用户名: 密码: 验证码:
基于滞回耗能的Pushover分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,结构抗震设计正在由传统的基于力的强度设计方法发展到基于性能或位移的延性抗震设计方法。基于性能的抗震设计作为地震工程发展的一种趋势,其基本思想将逐渐进入设计标准并应用于实际工程的设计。同时,基于性能的抗震设计是建立在可靠度理论基础上的,Pushover作为基于性能的抗震设计的一个重要手段,改进其计算精度以及对其计算结果进行概率研究是当前的研究热点。
     论文着重在以下几个方面进行研究工作:
     1.提出了基于滞回耗能的改进Pushover分析方法。将收集到的335条地震波按照场地类别等进行分组,并建立起相应的滞回耗能谱。在Chopra的多模态Pushover分析方法和Aschhein提出的基于能量的位移的基础上,利用滞回耗能谱将基于能量的位移引入到Pushover分析中,并通过自适应的水平加载方式考虑了高阶振型的影响。本文采用五分段模型来模拟框架构件受力,用Fortran90编制了基于滞回耗能、倒三角分布等五种不同加载方式的Pushover分析程序,采用SAP2000对结构进行时程分析,并通过算例验证了本文方法的可行性;
     2.通过基于结构体系强度失效的安全余量分析,建立Pushover分析所得的能力曲线的极限状态方程,以静力弹塑性分析得到的塑性铰出现次序作为结构主要失效模式,考虑了不同加载模式对结构体系抗力曲线随机性的影响。对抗力曲线的影响因素做敏感性因素分析,得到主要影响因素后,同时考虑结构自身以及地震作用的随机性,提出了一种计算采用基于滞回耗能的Pushover分析所得的结构体系抗力曲线保证率的方法;
     3.对通过敏感性分析得到的抗力曲线主要影响因素进行随机抽样,并利用所得到的结构体系极限状态方程进行直接重要抽样法,通过算例来检验本文所提方法的计算精度。结果表明:本文所提出的计算结构体系抗力曲线保证率的方法具有较高的计算精度。
Presently, the seismic design has been shifted from force-based design to performance-based design or displacement-based design. As the development trend of earthquake engineering, the basic ideal of performance-based seismic design will be used as the design criterion and applied to the present projects. Meanwhile, the performance-based seismic design is based on the reliability theory. As an important tool of the performance-based design, improving the computation precision of Pushover analysis and making a probability investigation to the analysis results are the research hotspots. The research contents developed mainly in the thesis are as follows:
     1. The thesis put forward the adaptive hysteretic energy dissipation-based push- over analysis method. The 335 seismic waves collected are divided into groups on the basis of the field sort etc and the corresponding hysteretic energy dissipation spectra are established. Based on the modal pushover analysis given by Chopra and the energy-based drift given by Aschhein, the energy-based drift is imported into the Pushover analysis with hysteretic energy spectra, and the higher modes are taken into account with the adaptive horizontal loading pattern. In the thesis, the frame members are simulated with five subsection model. Fortran90 is used to programme for the Pushover analysis considering five different loading patterns such as hysteretic energy-based, inverted triangular distribution etc. and SAP2000 is used for the time history analysis. Lastly, two numerical examples demonstrate that the feasibility of the method in the thesis.
     2. With the safe margins analysis based on the intensity failure of the structural system, the limit state equation of the capacity curve from Pushover analysis is built. Taking the emergence order of plasticity ream from the static inelastic analysis as the dominant failure modes and taking account of the effects of different loading patterns on the randomicity of the capacity curve. The main affecting factors are obtained with the analysis of sensibility factors. Meanwhile, taking account of the randomicity of the structures and the earthquake action, an computing method for the guaranteed rate of the capacity curve based on the hysteretic energy-based Pushover analysis is given in the thesis.
     3. The random sampling is used to the main affecting factors of the capacity curve, and the direct important sampling is used to the limit state equation of the structure system. The computing precision is verified by the two numerical examples. It is concluded that the proposed method for the guaranteed rate generally has satisfactory precision.
