelt Sengers, Robert Hocken, Jan.V. Sengers. Critical-Point Universality and Fluids. Phys. Today.1977,30 (12):42-51.
    [23]Rushbrooke G.S. On the Thermodynamics of the Critical Region for the Ising Problem. J. Chem. Phys.1963,39 (3):842-843.
    [24]H.E. Stanley. Scaling, Universality, and Renormalization:Three Pillars of Modern Critical Phenomena. Rev. Mod. Phys.1999,71(2):S358-S366.
    [25]Kadanoff L.P. Proc. Int. School of Physics Enrico Fermi Course. Academic.1971.
    [26]Ferer. M, M. Worits. High-Temperature Series and Critical Amplitudes for the Spin-Spin Correlations of the Three-Dimensional Ising Ferromagnet. Phys. Rev. B.1972,6 (9): 3426-3444.
    [27]Wu. F.Y. The Potts Model. Rev. Mod. Phys.1982,54 (1):235-268.
    [28]Stanley H.E. Dependence of Critical Properties on Dimensionality of Spins. Phys. Rev. Lett.1968,20 (12):589-592.
    [29]S.C. Greer, M.R. Moldover. Thermodynamic Anomalies at Critical Points of Fluids. Ann. Rev. Phys. Chem.1981,32:233-265.
    [30]J.V. Sengers, J.M.H. Levelt Sengers. Thermodynamic Behavior of Fluids near the Critical Point. Ann. Rev. Phys. Chem.1986,37:189-222.
    [31]Amit. D.J. Field Theory, The Renormalization Group and Critical Phenomena. McGraw Hill.1978.
    [32]K.G. Wilson. Renormalization Group and Critical Phenomena. Ⅰ. Renormalization Group and the Kadanoff Scaling Picture. Phys. Rev. B.1971,4 (9):3174-3183.
    [33]K.G. Wilson. Renormalization Group and Critical Phenomena. Ⅱ. Phase-Space Cell Analysis of Critical Behavior. Phys. Rev. B.1971,4 (9):3184-3205.
    [34]K.G. Wilson, J. Kogut. The Renormalization Group and the ε Expansion. Phys. Rep. 1974,12 (2):75-199.
    [35]Fisher M.E. The Renormalization Group in the Theory of Critical Behavior. Rev. Mod. Phys.1974,46(4):597-616.
    [36]M.E. Fisher. Scaling, Universality and Renormalization Group Theory. Lectures in Advanced Course on Critical Phenomena.1982,63-99.
    [37]胡英.近代化工热力学.上海科学技术文献出版社.1994,179-202.
    [38]A. Pelissetto, E. Vicari. Critical Phenomena and Renormolization-Group Theory. Phys. Rep.2002,368 (6):549-727.
    [39]J.V. Sengers, J.G. Shanks. Experimental Critical-Exponent Values for Fluids. J. Stat. Phys. 2009,137 (5-6):857-877.
    [40]M.A. Anisimov. Critical Phenomena in Liquids and Liquids Crystals. Gordon and Breach. 1991.
    [41]Simon Reif-Acherman. The History of The Rectilinear Diameter Law. Quim. Nova.2010, 33 (9):2003-2010.
    [42]N.D. Mermin. Lattice Gas with Short-Range Pair Interactions and a Singular Coexistence-Curve Diameter. Phys. Rev. Lett.1971,26 (16):957-959.
    [43]B. Widom, J.S. Rowlinson. New Model for the Study of Liquid-Vapor Phase Transitions. J. Chem. Phys.1970,52 (4):1670-1684.
    [44]N.D. Mermin, J.J. Rehr. Generality of the Singular Diameter of the Liquid-Vapor Coexistence Curve. Phys. Rev. Lett.1971,26 (19):1155-1156.
    [45]A.Z. Patashiskii, V.L. Poskrovskii. Fluctuation Theory of Phase Transitions. Pergamon, Oxford.1979.
    [46]M.A. Anisimov, E.E. Gorodetskii, V.D. Kulikov, A.A. Povodyrev, J.V. Sengers. A Gerneral Isomorphism Approach to Thermodynamic and Transport Properties of Binary Fluid Mixtures Near Critical Points. Physica A.1995,220 (3-4):277-324.
    [47]M.A. Anisimov, E.E. Gorodetskii, V.D. Kulikov, J.V. Sengers. Crossover Between Vapor-Liquid and Consolute Critical Phenomena. Phys. Rev. E.1995,51 (2):1199-1215.
