直接力/气动力复合控制巡航导弹滑模变结构控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巡航导弹作为战术导弹中的重要组成成员,在当今作战环境日益复杂的情况下也面临很多新的挑战。如何扩大飞行空域、提高机动性,以适应作战目标的新特点;如何实现隐匿弹道、规避突防、提高自身生存能力;如何节省发动机燃料、增加有效载荷、扩大作战半径从而提高导弹整体性能。这些都成为当今研发巡航导弹所面临的新课题。正是在这种背景下,提出采用直接力/气动力复合控制方法。本论文则是以此为背景,针对直接力/气动力复合控制巡航导弹的滑模变结构控制,给出了相应的理论结果,主要内容包括:
     针对直接力控制力矩与气动力控制力矩的作用效果,从原理上及数学仿真上进行了分析与验证。在此基础上,提出了指令分解控制策略。该策略以气动力控制方式为主,在低空空气密度较大的情况下,采用单一的气动力控制方式。随着飞行高度的增加,当俯仰舵提供的气动力矩不足以维持弹体平衡时,启动发动机推力控制方式,提供相应的直接力补偿。这种控制方案把两种控制变量的协调控制问题简化为单控制变量的控制问题,具有简单易行的特点,便于工程应用。在该策略的基础上,给出了直接力控制的间接设计方法。利用这种间接设计方法,可以使得像对常规巡航导弹那样对直接力/气动力复合控制巡航导弹进行分析与设计。
     提出一种线性多滑模递推的变结构控制律设计方法。该方法是在滑模变结构的目标滑模面之外设计多个过渡滑模面,从而使得系统由趋近运动阶段到滑动模态的切入更加平缓。由于随着飞行高度的增加、空气密度的下降会使得气动效能变差,如果采用单滑模面的变结构控制律进行控制,则执行机构会过早的出现饱和。而本文提出的线性多滑模递推的变结构控制律设计方法可以使得该问题得以解决。
     提出一种基于控制参数化提升技术的滑模变结构控制律设计方法。为了使得实际过载信号能够尽快地跟踪指令过载、提高导弹响应速度,将滑模变结构的趋近运动阶段拆分为三个子阶段:加速趋近阶段;速度保持阶段;减速缓冲阶段。这种拆分方法一方面使得系统尽快达到滑动模态运动,另一方面避免了在滑模变结构的趋近运动向滑动模态过渡时带来的执行机构饱和问题。但是,这种拆分同时也将原系统化为了切换时间并不确定的切换系统。对于这种切换时间不确定的切换系统最优控制问题,很难直接利用现有的优化手段求解。为此,本论文采用控制参数化提升技术,利用时间缩放转变将变化的切换时间点转化为固定的时间点,从而,将导弹滑模变结构趋近运动阶段的控制律设计问题转化为标准的最优参数选择问题,使得问题得到解决。
     针对导弹大空域机动时数学模型的特点,通过合理设计滑动模态方程,将导弹空间机动所带来的弹道倾角不确定性转化为对系统矩阵的参数摄动,从而利用滑模变结构控制律对系统矩阵的摄动不变性,使得系统性能得到保证。
     针对滑模变结构控制律的滑模参数,给出了增益调度设计方法。该方法首先按照模糊控制律的设计规则,根据不同的系统状态,相应调整滑模变结构控制律的滑模参数。然后在模糊控制律的特性函数中提取特征点组成特征点集,在特征点集上进行插值处理,从而得到滑模参数的增益规则。利用阿依捷尔曼稳定性分析方法,证明了控制律的稳定性。该控制律使得系统既具有较快的响应速度,同时不至于带来无法消除的抖振。
Cruise missile, being an important number of tactical missiles, is facing manychallenges since the combat environment is getting more complicated. As a result,some new tasks are put forward for developing the cruise missile, including: how toenlarge the ?ight airspace and improve the maneuverability to meet the new charac-ter of operational goal; how to implement concealed trajectory, avoidance and pen-etration to improve the survivability; how to save the engine fuel, increase availableloading and enlarge fight radius to improve the integral performance of the missile.Under this background, we proposed the method of compound control with the directforce/aerodynamic. Based on this idea, in this thesis, we give some theoretical resultsaccording to sliding mode variable structure control of missile compound control byusing direct force/aerodynamic. The main contents include:
     Firstly, according to the effect of direct force control moment and aerodynamiccontrol moment, we give the analysis and verification from the theorem and simula-tion. Based on this, we propose the control strategy of instruction decomposition. Thisstrategy, mainly depending on aerodynamic control, applies single aerodynamic con-trol under the situation of low altitude ?ight with high air density. With the increase of?ight altitude, since the aerodynamic moment provided by pitch rudder can not main-tain the balance of missile body, we apply the engine thrust control, providing directforce compensation. This kind of control strategy transforms the coordination controlproblem of two kind of control variables into simple single control problem. Hence,it is simple and easy to be applied by engineering. Based on this strategy, we proposethe indirect design method of direct force control. By using this indirect method, wecan give analysis and design for direct force/aerodynamic compound missile controlas for conventional cruise missile.