引文
[1] Bertero R D, Bertero V V. Performance-based seismic engineering: the need for a reliable conceptual comprehensive approach. Earthquake Engineering and Structure Dynamics, 2002, 31(7): 627-652
    [2] 马宏旺, 吕西林. 建筑结构基于性能抗震设计的几个问题. 同济大学学报, 2002, 30(12): 1429-1434
    [3] 钱嫁茹, 罗文斌. 建筑结构基于位移的抗震设计. 建筑结构, 2001, 31(4): 3-6
    [4] 罗文斌 , 钱嫁茹 . 钢筋混凝土结构基于位移的抗震设计 . 土木工程学报 , 2003, 36(5): 22-29
    [5] Collins K R, Wen Y K, Foutch D A. Dual-level seismic design: A reliability based. Earthquake Engineering and Structure Dynamics, 1996, 25(12): 1433-1467
    [6] Bracci J M, Kunnath S K, Reinborn A M. Seismic Performance and Retrofit Evaluation for Reinforced Concrete Structures.Journal of Structural Engineering, ASCE, 1997, 123(1): 3-10
    [7] 陈耿东, 李刚. 基于功能的结构抗震设计中的一些问题的探讨. 建筑结构学报, 2000, 21(1): 5-11
    [8] SEAOC VISION 2000 Committee Performance-Based Seismic Engineering, Report prepared by Structure Engineering Association of California Sacramento, California, U.S. 1995, 10-18
    [9] Ghobarah A. Performance-based design in earthquake engineering: state of development. Engineering Structures, 2001, 23(8): 878-884
    [10] 刘大海, 杨翠如, 钟锡根. 高层建筑抗震设计. 北京: 中国建筑工业出版社, 1993, 209-211
    [11] Freeman S A, Nicoletti J P, Tyrell J V. Evaluations of Existing Buildings for Seismic Risk-A Case Study of Puget Sound Naval Shipyard. In: Pro.1st U.S. National Conf. Earthquake Engng., EERI. Bremerton, Washington: Berkeley, 1975, 63-72
    [12] Mahaney J A, Freeman S A, Paret T F et al. The capacity spectrum method for evaluation structural response during the Loma Prieta earthquake. In: Pro.1993 National Earthquake Conf.. Memphis, 1993, 501-510
    [13] Saiidi M, Sozen M A. Simple nonlinear analysis of R/C structures. Journal ofStructural Division, ASCE, 1981, 107(ST5): 937-952
    [14] Fajfar P, Fischinger M. N2-a Method for Nonlinear Seismic Analysis of Regular Structures. Proceedings of 9th World Conference of Earthquake Engineering. Tokyo – Kyoto, Japan, 5: 111-116
    [15] Krawinkler H, Seneviratna G D P K. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation. Engineering Structures, 1998, 20(5): 452-464
    [16] Mwafy A M, Elnashai A S. Static pushover versus dynamic collapse analysis of RC buildings. Engineering Strutures, 2001, 23(5): 407-424
    [17] Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismic demands for buildings: theory and preliminary evaluation. Report No. Peer-2001/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 1999, 1-87
    [18] Chopra A K, Goel R K. A modal pushover analysis procedure for estimate seismic demands for buildings. Earthquake Engineering and Structure Dynamics, 2002, 31(3): 561-582
    [19] 李凌, 叶燎原. Pushover 分析法及其与非线性动力分析法的对比.世界地震工程, 1999, 15(2): 40-44
    [20] 叶燎原, 潘文. 结构静力弹塑性分析(Push-over)的原理和计算实例. 建筑结构学报, 2000, 21(1): 37-43
    [21] 潘龙, 孙利民, 范立础. 基于推倒分析的桥梁地震损伤评估模型与方法. 同济大学学报, 2001, 29(1): 10-15