    [48]J.J. Rehr, N.D. Mermin. Revised Scaling Equation of State at the Liquid-Vapor Critical Point. Phys. Rev. A.1973,8 (1):472-480.
    [49]C.N. Yang, C.P Yang. Critical Point in Liquid-Gas Transitions. Phys. Rev. Lett.1964,13 (9):303-305.
    [50]G. Orkoulas, M.E. Fisher, C. Ustun. The Yang-Yang Relation and the Specific Heats of Propane and Carbon Dioxide. J. Chem. Phys.2000,113 (17):7530-7545.
    [51]M.E. Fisher, G. Okoulas. The Yang-Yang Anomaly in Fluid Criticality:Experiment and Scaling Theory. Phys. Rev. Lett.2000,85 (4):696-699.
    [52]Y.C. Kim, M.E. Fisher, G. Orkoulas. Asymmetric Fluid Criticality. Ⅰ. Scaling with Pressure Mixing. Phys. Rev. E.2003,67 (6):061506.
    [53]Y.C. Kim, M.E. Fisher. Asymmetric Fluid Criticality. Ⅱ.Finite-Size Scaling for Simulations. Phys. Rev. E.2003,68 (4):041506.
    [54]J.T. Wang, M.A. Anisimov. Nature of Vapor-Liquid Asymmetry in Fluid Criticality. Phys. Rev. E.2007,75 (5):051107.
    [55]J.T. Wang, C.A. Cerdeirina, M.A. Anisimov, J.V. Sengers. Principle of Isomorphism and Complete Scaling for Binary-Fluid Criticality. Phys. Rev. E.2008,77 (3):031127.
    [56]R.C. Tolman. The Effect of Droplet Size on Surface Tension. J. Chem. Phys.1944,17 (3): 333-337.
    [57]M.A. Anisimov. Divergence of Tolman's Length for a Droplet near the Critical Point. Phys. Rev. Lett.2007,98 (3):035702.
    [58]G. Perez-Sanchez, P. Losada-Perez, C.A. Cerdeirina, J.V. Sengers, M.A. Anisimov. Asymmetric Criticality in Weakly Compressible Liquid Mixtures. J. Chem. Phys.2010,132 (15):154502.
    [59]S.C. Greer, B.K. Das, A. Kumar, E.S.R. Gopal. Critical Behavior of the Diameters of Liquid-Liquid Coexistence Curves. J. Chem. Phys.1983,79 (9):4545-4552.
    [60]P. Damay, F. Leclercq. Asymmetry of the Coexistence Curve in Binary systems. Size Effect. J. Chem. Phys.1991,95 (1):590-599.
    [61]M.A. Anisimov, Heather J.St. Pierre. Divergence Curvature Correction to the Interface Tension in Polymer Solutions. Phys. Rev. Lett.2008,78 (1):011105.
    [62]P. Losada-Perez, G. Perez-Sanchez, C.A. Cerdeirina, Jan Thoen. Dielectric Constant of Fluids and Fluid Mixtures at Criticality. Phys. Rev. E.2010,81 (4):041121.
    [63]C.E. Bertrand, J.V. Sengers, M.A. Anisimov. Critical Behavior of the Dielectric Constant in Asymmetric Fluids. J. Phys. Chem. B.2011,115 (48):14000-14007.
    [64]C.A. Cerdeirina, M.A. Anisimov, J.V. Sengers. The Nature of Singular Coexistence-Curve Diameters of Liquid-Liquid Phase Equilibria. Chem. Phys. Lett.2006, 424 (4-6):414-419.
    [65]C. Bagnuls, C. Bervillier. A New Theoretical Constraint on the Static Critical Behavior of the Specific Heat. Phys. Lett. A.1985,107 (7):299-304.
    [66]Meijun Huang, Yuntao Lei, Tianxiang Yin, Zhiyun Chen, Xueqin An, Weiguo Shen. Heat Capacities and Asymmetric Criticality of Coexistence Curves for Benzonitrile+Alkanes and Dimethyl Carbonate+Alkanes. J. Phys. Chem. B.2011,115 (46):13608-13616.
    [67]J. Leys, P. Losada-Perez, G. Cordoyiannis, C.A. Cerdeirina, C. Glorieux, J. Thoen. Temperature, Concentration, and Frequency Dependence of the Dielectric Constant Near the Critical Point of the Binary Liquid Mixture Nitrobenzene-Tetradecane. J. Chem. Phys.2010, 132(10):104508.