     Secondly, we present a linear multi-sliding mode recursive variable structurecontroller design method. This method designs multiple transitional sliding surfaceout of target sliding surface, such that the system state move gently when it enterssliding surface from reaching stage. When applying sliding mode variable structurecontroller with single sliding surface, the increase of the ?ight height and the decrease of the air density will bring pneumatic efficiency. As a result, the actuator will saturateuntimely. Our proposed method can overcome this defect.
     Thirdly, we present a sliding mode variable structure control method based oncontrol parameterization enhancing technique. In order that the real overload signalis able to follow the instruction overload quickly, and the response velocity can beimproved, the reaching stage of the sliding mode variable structure control is dividedinto three segments: acceleration accessing segment; speed-keeping segment; deceler-ation buffer segment. Under this decomposition, on the one hand, the system state canreach the sliding surface quickly; on the other hand, the saturation problem is avoidedwhen the system state is moving to sliding surface. However, this decomposition alsochange the original system into switched system with the switching time unknown.It is difficult to solve the optimal control problem of the switched system with theunknown switching times by using existing optimization routine directly. Thus, usingthe control parameterization enhancing technique, the variable switching time is con-verted into fixed time, and the original problem is transformed into a standard optimalparameter selection problem, which can be solved by existing optimization technique.
     Furthermore, according to the characteristic of mathematical model for missilelarge airspace maneuvering, by designing the sliding mode equation, the uncertaintyof dip angle resulted from the missile space maneuvering is changed into the parame-ter perturbation of the system matrix. Thus the sliding variable structure controller isused to keep the performance of the system due to its perturbation invariance.
     Finally, for the sliding parameter of sliding mode variable structure controller,we give the gain scheduling design method. This method first apply the design lawof fuzzy controller and adjust the sliding parameter of sliding mode variable structurecontroller according to different system state. Then, the characteristic point is takenfrom characteristic function of fuzzy control law to form characteristic set and thecharacteristic points are interpolated on the characteristic set, obtaining the gain lawof sliding parameter. In addition, by using Ajjzerman stability method, we prove thestability of the proposed controller. Under this controller, the system has the fastresponse speed without the dithering, which can not be eliminated.
引文
1李玉林,杨树兴.先进防空导弹直接力/气动力复合控制关键技术分析.兵工学报. 2007, 28(12):1523~1527
    2 B. Burchett, M. Costello. Model Predictive Lateral Pulse Jet Control of anAtmospheric Rocket. Journal of Guidance, Control, and Dynamics. 2002,25(5):860~867
    3 P. Gnemmi, H. J. Scha¨fer. Experimental and Numerical Investigations of aTransverse Jet Interaction on a Missile Body. American Institute of Aeronauticsand Astronautics. 2005:1~15
    4 A. Elsakaan, M. Elamir, A. Bahnasawi. High Angle of Attack Maneuvering ViaIntelligent Approaches. Circuits and Systems, 2003. MWSCAS’03. Proceed-ings of the 46th IEEE International Midwest Symposium. 2003, 3:1039~1042
