松辽盆地北部深层断陷地质结构及演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
晚侏罗—早白垩世早期,松辽盆地北部深层断陷的发育经历了火石岭组的初始断裂期、沙河子组的强烈断陷期和营城组的断拗转化期。
     沙河子组期控陷断裂的演化经历了由多个区段独立发育、相邻区段相互作用、进而通过一条新的断裂连为一条区域性断裂的过程。最初控陷断裂的各区段表现为北北西向断层的右阶雁列及北北东向断裂的左阶雁列,表现出明显的斜向伸展特征。最终控陷断裂系统在研究区内形成了安达—徐家围子这一北北西向的大规模断陷发育带。
     从深层断陷的残留现状看,各条控陷断裂的演化程度参差不齐,演化程度较高的控陷断裂纵向上断距幅度大,平面上连续性强,沿走向断裂特征变化小,所控制的断陷规模大,结构明朗。演化程度较低的控陷断裂纵向上断距幅度小,平面上连续性差,沿走向断裂特征变化大,所控制的断陷规模小,断陷各个部分的分异性差,结构混沌。
     控陷断裂的动态演化过程控制了深层断陷的动态发育。一个断陷的完整发育过程可划分为五个阶段,即胚胎期(象古龙—常家围子断陷)、幼年期(双城断陷)、成长期(莺山断陷)、成熟期(徐家围子断陷)、联合期断陷(安达—昌五断陷与徐家围子断陷已构成联合之势)。一个具体的断陷发育可终止于任何一个阶段,但高序次断陷的形成必须经历低序次断陷的发育过程,高序次断陷结构中也必然蕴含着低序次断陷的结构。包容在高序次断陷中的低序次断陷结构的原始特征虽已模糊,但不难在现存的低序次断陷中比较清晰地看到其原始特征。
     松辽地区纵向上叠置了三个形成机制不同、边界条件不同的中新生代盆地,即火石岭—营城组时期的泛东北亚断陷群,登娄库—依安组时期的松辽大型拗陷盆地,新近纪以来盆岭伸展构造格架下的现今地理盆地。深层断陷盆地群与大型拗陷盆地之间曾发生过重大的区域性地质背景变革,并非象前人所称的那样,是一个继承性发育过程。断陷期地层遭受的规模较大的改造作用分别发生于大型拗陷盆地的孕育、发展和反转萎缩阶段。大型拗陷盆地孕育阶段的主要改造形迹为区域性挤压褶皱和剥蚀作用。大型拗陷盆地的沉降格局决定了断陷期地层的埋藏格局。大型拗陷盆地反转萎缩期研究区东部的断陷期地层全部卷入了区域性逆冲褶皱系统。
     沙河子期的断陷原形控制了烃源岩的平面分布,沙河子组烃源岩的埋藏与剥蚀历史、保存与残留现状,从“源控型”的角度控制了天然气的平面分布。徐家围子断陷的徐西伸展断裂带、丰乐挠曲带、徐南凹陷和升平—兴城转换斜坡,以及茂兴断陷等是五个深层天然气成藏条件优越的勘探区带。
From the Late Jurassic to the Early Cretaceous, the deep fault-depressions in North Songliao Basin had gone through three developing stages, the initial faulting stage during Huoshiling Period, the intense fault-subsiding stage during Shahezi Period, and the fault-depression depauperation stage during Yingcheng Period.All the depression-controlling faults in the deep in North Songliao Basin had generally gone through the dynamic processes from the independent development, interactional development, to the united development. The faults during the independent developing stage appeared as the en-echelon arrangements along NNW and NNE strike under the shear-extending. And finally, under the controlling of the depression-controlling faults in the deep in North Songliao Basin, there developed the great NNW strike fault-depression zone, An'da-Xujiaweizi fault-depression zone.The present characteristics show that the developing degrees of the depression-controlling faults are very different. The faults with the high developing degree are long, great in the vertical displacements, with the concordant characteristics along the strikes. And the fault-depressions controlled by the high-degree faults are generally very big. But the faults with the low developing degree always have the completely contrary characteristics from the high-degree faults.The dynamic developing faults controlled the dynamic developments of the depressions during Shahezi Stage during the Early Cretaceous. The present depression structures in North Songliao Basin show that the developing process of the entire depression generally goes through five phases: the embryo phase (such as Gulong-Changjiaweizi Fault-depression), the infancy phase (such as Shuangcheng Fault-depression), the youth phase (such as Yingshan Fault-depression), the adult phase (such as Xujiaweizi Fault-depression), and the united phase (such as Xujiaweizi Fault-depression and Anda-Changwu Fault-depression having been united together). Any fault-depression perhaps terminates at any developing phase. The high-phase