    [68]J. Leys, P. Losada-Perez, Jacobo Troncoso, C. Glorieux, J. Thoen. The Critical Behavior of the Dielectric Constant in the Polar+Polar Binary Liquid Mixture Nitromethane + 3-Pentanol:An Unusual Sign of its Critical Amplitude in the One-Phase Region. J. Chem. Phys.2011,135 (2):024508.
    [69]A.K. Wyczalkowska, M.A. Anisimov, J.V. Sengers, Y.C. Kim. Impurity Effects on the Two-Phase Region Isobaric Heat Capacity of Fluids Near the Critical Point. J.Chem. Phys. 2002,116 (10):4202-4211.
    [70]P. Losada-Perez, Chandra Shekhar Pati Tripathi, J. Leys, C. A. Cerdeirina, C. Glorieux, J. Thoen. The Yang-Yang Anomaly in Liquid-Liquid Criticality:Experimental Evidence from Adiabatic Scanning Calorimetry. Chem. Phys. Lett.2012,523:69-73.
    [71]N.C. Ford. Jr., G.B. Benedek. Observation of the Spectrum of Light Scattered from a Pure Fluid near Its Critical Point. Phys. Rev. Lett.1965,15 (16):649-653.
    [72]M. Giglio, G.B. Benedek. Angular Distribution of the Intensity of Light Scattered from Xeon near Its Critical Point. Phys. Rev. Lett.1969,23 (20):1145-1149.
    [73]H.L. Swinney, H.Z. Cummins. Thermal Diffusivity of CO2 in the Critical Region. Phys. Rev.1968,171(1):152-160.
    [74]P.N. Pusey, W.I. Goldburg. Light Scattering Measurement of Concentration Fluctuations in Phenol-Water near Its Critical Point. Phys. Rev. Lett.1969,23 (2):67-70.
    [75]P.N. Pusey, W.I. Goldburg. Light Scattering Measurement of Concentration Fluctuations in Phenol-Water near Its Critical Point. Phys. Rev. A.1971,3 (2):766-776.
    [76]C.S Bak, W.I. Goldburg. Light Scattering in An Impure Binary Liquid Mixture near the Critical Point. Phys. Rev. Lett.1969,23 (21):1218-1220.
    [77]N. Kuwahara, J. Kojima, M. Kaneko. Osmotic Compressibility and Correlation Range of a Macromolecular Solution near Its Critical Mixing Point. Phys. Rev. A.1975,12 (6): 2606-2609.
    [78]K. Hamano, N. Kuwahara, T. Koyama. Critical Behaviors in the Two-Phase Region of a Micellar Solution. Phys. Rev. A.1985,32 (5):3168-3171.
    [79]D. Jasnow, W.I. Goldburg. Asymmetry in Critical Light Scattering from Binary Mixtures of Phenol and Water in Its Two-Phase Region. Phys. Rev. A.1972,6 (6):2492-2498.
    [80]N.C. Wong, John S. Huang. Asymmetry in a Binary Liquid Mixture. Phys. Rev. Lett. 1975,35(1):42-44.
    [81]D.S. Cannell. Experimental Study of the Liquid Phase of SF6 near Its Critical Point. Phys. Rev. A.1977,15 (5):2053-2064.
    [82]E.T. Shimanskaya, Yu.I. Shimansky, A.V. Oleinikova. Coexistence Curve Equation for Several One-compnent Fluids in the Vicinity of the Critical Point. Int. J. Thermophys.1996, 17 (3):641-649.
    [83]Yu.I. Shimansky, E.T. Shimanskaya. Scaling, Crossover, and Classical Behavior in the Order Parameter Equation for Coexisting Phases of Benzene from Triple Point to Critical Point. Int. J. Thermophys.1996,17 (3):651-662.
    [84]N. Fameli, D.A. Balzarini. The Coexistence Curve of the n-Heptane+Nitrobenzene Mixture near its Consolute Point Measured by Optical Method. Phys. Rev. E.2007,75 (6): 064203.
    [85]Nathan J. Utt, S.Y. Lehman, D.T. Jacobs. Heat Capacity of the Liquid-Liquid Mixture Nitrobenzene and Dodecane near the Critical Point. J. Chem. Phys.2007,127 (10):104505.
    [86]D. Beysens, A. Bourgou, P. Calmettes. Experimental Determinations of Universal Amplitude Combinations for Binary Fluids. I. Statics. Phys. Rev. A.1982,26 (6): 3589-3609.