    5 Z. Liu, B. G. Cao, X. G. Liang, et al. A Composite Dynamic Inverse ControllerDesign for Agile Missile. Intelligent Control and Automation, 2006. WCICA2006. The Sixth World Congress. 2006, 1:930~933
    6尹永鑫,杨明,王子才.直接力与气动力复合控制的拦截器建模与仿真. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth WorldCongress. 2006, 1:1805~1809
    7葛致磊,周军.远程地空导弹直接力/气动力复合控制技术研究.弹箭与制导学报. 2005, 25(2):42~44
    8 F. K. Yeh, H. H. Chien, L. C. Fu. A Midcourse Guidance Law for Missiles withThrust Vector Control. American Control Conference, 2001. Proceedings of the2001. 2001, 3:2357~2362
    9 F. K. Yeh, H. H. Chien, L. C. Fu. Nonlinear Optimal Sliding Mode MidcourseController with Thrust Vector Control. American Control Conference, 2002.Proceedings of the 2002. 2002, 2:1348~1353
    10 F. K. Yeh, K. Y. Cheng, L. C. Fu. Variable Structure Based Nonlinear MissileGuidance and Autopilot Design for a Direct Hit with Thrust Vector Control.Decision and Control, 2002, Proceedings of the 41st IEEE Conference. 2002,2:1275~1280
    11 F. K. Yeh, H. H. Chien, L. C. Fu. Design of Optimal Midcourse GuidanceSliding-Mode Control for Missiles with Tvc. Aerospace and Electronic Sys-tems, IEEE Trans. 2003, 39(3):842~837
    12 H. C. Lee, J. W. Choi, T. L. Song, et al. Agile Missile Autopilot Design ViaTime-Varying Eigenvalue Assignment. Control, Automation, Robotics and Vi-sion Conference, 2004. 2004, 3:1832~1837
    13 C. H. Cheng, F. K. Yeh, L. C. Fu. New Guidance Laws and Autopilot Designsfor Intercepting Missiles with TVC and DCS. American Control Conference,2005. Proceedings of the 2005. 2005, 1:352~357
    14 Y. D. Lu, M. Yang, Z. C. Wang. Design of Fuzzy-Logic-Based Terminal Guid-ance Law. Machine Learning and Cybernetics, 2005. Proceedings of 2005 In-ternational Conference. 2005, 2:888~892
    15 I. F. Lin, C. I. Huang, L. C. Fu. Flight Controller Design for Intercepting Mis-siles with Multiple TVC Systems and DCS. American Control Conference,2007. 2007:5248~5253
    16 S. J. Kim, C. K. Ryoo, K. Choi. Robust Attitude Control Via Quaternion Feed-back Linearization. SICE, 2007. Annual Conference. 2007:2234~2239
    17王永寿.导弹的推力矢量控制技术.飞航导弹. 2005, (1):54~60
    18 D. X. Zeng, Z. Huang, W. J. Lu. A Family of Novel 2 DOF Rotational Decou-pled Parallel Mechanisms. Mechatronics and Automation, 2007. ICMA 2007.International Conference. 2007:2478~2483
    19 P. Gurfil, N. J. Kasdin. Improving Missile Guidance Performance by In-FlightTwo-Step Nonlinear Estimation of Radome Aberration. Control Systems Tech-nology, IEEE Trans. 2004, 12(4):532~541
    20 L. Bruyeere, A. Tsourdos, B. A. White. Polynomial Eigenstructure Assignment,Application to Missile Autopilot. Control Applications, 2005. CCA 2005. Pro-ceedings of 2005 IEEE Conference. 2005:1355~1360
    21 A. Das, T. Garai, S. Mukhopadhyay, et al. Feedback Linearization for a Nonlin-ear Skid-To-Turn Missile Model. India Annual Conference, 2004. Proceedingsof the IEEE INDICON 2004. 2004:314~317
    22纪刚,杨军.基于气动力/直接力复合控制的空空导弹末端制导性能分析.弹箭与制导学报. 2004, 24(4):17~18, 21
    23 C. Schumacher, P. P. Khargonekar. Missile Autopilot Designs Using H∞Con-trol with Gain Scheduling and Dynamic Inversion. Journal of Guidance, Con-trol, and Dynamics. 1998, 21(2):234~243
    24 C. F. Lin, T. J. Yu. Nonlinear H∞Control System Design for Aircraft. AIAA-97-3697. 1997:1251~1259
    25邹晖,陈万春,王鹏,等.敏捷导弹气动力/侧向推力复合控制特性分析研究.北京航空航天大学学报. 2004, 30(3):187~188
    26程凤舟,万自明,陈士橹,等.防空导弹直接力与气动力复合控制系统设计.飞行力学. 2003, 21(2):49~52, 66