    fault-depressions always went through the low developing phase, and were always left with some imprints of the low-phase fault-depression. Although the original characteristics of the low-phase fault-depressions in the high-phase fault-depressions are difficult to be distinguished, the present low-phase fault-depression can show their original characteristics.In Songliao region, there developed three basins with the different formation mechanisms and different boundary conditions during the Mesozoic-Cenozoic, which are the fault-depression basin during Huoshiling-Yingcheng Period, the great depression basin during Denglouku-Yi' an Period, and the present geographic basin under the basin-range extending since Neogene Period. Between the development period of the fault-depression basin and the great depression basin, the regional geologic setting changed revolutionarily, but not with the inherited development. There happened the major structural reformations on the deep formations during the gestation period, growth period, and the reversion-depauperization period of the great depression basin. The regional compressive folding and denudations happened during the gestation period. The subsiding during the growth period resulted in the burial patterns of the deep formations. During the reversion-depauperization period, the deep formations in the east were embroiled in the regional thrust-folding system.The fault-depression prototypes during Shahezi Stage controlled the distribution of the source rocks. According to the 'Source-controlling Theory', the burying-denudating histories and present distributions of Shahezi source rocks controlled the distributions of the natural gas reservoirs. Xuxi Extending Fault Belt, Fengle Flexure Belt, Xunan Depression, Shengping-Xingcheng Transforming Slope, and Maoxing Fault-depression are the better exploration zones for the natural gas in the deep.
引文
[1] 曹国银.黑龙江省松辽盆地北部兴城北地区深层三维地震勘探成果报告(1999—2000年度),大庆油田有限责任公司勘探分公司(内部报告),2001.
    [2] 陈发景等.松辽盆地北部徐家围子断陷石油地质特征,大油油田有限责任公司勘探开发研究院(内部资料),2000.
    [3] 陈均亮,蔡希源,林春华等.松辽盆地北部断陷盆地构造特征与幕式演化.石油学报,1999,20(4):14~18.
    [4] 陈跃辉.不同伸展构造的形成深度和水平伸展量的估算.华东地质学院学报,1996,19(4总56):315~320.
    [5] 迟元林,蒙启安,门广田等.松辽盆地北部深层石油地质综合研究与目标评价(大庆研究院内部资料),1999.
    [6] 迟元林,云金表,蒙启安等.松辽盆地深部结构及成盆动力学与油气聚集.北京:石油工业出版社,2002.
    [7] 邓传伟.黑龙江省松辽盆地北部兴城、昌德东及芳深9井区连片三维地震资料解释成果报告(1998年度),大庆石油管理局地球物理勘探公司(内部报告),1998.
    [8] 邓祖佑.莺山—庙台子地区深层油气综合评价研究(大庆研究院内部资料),2000.
    [9] 丁青珊等.中国北部晚侏罗世—早白垩世地层层序及地质对比,地质科学研究论文集,中国经济出版社,1995.
    [10] 董清水,赵占银,刘招君等.半地堑式断陷盆地的油气成藏模式—以松辽盆地梨树断陷为例.吉林大学学报(地球科学版),2003,33(1):43~47.
    [11] 方立敏,李玉喜,殷进垠等.松辽盆地断陷末期反转构造特征与形成机制.石油地球物理勘探,2003,38(2):190~193.