    [87]D. Stauffer, M. Ferer, M. Wortis. Universality of Second-Order Phase Transition:The Scale Factor for the Correlation Length. Phys. Rev. Lett.1972,29 (6):345-349.
    [88]P.C. Hohenberg, A. Aharony, B.I. Halperin, E.D. Siggia, Two-Scale-Factor Universality and the Renormalization Group. Phys. Rev. B.1976,13 (7):2986-2996.
    [89]C. Bervillier, C. Godreche. Universal Combination of Critical Amplitudes from Field Theory. Phys. Rev. B.1980,21 (11):5427-5431.
    [90]Wolfgang Schartl. Light Scattering from Polymer Solutions and Nanoparticle Dispersions. Springer.2007.
    [91]赵择卿,陆大年,杨定超.光散射技术.纺织工业出版社.1989.
    [92]左榘.激光散射原理及在高分子科学中的应用.河南科学技术出版社.1994.
    [93]P. Debye. Light Scattering in Solutions. J. Appl. Phys.1944,15 (4):388-392.
    [94]J. Kocinski, L. Wojtczak. Critical Scattering Theory. Elsevier.1-22.
    [95]H.Z. Cummins. Light Scattering near Phase Transitions. North-Holland Pub. Co. 533-577.
    [96]R.D. Mountain, J.M. Deutch. Light Scattering from Binary Solutions. J. Chem. Phys. 1969,50(3):1103-1108.
    [97]C. Cohen, J.W.H. Sutherland, J.M. Deutch. Hydrodynamic Correlation Functions for Binary Mixtures. Phys. Chem. Liq.1971,2:213-235.
    [98]R.B. Griffiths, J.C. Wheeler. Critical Points in Multicomponent Systems. Phys. Rev. A. 1970,2(3):1047-1064.
    [99]R.F. Chang, H. Burstyn, J.V. Sengers. Correlation function near the Critical Mixing Point of a Binary Liquid. Phys. Rev. A.1979,19 (2):866-882.
    [100]R. Pecora. Dynamic Light Scattering. Plenum Press.1985.
    [101]M.B. Huglin. Light Scattering from Polymer Solutions. Academic Press.1972.
    [102]H.R. Haller, C. Destor, D.S. Cannell. Photometer for Quasielastic and Classical Light Scattering. Rev. Sci. Instrum.1983,54 (8):973-983.
    [103]A.P.Y. Wong, P. Wiltzius. Dynamic Light Scattering with a CCD Camera. Rev. Sci. Instrum.1993,64 (9):2547-2549.
    [104]S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, H. Sillescu. Multispeckle Autocorrelation Spectroscopy and its Application to the Investigation of Ultraslow Dynamical Processes. J. Chem. Phys.1996,104 (4):1758-1761.
    [105]K. Tsutsui, K. Koya, T. Kato. An Investigation of Continuous-angle Laser Light Scattering. Rev. Sci. Instrum.1998,39 (10):3482-3486.
    [106]H. Wiese, D. Horn. Single-Mode Fibers in Fiber-Optic Quasielastic Light Scattering:A Study of the Dynamics of Concentrated Latex Dispersions. J. Chem. Phys.1991,84 (10): 6429-6443.
    [107]P.N. Pusey. Suppression of Multiple Scattering by Photon Cross-Correlation Techniques. Curr. Opin. Colloid Interface Sci.1999,4 (3):177-185.
    [108]K. Schatzel, M. Drewel, J. Ahrens. Suppression of Multiple Scattering in Photo Correlation Spectroscopy. J. Phys.:Condens. Matter.1990,2 (S):SA393-SA398.
    [109]M. Drewel, J. Ahrens, U. Podschus. Decorrelation of Multiple-Scattering fro an Arbitrary Scattering Angle. J. Opt. Soc. Am. A.1990,7 (2):206-210.
    [110]P.N. Segre, W. van Megen, P.N. Pusey, K. Schatzel, W. Peters. Two-Color Dynamic Light-Scattering. J. Mod. Opt.1995,42 (9):1929-1952.
    [111]E. Overbeck, C. Sim, T. Pallberg. Approaching the Limits of Multiple Scattering Decorrelation:Three-Dimensional Light-Scattering Apparatus Utilizing Semiconductor Lasers. Prog. Colloid Polym. Sci.1997,104:117-120.