    27 J. Huang, C. F. Lin. Numeriacal Approach to Computing Nonlinear H∞ControlLaw. Journal of Guidance, Control, and Dynamics. 1995, 18(5):989~994
    28方群,曾颖超,熊焰.复合制导中的优化制导律研究.飞行力学. 1995,13(2):84~89
    29高晓光,李波.空空导弹后射火控技术.火力与指挥控制. 2004,29(6):16~19
    30查旭,崔平远,关世义,等.导弹飞行非线性H∞与PD复合控制.宇航学报. 2004, 25(4):401~407
    31徐品高.新一代防空导弹提高制导控制精度的需求与技术途径.战术导弹技术. 2002, (3):1~8
    32 Z. Q. Zhou. Nonlinear Decoupling Control of Aircraft Motion. Journal ofGuidance, Control, and Dynamics. 1995, 18(4):812~816
    33刘隆和,鲍虎,叶喜勇.双模复合寻的制导技术中的数据融合研究.飞航导弹. 2002, (2):48~52
    34王晓东.导弹和运载火箭姿态稳定与控制技术发展的回顾和展望.导弹与航天运载技术. 2003, (3):25~30
    35张友安,杨华东,顾文锦.空空导弹控制系统一体化设计方法研究.现代防御技术. 2003, 31(4):17~20
    36宋建梅,张天桥.变结构控制在导弹制导与控制中的应用综述.弹箭与制导学报. 1999, (4):32~38, 48
    37 W. J. Gu, C. Y. Li, R. Q. Wang, et al. AWCT Gain Scheduling ConsideringConstraints and Its Application on Winged Missile Control System. Proc. 5thWorld Congress on Intelligent Control and Automation. 2004:5406~5410
    38 Y. Zhang, Y. A. Hu. Block Diagonal Control for Bank to Turn Winged Missile.Proc. IEEE Tencon. 2002:1339~1342
    39 D. Y. Chwa, J. Y. Choi, J. H. Seo. Compensation of Actuator Dynamics inNonlinear Missile Control. IEEE Trans. on Control Systems Technology. 2004,12(4):620~626
    40 W. H. Tan, A. K. Packard, G. J. Balas. Quasi-LPV Modeling and LPV Controlof a Generic Missile. Proc. ACCC, Chicago. 2000:3692~3696
    41段广仁,穆相禹. BTT导弹的抖动抑制控制.航空学报. 2002, 15(2):26~28
    42 H. Ohtake, K. Tanaka, H. Wang. Switching Fuzzy Controller Design Based onSwitching Lyapunov Function for a Class of Nonlinear Systems. IEEE Trans-actions on Systems. 2006, 36(1):13~23
    43 C. D. Yang, C. C. Kung. Nolinear H∞Flight Control of General Six Degree ofFreedom Motions. Guid. Contr. Dyn. 2000, 23(2):278~289
    44 J. Y. Choi, D. K. Chwa, M. S. Kim. Adaptive Control for Feedback LinearizedMissiles with Uncertainties. IEEE Trans. on Aerospace and Electronic Systems.2000, 36(2):467~481
    45 R. Jacob, J. B. Gary, L. G. William. Flight Control Design Using Robust Dy-namic Inversion and Time-Scale Separation. IEEE Transactions on AutomaticControl. 1994:1493~1504
    46 Y. H. Chen, J. K. Gareth. Application of Nonlinear Control Strategies to Aircraftat High Angle of Attack. Pro. of the 29th Conference on Decision and Control.1990:188~193
    47 S. A. Snell, D. F. Enns, W. L. Garraard. Nonlinear Inverse Flight Control for aSupermaneuverable Aircraft. Guid. Contr. Dyn. 1992, 15(4):976~984
    48 B. M. Michael, N. D. Vhristopher. Missile Autopilot Design Using Dynamic In-version and Structured Singular Value Synthesis. Proc. of the American ControlConference. 1997:959~961
    49 C. Schumacher, P. P. Khargonekar. Stability Analysis of a Missile Con-trol System with a Dynamic Inversion Controller. Guid. Contr. Dyn. 1998,21(3):508~514
    50 J. A. Richard, M. B. James. Design of Nonlinear Control Law for High Angleof Attack Flight. Guid. Contr. Dyn. 1994, 17(4):737~746
    51 Y. Q. Jin, W. J. Gu, J. H. Wu, et al. Sliding Mode Control of BTT MissileBased on Fuzzy-Neural Approach. Proceedings of the 5th World Congress onIntelligent Control and Automation, China. 2004:5483~5486
    52 Z. J. Geng. Missile Control Using Fuzzy Cmac Neural Networks. Journal ofGuidance, Control, and Dynamics. 1997, 20(3):557~565
    53 L. C. Fu, W. D. Chang, J. H. Yang, et al. Adaptive Robust Bank-to-turn MissileAutopilot Design Using Neural Networks. Journal of Guidance, Control, andDynamics. 1997, 20(2):346~354
    54 D. M. McDowell, G. W. Irwin, G. Lightbody, et al. Hybrid Neural Adap-tive Control for Bank-to-turn Missiles. IEEE Trans. Contr. Sys. Tech. 1997,15(3):297~308