    [22] 叶献国, 种迅, 李康宁等. Pushover 方法与循环往复加载分析的研究. 合肥工业大学学报(自然科学版), 2001, 24(6): 1019-1024
    [23] 魏巍, 冯启民. 几种 Push-over 分析方法对比研究. 地震工程与工程振动, 2002, 22(4): 66-73
    [24] 汪梦甫, 周锡元. 高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究. 土木工程学报, 2003, 36(6): 81-86
    [25] 王威, 孙景江. 基于改进能力谱方法的位移反应估计. 地震工程与工程振动, 2003, 23(6): 37-43
    [26] 尹华伟, 汪梦甫, 周锡元. 结构静力弹塑性分析方法的研究与改进.工程力学, 2003, 20(4): 45-49
    [27] 李剑群, 张新培. 结构静力弹塑性分析中的负刚度问题处理方法综述. 工程结构, 2003, 23(6): 43-45
    [28] 李刚, 刘永. 三维偏心结构的 Pushover 分析. 计算力学学报, 2005, 22(5): 529-533
    [29] Lee H S, Woo S W. Seismic performance of a 3-story RC frame in a low-seismicity region. Engineering Structures, 2002, 24(6): 719-734
    [30] Maheri M R, Akbari R. Seismic behaviour factor,R,for steel X-braced and knee-braced RC buildings. Engineering Structures, 2003, 25(12): 1505-1513
    [31] 欧进萍, 侯钢领, 吴斌. 概率 Pushover 分析方法及其在结构体系抗震可靠度评估中的应用. 建筑结构学报, 2001, 22(6): 81-86
    [32] 熊学玉 , 李春祥 , 耿耀明等 . 大跨预应力混凝土框架结构的静力弹塑性(Pushover)分析. 地震工程与工程振动, 2004, 24(1): 68-75
    [33] 熊向阳, 威震华. 侧向荷载分布方式对静力弹塑性分析结果的影响. 建筑科学, 2001, 17(5): 8-13
    [34] Eberhard M O, Sozen M A. Behavior based method to determine design shear in earthquake-resistant walls. Journal of Structural Engineering, ASCE, 1993, 119(2): 619-640
    [35] Bracci J M, Kunnath S K, Reinhorn A M. Seismic performance and retrofit evaluation of reinforced concrete structures. Journal of Structural Engineering, ASCE, 1997, 123(1): 3-10
    [36] Gupta B, Kunnath S K. Adaptive spectra-based pushover procedure for seismic evaluation of structures. Earthquake Spectra, 2000, 16(2): 367-391
    [37] Han S W, Wen Y K. Method of reliability-based seismic designⅠ: equivalent nonlinear systems. Journal of Structural Engineering, 1997, 123(3): 256-266
    [38] Antoniou S, Pinho R. Advantages and limitations of adaptive and non-adaptive force-based pushover procedures. Journal of Earthquake Engineering, 2004, 8(4): 497-522
    [39] Antoniou S, Pinho R. Development and verification of a displacement-based adaptive pushover procedure.Journal of Earthquake Engineering, 2004, 8(5): 643-661
    [40] Hernandez-Monte E, Kwon O-S, Aschheim M A. An energy-based formulation for first- and multiple-mode nonlinear static (pushover) analysis. Journal of Earthquake Engineering, 2004, 8(1): 69-88
    [41] 安伟光. 结构系统可靠性和基于可靠性的优化设计. 北京: 国防工业出版社, 1997, 90-109
    [42] 赵国藩, 金伟良, 贡金鑫. 结构可靠度理论. 北京: 中国建筑工业出版社, 2000, 68-69, 80-84
    [43] Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering and Structure Dynamics, 2002, 31(3): 491-514
    [44] 小谷俊介. 日本基于性能结构抗震设计方法的进展. 建筑结构, 2000, 30(6): 3-9
    [45] 高小旺, 鲍霭斌. 地震作用的概率模型及其统计参数. 地震工程与工程振动, 1985, 5(1): 13-22
    [46] 高小旺, 魏琏, 韦承基. 基于概率的结构抗震设计方法. 建筑结构学报, 1988, 9(6): 58-64
    [47] 欧进萍, 刘会仪. 基于随机地震动的模型及其参数确定. 地震工程与工程振动, 1994, 14(1): 14-23
    [48] 李英民, 赖明, 白绍良. 从结构抗震设计理论看地震动输入. 工程力学增刊, 2002, 549-554
    [49] 白绍良, 黄宗明, 肖明葵. 结构抗震设计的能量分析方法研究述评.建筑结构, 1997, (4): 54-58