    [112]L.B. Aberle, P. Hulstede, S. Wiegand, W. Schroer, W. Staude. Effective Suppression of Multiply Scattered Light in Static and Dynamic Light Scattering. Appl. Opt.1998,37 (27): 6511-6524.
    [113]C. Urban, P. Schurtenberger. Characterization of Turbid Colloidal Suspensions Using Light Scattering Techniques Combined with Cross-Correlation Methods. J. Colloid Interface Sci.1998,207(1):150-158.
    [114]J.M Schroder, S. Wiegand, L.B. Aberle, M. Kleemeier, W. Schroer. Experimental Determination of Singly Scattered Light Close to the Critical Point in a Polystyrene-Cyclohexane Mixture. Phys. Chem. Chem. Phys.1999,1 (14):3287-3292.
    [115]W.V. Meyer, D.S. Cannell, A.E. Smart, T.W. Taylor, P. Tin. Multiple-Scattering Suppression by Cross Correlation. Appl. Opt.1997,36 (30):7551-7558.
    [116]J.A. Lock. Role of Multiple Scattering in Cross-Correlated Light Scattering with a Single Laser Beam. Appl. Opt.1997,36 (30):7559-7570.
    [117]Ulf Nobbmann, S.W. Jones, B.J. Ackerson. Multiple-Scattering Suppression:Cross Correlation with Titled Single-Mode Fibers. Appl. Opt.1997,36 (30):7571-7576.
    [118]V.I. Ovod. Modeling of Multiple-Scattering Suppression by a One-Beam Cross-Correlation System. Appl. Opt.1998,37 (33):7856-7864.
    [119]J.M. Schroder, S. Wiegand. Experimental Suppression of Multiple Scattering:Effect on Dynamic and Static Scattering Data. Phys. Chem. Chem. Phys.2000,2 (7):1493-1495.
    [120]J.M. Schroder, A. Becker, S. Wiegand. Suppression of Multiple Scattering for the Critical Mixture Polystyrene/Cyclohexane:Application of One-Beam Cross Correlation Technique. J. Chem. Phys.2003,118 (24):11307-11314.
    [121]G. Maret. Diffusing-Wave Spectroscopy. Cuur. Opin. Colloid Interface Sci.1997,2(3): 251-257.
    [122]Stefan Will, A. Leipertz. Dynamic Light Scattering System With a Novel Scattering Cell for the Measurement of Particle Diffusion Coefficients. Rev. Sci. Instrum.1996,67 (9):3164-3169.
    [123]Grigor B. Bantchev, P.S. Russo, R.L. McCarley, R.P. Hammer. Simple Multiangle, Multicorrelator Depolarized Dynamic Light Scattering Apparatus. Rev. Sci. Instrum.2006,77 (4):043902.
    [124]Rene A. Bott, Frits F.M. de Mul. Goniometric Instrument for Light Scattering Measurement of Biological Tissues and Phantoms. Rev. Sci. Instrum.2002,73 (5): 2211-2213.
    [125]T.T. Charalampopoulos. An Automated Light Scattering System and a Method for the in situ Measurement of the Index of Refraction of Soot Particles. Rev. Sci. Instrum.1987,58 (9): 1638-1646.
    [126]B. Chu, Renliang Xu, T. Maeda, H.S. Dhadwal. Prism Laser Light Scattering Spectrometer. Rev. Sci. Insrum.1988,59 (5):716-724.
    [127]K. Huntebrinker, B. Wemheuer, M. Grubic, U. Wurz. Apparatus for in situ Measurment of Light Scattering During Heat-Treatment. Rev. Sci. Instrum.1989,60 (5):953-954.
    [128]M. Musolino, R. Cubeddu, A. Pifferi, P. Taroni, P. Lago, L. Rovati, M. Corti. An Integrated Instrumentation for Light Scattering and Time-Resolved Fluorescence Measurements. Rev. Sci. Instrum.1995,66 (3):2405-2410.
    [129]Dieter Lehner, G. Kellner, H. Schnablegger, Otto Glatter. Static Light Scattering on Dense Colloidal Sytems:New Instrumentation and Experimental Results. J. Colloid Interface Sci.1998,201 (1):34-47.
    [130]W.P. Kao, B. Chu. Light Scattering Studies of Critical Opalescence in Binary Liquid Mixtures.Ⅳ. Paraffins in Dichlorodiethyl Ether. J. Chem. Phys.1969,50 (9):3986-4007.