    [12] 付广.松辽盆地北部深层含油气系统研究(大庆研究院内部资料),2002.
    [13] 付广,马福建,张秀荣等.松辽盆地北部徐家围子地区K_1sh+yc-K_1d_2成藏系统特征及主控因素分析.海洋石油,2003,23(1):8-14.
    [14] 高美娟,马凤荣,王云专.古中央隆起带以西深层聚集气成藏条件及有利区预测研究(大庆研究院内部资料),2001.
    [15] 郭军,陈守田,王维林等.松辽盆地徐家围子断陷火山岩岩石化学特征及其构造环境.长春科技大学学报,2000,30(3):234~245.
    [16] 黑龙江省地质矿产局.黑龙江省区域地质志,地质出版社,1993.
    [17] 贾庆军,肖希山,张忠义.三江盆地绥滨拗陷二维地震资料解释成果(大庆油田勘探分公司内部资料),2004.
    [18] 李娟,舒良树.松辽盆地中、新生代构造特征及其演化.南京大学学报(自然科学),2002,38(4总145):525~531.
    [19] 李三忠,李西双,许淑梅等.伸展区褶皱作用研究新思路.地学前缘,2000,7(2):429.
    [20] 李三忠,岳云福,高振平等.伸展盆地区断裂构造特征与成因.华南地质与矿产,2003,2(总74):1~8.
    [21] 李自安,尹中民.松辽盆地构造演化力源机制的模拟研究.勘探家,1999,4(4总14):10~14.
    [22] 梁爱侠.松辽盆地北部安达地区深层二维地震老资料重新处理与解释成果报告(1999年度),大庆石油管理局地球物理勘探公司(内部报告),1999.
    [23] 林壬子,金晓辉,罗静兰等.松辽盆地北部深层烃源岩成烃及成藏史研究(大庆研究院内部资料),2003.
    [24] 刘德来,丁贵明,鲁兵.伸展断层上盘向斜和中间隆起的成因模型.中国科学(D辑)地球科学,2001,31(12):985~991.
    [25] 刘和甫.伸展构造及其反转作用.地学前缘,1995,2(1):113~124.
    [26] 刘和甫,梁慧社,李晓清等.中国东部中新生代裂陷盆地与伸展山岭耦合机制.地学前缘,2000,7(4):477~486.
    [27] 刘立,汪筱林等.满洲里—绥汾河地学断面域内中新生代裂谷盆地的构造—沉积演化.《中国满洲里—绥芬河地学断面域内岩石圈结构及其演化的地质研究》.北京:地震出版社,1994.
    [28] 刘文龙,朱德丰,吴相梅等.松辽盆地北部西部深层古参1井地质论证(大庆研究院内部资料),2004.
    [29] 刘学锋,孟令奎,黄长青等.GIS支持下的盆地古构造再造—以松辽盆地北部古中央隆起带为例.地球科学(中国地质大学学报),2003,28(3):346~350.
    [30] 刘云武,董莉.松辽盆地北部徐家围子地区深层二维地震详查勘探成果报告(1997—1998年度),大庆石油管理局地球物理勘探公司(内部资料),1998.
    [31] 刘招君,汪筱林等.满洲里—绥汾河地学断面域松辽—海拉尔中生代盆地形成机制.《中国满洲里—绥芬河地学断面域内岩石圈结构及其演化的地质研究》.北京:地震出版社,1994.
    [32] 陆基孟.《地震勘探原理》,石油大学出版社,1993.
    [33] 卢双妨.松辽盆地北部深层天然气资源评价研究(大庆研究院内部资料),2002.
    [34] 罗笃清.松辽盆地中新生代构造演化.大庆石油学院学报,1993,17(1):18-22.
    [35] 马安来,李贤庆,熊波等.松辽盆地齐家古龙地区烃源岩有机岩石学研究.石油勘探与开发,2002,29(4):26-28.
    [36] 蒙启安、任延广等.松辽盆地北部深层天然气勘探突破方向研究(2001年阶段成果),大庆油田有限责任公司勘探开发研究院(内部资料),2002.