    [50] 周云, 徐彤, 周福霖. 抗震与减震结构的能量分析方法研究与应用.地震工程与工程振动, 1999, 19(4): 133-139
    [51] Zaharah T F, Hall W J. Earthquake energy absorption in SDOF structures. Journal of Earthquake Engineering, 1984, 110(8): 1757-1772
    [52] Leger P, Dussault S. Seismic energy dissipation in MDOF structures. Journal of Earthquake Engineering, 1992, 118(5): 1251-1269
    [53] 王松涛 , 曹资 . 现代抗震设计方法. 北京 : 中国建筑工业出版社 , 1997, 14-28
    [54] Giberson M F. Two nonlinear beams with definitions of ductility.Journal of Structural Division, ASCE, 1969, 95(ST2): 137-157
    [55] 包世华. 新编高层建筑结构. 北京: 中国水利水电出版社, 2001, 341-343
    [56] 孙业扬, 余安东, 金瑞椿等. 高层建筑杆系-层间模型弹塑性动态分析. 同济大学学报, 1980, 8(1): 87-98
    [57] 汪梦甫 . 钢筋混凝土高层结构抗震分析与设计 . 长沙: 湖南大学出版社 , 1999, 104-107
    [58] 吕西林, 金国芳, 吴晓涵. 钢筋混凝土结构非线性有限元理论与应用. 上海: 同济大学出版社, 2002, 159-163
    [59] 姚谦峰, 苏三庆. 地震工程学. 西安: 陕西科学出版社, 2001, 207-210
    [60] 张新培. 钢筋混凝土抗震结构非线性分析. 北京: 科学出版社, 2003, 23-26
    [61] 杨溥, 李英民, 赖明. 结构时程分析法输入地震波的选择控制指标.土木工程学报, 2000, 33(6): 33-37
    [62] 侯爽, 欧进萍. 结构 Pushover 分析的侧向力分布及高阶振型影响.地震工程与工程振动.2004, 24(3): 89-97
    [63] 汪梦甫, 周锡元. 高层建筑结构抗震弹塑性分析方法及抗震性能评估的研究. 土木工程学报, 2003, 36(11): 44-49
    [64] 杨溥, 李英民, 王亚勇, 赖明. 结构静力弹塑性分析(Push-over)方法的改进. 建筑结构学报, 2000, 21(1): 44-51
    [65] Peter K. Application of the capacity spectrum Method to RC Buildings with Bearing Walls. In: 12th World Conference on Earthquake Engineering.New Zealand, 2000, 609-616
    [66] Tysh Shang Jan, Ming Wei Liu, Ying Chieh Kao. An Upper-Bound Pushover Analysis Procedure for Estimating the Seismic Demands of High-Rise Buildings. Engineering Structures, 2004, 26(2): 117-128
    [67] 宋雅桐, 朱继澄. 满足规范设计谱的人造地震波及若干结构反应.建筑结构学报, 1983, 4(3): 43-54
    [68] 陈水祁, 刘锡荟, 龚思礼. 拟合标准反应谱的人工地震波. 建筑结构学报, 1981, 4(1): 34-43
    [69] Miranda E. Evaluation of site-dependent inelastic seismic design spectra. Journal of Structural Engineering., ASCE, 1993, 119(5): 1319-1339
    [70] 中华人民共和国国家标准. 建筑抗震设计规范(GB50011-2001). 北京: 中国建筑工业出版社, 2001, 16-17
    [71] 洪锦如. 桥梁结构计算力学. 上海: 同济大学出版社, 1998, 194-200
    [72] 杨文星. 单自由度体系非线性地震能量反应分析: [西安建筑科技大学学位论文]. 西安: 西安建筑科技大学, 2004, 21-22
    [73] Ellingwood B R. LRFD: Implement Structure Reliability in Professional Practice. Engineering Structures, 2000, 22(2): 106-115
    [74] 贡金鑫, 仲伟秋, 赵国藩. 工程结构可靠性基本理论的发展与应用(3). 建筑结构学报, 2002, 23(6): 2-9
    [75] 朱建华, 沈蒲生. 基于能量原理的钢筋混凝土框架结构层间弹塑性位移求解. 工程抗震与加固改造, 2005, 27(5): 1-4
    [76] 周定松, 吕西林. 延性需求谱在基于性能的抗震设计中的应用. 地震工程与工程振动, 2004, 24(1): 30-38
    [77] 侯爽. 基于 Pushover 分析和抗力衰减的钢筋混凝土结构震害预测: [哈尔滨工业大学硕士论文]. 哈尔滨: 哈尔滨工业大学, 2001, 41-45
    [78] 刘红梁. Pushover 分析方法及其在结构层模型中的应用: [中国地震局工程力学研究所硕士论文]. 北京: 中国地震据工程力学研究所, 2001, 66-71
    [79] 王春光. 近海钢导管架平台结构的健康诊断与寿命评估: [清华大学博士论文]. 北京: 清华大学, 1999, 94-96
    [80] 陈巧珍. 建筑材料试验计算手册. 广州: 广东科技出版社, 1997, 290-291
    [81] 欧进萍, 段宇博, 刘会仪. 结构随机地震作用及其统计参数. 哈尔滨建筑工程学院学报, 1994, 27(5): 1-10
    [82] 贡金鑫. 工程结构可靠度计算方法. 大连: 大连工学院出版社, 2003, 335-341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700