    [131]D.T. Jacobs. Critical Point Shifts in Binary Fluid Mixtures. J. Chem. Phys.1989,91 (1): 560-463.
    [132]Xueqin An, Weiguo Shen, Haijun Wang, Guokang Zheng. The (Liquid+Liquid) Critical Phenomena of (A PolarLiquid+An n-Alkane) I. Coexistence Curves of (N,N-Dimethylacetamide+Hexane). J. Chem. Thermodynamics.1993,25 (11):1373-1383.
    [133]Tianxiang Yin, Yuntao Lei, Chunfeng Mao, Zhiyun Chen, Xueqin An, Weiguo Shen. Critical Behavior of Binary Mixture of{x C6H5CN+(1-x) CH3(CH2)9CH3}:Measurements of Coexistence Curves, Turbidity, and Heat Capacity. J. Chem. Thermodynamics.2012,53: 42-51.
    [134]Chunfeng Mao, Nong Wang, Xuhong Peng, Xueqin An, Weiguo Shen. The Measurements of Coexistence Curves and Light Scattering for {x C6H5CN+(1-x)CH3(CH2)10CH3} in the Critical Region. J. Chem. Thermodynamics.2008,40 (3):424-430.
    [135]Tianxiang Yin, Yongliang Bai, Jingjing Xie, Zhiyun Chem, Xueqin An, Weiguo Shen, The Liquid-Lliquid Coexistence Curve and Turbidity Mmeasurement of Benzonitrile+ Tridecane. J. Chem. Eng. Data 2012,57,2479-2485.
    [136]Tianxiang Yin, Yuntao Lei, Meijun Huang, Zhiyun Chen, Chunfeng Mao, Xueqin An, Weiguo Shen. Critical Behavior of Binary Mixture of{x C6H5CN+(1-x) CH3(CH2)12CH3}: Measurements of Coexistence Curves, Turbidity, and Heat Capacity. J. Chem. Thermodynamics.2011,43 (5):656-663
    [137]Zhiyun Chen, Yongliang Bai, Tianxiang Yin, Xueqin An, Weiguo Shen. The Liquid-Liquid Coexistence Curves of{Benzonitrile+n-Pentadecane} and{Benzonitrile+ n-Heptadecane} J. Chem. Thermodynamics.2012,54:438-443.
    [138]Nong Wang, Chunfeng Mao, Xuhong Peng, Xueqin An, Weiguo Shen. The Measurements of Coexistence Curves and Turbidity for{x C6H5CN+(1-x) CH3(CH2)14CH3} in the Critical Region. J. Chem. Thermodynamics.2006,38 (6):732-738.
    [139]A.E. Bailey, D. S. Cannell. Practical Method for Calculation of Multiple Light Scattering. Phys. Rev. E.1994,50 (6):4853-4864.
    [140]M. Bonetti, C. Bagnuls, C. Bervillier. Measurement and Analysis of the Scattered Light in the Critical Ionic Solution of Ethylammonium Nitrate in n-Octanol. J. Chem. Phys.1997, 107 (2):550-561.
    [141]Tianxiang Yin, Shixia Liu, Jingjing Xie, Weiguo Shen, Asymmetric Criticality of the Osmotic Compressibility in Binary Mixtures. J. Chem. Phys.2012, (submitted).
    [142]V.G. Puglielli, N.C. Ford, Jr. Turbidity Measurements in SF6 near Its Critical Point. Phys. Rev. Lett.1970,25 (3):143-147.
    [143]P. Calmettes, I. Lagues, C. Laj. Evidence of Nonzero Critical Exponent η for a Binary Mixture from Turbidity and Scattered Light Intensity Measurements. Phys. Rev. Lett.1972, 28 (8):478-480.
    [144]V. Martin-Mayor, A. Pelissetto, E. Vicari. Critical Structure Factor in Ising Systems. Phys. Rev. E.2002,66 (2):026112.
    [145]R.A. Ferrell. Determination of the Anomalous Dimension Green-Fisher Critical Exponent η by Light Scattering in a Fluid. Physica A.1991,177 (1-3):201-206.
    [146]A. Lytle, D.T. Jacobs. Turbidity Determination of the Critical Exponent in the Liquid-Liquid Mixture Methanol and Cyclohexane. J. Chem. Phys.2004,120 (12): 5709-5716.
    [147]R.B. Kopelman, R.W. Gammon, M.R. Moldover. Turbidity very near the Critical Point of Methanol-Cyclohexane Mixtures. Phys. Rev. A.1984,29 (4):2048-2053.