    [37] 庞庆山,赵荣,赵利华等.松辽盆地北部深层CO2气藏成藏特征与分布规律研究(大庆研究院内部资料),2001.
    [38] 漆家福.裂陷盆地的伸展构造理论,1992.
    [39] 钱祥麟.伸展构造研究,1994.
    [40] 任延广.松辽盆地徐家围子断陷地质特征与天然气聚集规律(吉林大学博士学位论文),2004.
    [41] 任德生,张兴洲,陈树明.松辽盆地徐家围子断陷芳深9井区火山岩储层裂缝预测.地质力学学报,2002,8(3):279-287.
    [42] 任建业,李思田.东北亚断陷盆地系与北美西部盆岭省伸展作用对比.地质科学情报,1998,17(3总73):7~11.
    [43] 任纪舜,陈廷愚,牛宝贵等.中国东部及邻区大陆岩石圈的构造演化与成矿.205页.北京:科学出版社,1990.
    [44] 邵济安,唐克东等.中国东北地体与东北亚大陆边缘演化,地震出版社,1995.
    [45] 石油工业部石油勘探开发科学研究院.中国石油天然气资源评价研究总报告(全国油气资源评价研究报告),1987.
    [46] 宋鸿林.斜向滑动与走滑转换构造.地质科技情报中国地质大学(武汉),1996,15(4总64):33~38.
    [47] 孙岩,李本亮,刘海龄等.论层滑、倾滑和走滑断裂系统.地质力学学报,1999,5(3):53~57.
    [48] 唐建人,陈守田,张克民.松辽盆地北部深部层圈结构与成因模式探讨.长春科技大学学报,2001,31(4):338~339,334.
    [49] 杨宝俊,唐建人,李勤学等.松辽盆地深部反射地震探查.地球物理学进展,2001,16(4):11~17.
    [50] 殷进垠,刘和甫,迟海江.松辽盆地徐家围子断陷构造演化.石油学报,2002,23(2):26~29.
    [51] 余和中,李玉文,韩守华等.松辽盆地古生代构造演化.大地构造与成矿学,2001,25(4总91):389~396.
    [52] 余和中,蔡希源,韩守华等.松辽盆地石炭—二叠系分布与构造特征.大地构造与成矿学,2003,27(3):277~281.
    [53] 王鸿祯,杨森楠,李思田.中国东部及邻区中新生代盆地发育及大陆边缘区的造发展.地质学报,1987,57(3):213~223.
    [54] 王鸿祯,杨森楠,刘本培等.中国及邻区构造古地理和生物古地理.武汉:中国地质大学出版社,1990.
    [55] 王璞瑁,刘万洙,程日辉.松辽盆地北部火山岩储层预测和评价(大庆研究院内部资料),2003.
    [56] 王清海,许文良.松辽盆地形成与演化的深部作用过程—中生代火山岩探针.吉林大学学报(地球科学版),2003,33(1):37~42.
    [57] 汪筱林,刘立等.满洲里—绥汾河地学断面域中新生代盆地基底结构及构造演化.《中国满洲里—绥芬河地学断面域内岩石圈结构及其演化的地质研究》.北京:地震出版社,1994.
    [58] 王锡魁,张庸等.大兴安岭新生代隆起与沉降.《中国满洲里—绥芬河地学断面域内岩石圈结构及其演化的地质研究》.北京:地震出版社,1994.
    [59] 万天丰.古构造应力场.北京:地质出版社,1988.
    [60] 万天丰.中国东部中、新生代板内变形构造应力场及其应用.北京:地质出版社,1993.
    [61] 万天丰.中国大地构造学纲要.北京:地质出版社,2004.
    [62] 王骏,王东坡,刘立等.裂谷盆地形成的动力学机制及其含油气性.长春地质学院院报,1997,27(1):51-57.
    [63] 王平在,辛仁臣.松辽盆地北部徐家围子断陷沉积体系及其演化规律.大庆石油学院学报,2001,25(3):3640.