    [148]D.T. Jacobs. Turbidity in the Binary Fluid Mixture Methanol-Cyclohexane. Phys. Rev. A.1986,33 (4):2605-2611.
    [149]S.G. Stafford, A.C. Ploplis, D.T. Jacobs. Turbidity of Polystyrene in Diethyl Malonate in theOne-Phase Region near the Critical Solution Point. Macromolecules.1990,23 (2): 470-475.
    [150]Weiguo Shen, G.R. Smith, C.M. Knobler, R.L. Scott. Tricritical Phenomena in Bimodal Polymer Solutions II.Turbidity Measurements in the Three-Phase Region. Physica A.1991, 177 (1-3):311-323.
    [151]Weiguo Shen, G.R. Smith, C.M. Knobler, R.L. Scott. Turbidity Measurements of Binary Polystyrene Solutions near Critical Solution Points. J. Phys. Chem.1991,95 (8):3376-3379.
    [152]Lori W. DaMore, D.T. Jacobs. Turbidity of Deuterated Isobutyric Acid and Heavy Water in the One-Phase Region near the Critical Solution Point. J. Chem. Phys.1992,97 (1): 464-469.
    [153]Xueqin An, Weiguo Shen, Keqin Xia. Turbidity of Critical Solutions of Polymethylmethacrylate in 3-Octanone. J. Chem. Phys.1997,107 (6):2060-2065.
    [154]D.T. Jacobs, S.M.Y. Lau, A. Mukherjee, C.A. Williams. Measuring Turbidity in a Near-Critical, Liquid-Liquid System:A Precise, Automated Experiment. Int. J. Thermophys. 1999,20(3):877-887.
    [155]C.I. Braganza, D.T. Jacobs. Turbidity of the Liquid-Liquid Mixture Perfluoroheptane and 2,2,4-Trimethylpentane near the Critical Point. J. Chem. Phys.2002,117 (21): 9876-9879.
    [156]C. Lecoutre, Y. Garrabos, E. Georgin, F. Palencia, D. Beyses. Turbidity Data of Weightless SF6 Near Its Liquid-Gas Critical Point. Int. J. Thermophys.2009,30 (3):810-832.
    [157]Xueqin An, Fuguo Jiang, Haihong Zhao, and Weiguo Shen. The Measurements of Coexistence Curves and Turbidity for{x C6H5NO2+(1-x) CH3(CH2)9CH3} in the Critical Region; J. Chem. Thermodynamics.1998,30(10):1181-1190.
    [158]Xueqin An, Haihong Zhao, Fuguo Jiang, and Weiguo Shen. The Coexistence Curves of {x C6H5NO2+(1-x) CH3(CH2)ioCH3} in the Critical Region. J. Chem. Thermodynamics 1998, 30(1):21-26.
    [159]Chongshan Zhou, Xueqin An, Fuguo Jiang, Haihong Zhao, and Weiguo Shen. The Measurements of Coexistence Curves and Turbidity for{x C6H5NO2+(1-x) CH3(CH2)11CH3} in the Critical Region. J. Chem. Thermodynamics 1999,31 (5):615-626.
    [160]Xueqin An, Haihong Zhao, Fuguo Jiang, Chunfeng Mao, and Weiguo Shen. The Coexistence Curves of {x C6H5NO2+(1-x) CH3(CH2)12CH3} in the Critical Region; J. Chem. Thermodynamics 1997,29 (9):1047-1054.
    [161]Tianxiang Yin, Yuntao Lei, Zhiyun Chen, Xueqin An, Weiguo Shen. Critical Behavior of Binary Mixtures of Nitrobenzene+Undecane and Nitrobenzene+Dodecane. J. Solution. Chem.2012, DOI:10.1007/s10953-012-9907-3.
    [162]G. Perez-Sanchez, P. Losada-Perez, C.A. Cerdeirina, Jan Thoen. Critical Behavior of Static Properties for Nitrobenzene-Alkane Mixtures. J. Chem. Phys.2010,132 (21):214503.
    [163]E. Bloemen, J. Thoen, W. van Dael. The Specific Heat Anomaly in Triethylamine-Heavy Water near the Critical Solution Point. J. Chem. Phys.1980,73 (9): 4628-4635.
    [164]G. Zalczer, A. Bourgou, D. Beysens. Amplitude Combinations in the Critical Binary Fluid Nitrobenzene and n-Hexane. Phys. Rev. A.1983,28 (1):440-454.