    [64] 王义天,李继亮.走滑断层作用的相关构造.地质科技情报/中国地质大学(武汉),1999,18(3总79):30~34.
    [65] 魏永佩,刘池阳.论走滑盆地研究的几个问题.地学工程进展,1999,16(1总49):30~35.
    [66] 解习农.松辽盆地梨树凹陷深部断陷沉积体系及层序地层特征.石油实验地质,1994,16(2):144~151.
    [67] 薛冈,卢华复,朱成宏等.伸展区域平衡剖面法及其在构造分析中的应用.高校地质学报,2001,7(4):427-434.
    [68] 闫奎邦.松辽盆地北部庙台子—莺山地区深层二维地震详查成果报告(1998—1999年度),大庆石油管理局地球物理勘探公司(内部资料),1999.
    [69] 闫奎邦,陈明伟.松辽盆地北部古龙—常家围子地区二维地震勘探资料解释成果报告(大庆油田有限责任公司勘探分公司内部资料),2004.
    [70] 杨峰平,齐景顺等.松辽盆地北部天然气勘探项目2001年工作总作及2002年工作安排,大庆油田有限责任公司勘探分公司.勘探开发研究院(内部资料),2002.
    [71] 杨巍然,纪克诚,孙继源等.大陆裂谷研究中的几个前沿课题.地学前缘,1995,2(1):93-102.
    [72] 杨万里.松辽陆相盆地石油地质.北京:石油工业出版社,1985.
    [73] 殷进垠,王洪艳,金明玉等.松辽盆地深层构造与形成机制研究(大庆研究院内部资料),1999.
    [74] 岳华,张洪波,李仁甫.Geosec平衡剖面技术在M盆地构造研究中的应用.勘探地球物理进展,2002,25(4):49-52.
    [75] 袁子龙,张明学,辛仁臣等.松辽盆地古龙地区泉头组—营城组火山岩岩性圈闭及地层超覆圈闭预测(大庆研究院内部资料),2002.
    [76] 云金表.中国东北地区中生代沉积盆地地球动力学机制及含油气评价(长春科技大学博士研究生学位论文),2000.
    [77] 张功成,梁慧社,徐宏等.平衡剖面正演模拟技术在松辽盆地构造分析中的应用.西安石油学院学报(自然科学版),1999,14(2总55):1~4.
    [78] 张功成,刘和甫,朱德丰.松辽盆地晚中生代裂谷作用与伸展构造样式.新疆石油地质,1997,18(1总65):30~34.
    [79] 张功成,徐宏.中国东北部晚中生代裂陷作用与伸展构造.长春科技大学学报,1998,28(3):266~272.
    [80] 张厚福,张万选.石油地质学.北京:石油工业出版社,1989.
    [81] 张恺、张清、罗志立、戴金星、姚慧君.中国含油气盆地的划分和前景.石油地质学报,1989,1:(4):401-412.
    [82] 张明学,白新华,辛仁臣等.松辽盆地西部断陷带层序地层学研究(大庆研究院内部资料),2001.
    [83] 张晓东,余青,陈发景等.松辽盆地变质核杂岩和伸展断陷的构造特征及成因.地学前缘,2000,7(4):411~419.
    [84] 张庸,王锡魁等.东北地区北东向断裂的左旋运动.《中国满洲里—绥芬河地学断面域内岩石圈结构及其演化的地质研究》.北京:地震出版社,1994.
    [85] 赵春荆等.吉黑东部地壳形成演化,地质科学研究论文集,中国经济出版社,1996.
    [86] 赵红格,刘池阳,杨明慧等.调节带和转换带及其在伸展区的分段作用.世界地质,2000,19(2):105~111.
    [87] 邹华耀.松辽盆地北部深层含油气系统研究及勘探目标优选(大庆研究院内部资料),2003.
    [88] 周建勋.基底不均匀伸展对盆地构造形成特征影响的实验研究.煤田地质与勘探,2000,28(5总161):12~14.
    [89] 周建勋,漆家福.伸展边界方向对伸展盆地正断层走向的影响—来自平面砂箱实验的启示.地质科学,1999,34(4):491~497,450.
    [90] 周永胜,李建国,王绳祖.用物理模拟实验研究走滑断裂和拉分盆地.地质力学学报,2003,9(1):1~13.
    [91] 朱德丰.松Ⅰ区域地震大剖面基岩内幕断裂解释及与油气关系研究(大庆勘探开发研究院内部资料),1992.
    [92] 朱德丰.松辽盆地北部深断裂断层结构及其作用研究(大庆勘探开发研究院内部资料),1993.
    [93] 朱德丰,任延广,杨永斌等.松辽盆地北部深层天然气勘探突破方向研究(大庆研究院内部资料),2003.
    [94] Anupma Gupta, Christopher H. Scholz.A model of normal fault interaction based on observations and theory..Journal of Structural geology, 2000, 22: 865~879.
    [95] Briegel U., Goetze C.. Estimates of differential stress recorded in the dislocation structure of Lochseiten Limestone (Switzerland). Tectonophysics, 1978, 48: 61-76.
    [96] Buck W. R.. Comment on Yin A. 'Origin of regional, rooted Low-angle normal faults: A mechanical model and its tectonic implications'. Tectonics, 1990, 9: 545-546.
    [97] Davis G. A., Peter J.. Geologic development of the Cordilleran metamorphic core complexes. Geology, 1979, 7: 120-124.
    [98] Davis G. H.. Shear-zone model for the origin of metamorphic core complexes. Geology, 1983, 11: 342-347.
    [99] Davis G.H.,郑亚东.变质核杂岩的定义、类型及构造背景.地质通报,2002,21(4-5):186-192.
    [100] Doblas M., Oyarzun R., et al.. Detachment faulting and late Paleozoic epithermal Al-base-metal mineralization in the Spanish central system. Geology, 1988, 16: 803-806.
    [101] Durham W.B., Goetze C, Blake B.. Plastic flow of oriented single crystals of olivine, Part Ⅱ, Observations and interpretations of dislocation stractures. Jour. Geophys. Res., 1977, 82(B6): 5755-5770.
    [102] Friedmann S. L., Burbank D. W.. Rift basins and supradetachment basins: Intracontinental extensional end-members. Basin Research, 1995, 7: 109-127.
    [103] Gawthorpe R. L., Sharp I., et al.. Linked sequence stratigraphic and structural evolution of propagating normal faults. Geology, 1997, 25(9): 795-798.
    [104] Gessner K., Ring U., Johnson et al.. An active bivergent-rolling-hinge detachment system: Central Menderes metamorphic core complex in western in western Terkey. Geology, 2001, 29: 611-614.
    [105] Gillespie P.A., Walsh J.J., and Watterson J.. Limitations of dimension and displacement data from single and the consequences for data analysis and interpretation. Journal of Structural geology, 1992, 14(10): 1157-1172.
    [106] Gupta S., Cowie P. A., et al.. A mechanism to explain rift-basin subsidence and stratigraphic patterns through fault-array evolution. Geology, 1998, 26(7): 595-598.
    [107] John B. E., Foster D. A.. Structural and thermal constrains on the initiation angle of detachment faulting in the southern Basin and Range: The Chemehuevi Mountains case study. Geological Society of America, 1993, 105: 1091-1108.
    [108] Joseph A. C., Bruce D. T. and Christopher S. M.. Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SEUtah. Journal of Structural geology, 1995, 17(9): 1319-1326.
    [109] Kusznir N. J., Park R. G.. The extensional strength of the continental lithosphere: Its dependence on geothermal gradient, and crustal composition and thickness. Continental extensioal tectonics, 1987, Edited by Coward M. P., Dewey J. F., Hancock P. L., 35-52.
    [110] Kusznir N. J., Ziegler M.. The mechanics of continental extension and sedimentary basin formation: A simple-shear/pure-shear flexural cantilever model. Tectonophysics, 1992, 215: 117-131.