    [165]G. Sanchez, M. Meichle, C.W. Garland. Critical Heat Capacity in a 3-Methylpentane+ Nitroethane Mixture near its Consolute Point. Phys. Rev. A.1983,28 (3):1647-1653.
    [166]M. Jungk, L. Belkoura, D. Woermann, U. Wurz. Study of a Binary Critical Mixture of 2, 6-Dimethyl Pyridine/Water:Measurements of Static and Dynamic Light Scattering and Specific Heat Near the Lower Critical Point. Ber. Bunsenges. Phys. Chem.1987,91:507-516
    [167]A.C. Flewelling, R.J. DeFonseka, N. Khaleeli, D.T. Jacobs. Heat Capacity Anomaly near the Lower Consolute Point of Triethylamine-Water. J. Chem. Phys.1996,104 (20): 8048-8057.
    [168]P.F. Rebillot, D.T. Jacobs. Heat Capacity Anomaly near the Critical Point of Aniline-Cyclohexane. J. Chem. Phys.1998,109 (10):4009-4014.
    [169]A. Haupt, J. Straub. Evaluation of the Isochoric Heat Capacity Measurements at the Critical Isochore of SF6 Performed during the German Spacelab Mission D-2. Phys. Rev. E. 1999,59(2):1795-1802.
    [170]A.W. Nowicki, M. Ghosh, S.M. McClellan, D.T. Jacobs. Heat Capacity and Turbidity near the Critical Point of Succinonitrile-Water. J. Chem. Phys.2001,114 (10):4625-4633.
    [171]E.R. Oby, D.T. Jacobs. Heat Capacity of the Liquid-Liquid Mixture Perfluoroheptane and 2,2,4-Trimethylpentane near the Critical Point. J. Chem. Phys.2001,114 (11): 4918-4921.
    [172]S. Pittois, B. van Roie, C. Glorieux, J. Thoen. Thermal Conductivity, Thermal Effusivity, and Specific Heat Capacity near the Lower Critical Point of the Binary Liquid Mixture n-Butoxyethanol-Water. J. Chem. Phys.2004,121 (4):1866-1872.
    [173]S. Pittois, B. van Roie, C. Glorieux, J. Thoen. Static and Dynamic Thermal Quantities near the Consolute Point of the Binary Liquid Mixture Aniline-Cyclohexane Studied with a Photopyroelectric Technique and Adiabatic Scanning Calorimetry. J. Chem. Phys.2005,122 (2):024504.
    [174]Yuntao Lei, Zhiyun Chen, Nong Wang, Chunfeng Mao, Xueqin An, Weiguo Shen. Critical behavior of binary mixture of{x C6H5CN+(1-x) CH3(CH2)7CH3}:Measurements of coexistence curves, Light Scattering, and heat capacity. J. Chem. Thermodynamics.2010,42 (7):864-872.
    [175]Xueqin An, Fuoguo Jiang, Weiguo Shen. Turbidity Measurement of Critical Solutions of n-Alkanes in Nitrobenzene. J. Chem. Soc., Faraday Trans.1998,94 (15):2169-2172.
    [176]雷运涛.博士学位论文.兰州大学.2010.
    [177]M. Souto-Caride, J. Troncoso, J. Peleteiro, E. Carballo, L. Romani. Estimation of Critical Amplitudes of the Correlation Length by means of Calorimetric and Viscosimetric Measurements. Chem. Phys.2006,324 (2-3):483-488.
    [178]M. Souto-Caride, J. Troncoso, P. Losada-Perez, J. Peleteiro, E. Carballo, L. Romani. Dependence on molecular Parameters of the Heat Capacity Critical Behavior for Nitroalkane +Alcohol Binary Systems. Chem. Phys.2009,358 (3):225-229.
    [179]M. Souto-Caride, J. Troncoso, P. Losada-Perez, J. Peleteiro, E. Carballo, L. Romani. Heat Capacity Anomalies of Associated Liquid-Alkane Mixtures near the Liquid-Liquid Critical Point. Chem. Phys.2009,360 (1-3):106-109.
    [180]Tianxiang Yin, Jingjing Xie, Shixia Liu, Yuntao Lei, Zhiyun Chen, Weiguo Shen. Universal Critical Amplitude Ratios in Binary Mixtures of{Benzonitrile+Alkane}. Chem. Physics.2012, (submitted).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700