    [111] Lister G. S., Davis G. A.. The origin of metamorphic core complex and detachment faults formed during Tertiary continental extsion in the northern Colorado River region. Jornal of Structural Geology, 1989, 11, 65-94.
    [112] Livaccari R.F., Geissman J. W.. Large-magnitude extension along metamorphic core complexes of western Arizona and southeastern Calofornia: Evaluation with paleomagnetism. Tectonics, 2001, 20: 625-648.
    [113] Malavieille J.. Late orogenic extension in mountain belts: Insights from the Basin and Range Province and the late Paleozoic Variscan Belt. Tectonics, 1993, 12(5): 1115-1130.
    [114] Maldonado F.. Structural geology of the upper plate of the Bullfrog Hills detachment fault system, South Navada. Geological Society of America Bulletin, 1990, 102(11): 992-1006.
    [115] Manoon L. B., Dow W. G. The petroleum system. AAPG Memoir60. 1994, 3-24.
    [116] McCormick J. W.. Transmission electron microscopy of experimentally deformed synthetic quartz. Ph.D. thesis, Univ. Calif. Los Angles (after, Christie & Ord. 1980), 1977.
    [117] Mckenzie D. P.. Some remarks on the development of sedimentary basins. Earth Planet Science Letters, 1978, (40): 25-32.
    [118] Michon L., Merle O.. Mode of lithospheric extension: Conceptual models from analogue modeling. Tectonics, 2003, 22(4): 1-15.
    [119] Miller E. L., Gans P. B.. The snake range decollement: an excumed mid-Tertiary btittle-ducctile transition. Tectonics, 1983, 2: 239-263.
    [120] Nancye H. D. and Mark H. A.. Displacement-length scaling and fault linkage. Journal of Structural geology, 1995, 17(5): 607-614.
    [121] Nieto-Samaniego A. F.. Stress, strain and fault patterns. Journal of structure Geology, 1999,21: 1065-1070.
    [122] Patience A. C, and Christopher H. S.. Physical explanation for the displacement-length relationship of faults using a post-yield fracture mechanics model. Journal of Structural geology, 1992, 14(10): 1133-1148.
    [123] Peacock D. C. P. and Sanderson D. J.. Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural geology, 1991, 13(6): 721-733.
    [124] Perrodon A., Masse P.. Subsidence. Sedimentation and petroleum systems. Journal of Petroleum Geology, 1984, 7 (1) : 5-26.
    [125] Roland, Burgmann and David D. P.. Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stifihess, and fault interaction. Journal of Structural Gelolgy, 1994, 16(12): 1675-1690.
    [126] Strecker M. R., Blisniuk P. M., Eisbacher G H.. Rotation of extension direction in the central Kenya Rift. Geology, 1990, 18: 299-302.
    [127] Twiss R. J.. Theory and applicability of a recrystallized grain size paleopie- zometer. Pure Appl. Geophys., 1977, 115: 227-244.
    [128] Wernicke B.. Low-angle normal faults in the Basin and Range province: Nappe tectonics in an extending orogen. Nature, 1981, 291: 645-647.
    [129] Wernicke B.. Evidence for large-scale simple shear of the continental lithosphere during extension, Arizona and Utah. Geological Society of American Abstract, 1983, 15: 310-311.
    [130] Yin A.. Origin of regional rooted low angle normal faults: A mechancal model and its tectonic implications. Tectonics, 1989, 8: 469-482.
    [131] Yin A., Dunn J. F.. Structural and stratigraphic development of the Whipple-Chemehuevi detachment fault system, South California: Implications for the geometrical evolution of domal and basinal low-angle normal faults. Geological Society of America Bulletin, 1992, 104(9): 659-674.
    [132] Zheng Y. D., Wang T., Ma M. B., Davis G. A.. Maximum effective moment criterion and the origin of low-angle normal faults. J. Struct. Geol., 2004 26(2): 271-285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700