    55刘勤,刘莉.人工神经网络在导弹控制系统中的应用.战术导弹技术.2002, (2):59~63
    56景韶光,王青,宋子善.超机动导弹的神经网络控制系统.北京航空航天大学学报. 2000, 26(3):315~317
    57 D. C. Han, S. N. Balakrishnan. State-Constrained Agile Missile Control withAdaptive-Critic-Based Neural Networks. IEEE Trans. on Control SystemsTechnology. 2002, 10(4):481~489
    58 J. L. Frages, P. Fabiani, L. M. Stephance. Blending of Missile Control Modeswith Neural Networks. IEEE 13th Workingshop on Neural Networks for SignalProcessing. 2003:141~150
    59 C. K. Lin, S. D. Wang. An Adaptive H∞Controller Design for Bank-to-turnMissiles Using Ridge Gaussian Neural Networks. IEEE Trans. on Neural Net-works. 2004, 15(6):1507~1516
    60 T. Sreenuch, A. Tsourdos, E. J. Hughes, et al. Fuzzy Gain-Scheduled Mis-sile Autopilot Design Using Evolutionary Algorithms. 2005 American ControlConference. 2005:346~351
    61 D. W. Zhao, G. J. Chen, H. L. Xu. Identification and Compensation of StrategicMissile Guidance System Error Model Based on the BP Neural Network. Proc.4th World Congress on Intelligent Control and Automation. 2002:805~807
    62 C. K. Liu. Adaptive Fuzzy Control of Bank-to-turn Missiles. Proc. of theIndustrial Electronics, Control and Instrumentation, Taiwan. 1996:596~601
    63 J. Y. Choi, D. K. Chwa. Adaptive Control Based on a Parametric Affine Modelfor Tail-controlled Missiles. Proc. 39th IEEE Conference on Decision and Con-trol, Australia. 2000:1471~1476
    64 M. B. Mcfarland, A. J. Calise. Adaptive Nonlinear Control of Agile AntiairMissiles Using Neural Networks. IEEE Trans. on Control Systems Technology.2000, 8(5):749~756
    65史雪虹,康景利,董巍,等.模糊控制在导弹倾斜稳定系统中的应用.北京理工大学学报. 1999, 19(2):186~189
    66罗喜霜,张天桥.模糊控制在复合制导中的应用.弹箭与制导学报. 2001,21(2):1~4
    67 J. H. Wei, C. Guan. Derivation and Integral Sliding Mode Variable StructureControl of Hydraulic Velocity Tracking System. Chinese Journal of MechanicalEngineering. 2005, 18(2):224~227
    68 Y. S. Zhao, Y. Q. Zhang, J. Yang, et al. Enhanced Fuzzy Sliding Mode Controllerfor Robotic Manipulators. International Journal of Robotics & Automation.2007, 22(2):170~183
    69 Y. Pan, K. Furuta, S. Suzuki, et al. Design of Variable Structure Controller—from Sliding Mode to Sliding Sector. Proceedings of the IEEE Conference onDecision and Control. 2000, (2):1685~1690
    70 K. K. Shyu, C. Y. Lin. Adaptive Sliding Mode Control for Variable Struc-ture Systems with Constraint Control Input. Dynamics and Control. 1996,6(1):49~61
    71 Y. A. Hu, Y. Chen. Design and Application of Double-sliding Modes VariableStructure Control Systems. 5th International Symposium on Instrumentationand Control Technology. 2003:635~638
    72 W. J. Gu, Y. F. Zhang, C. P. Li. Composite Control of Linear/adaptive VariableStructure Control. Chinese Journal of Aeronautics. 2001, 14(1):49~56
    73 Y. J. Huang, H. K. Way. Placing all Closed Loop Poles of Missile Attitude Con-trol Systems in the Sliding Mode Via the Root Locus Technique. ISA Transac-tions. 2001, 40:330~340
    74 Y. H. Wang, Y. Yao, K. M. Ma. Lateral Thrust and Aerodynamics BlendedControl System Design Based on Variable Structure Model Following. Pro-ceedings of the 6th World Congress on Intelligent Control and Automation,Jun. 2006:8183~8186
    75刘根旺,许化龙.导弹姿态控制伺服系统的变结构控制.上海航天. 2004,21(6):15~17, 35
    76刘根旺,许化龙.新型变结构控制律在导弹姿态控制系统中的应用.系统仿真学报. 2004, 16(10):2264~2265, 2269
    77 X. H. Liao, Z. Sun, Y. D. Song. Chattering-Free Variable Structure Control withApplication to Flight Vehicles. Proceedings of the 38th Southeastern Sympo-sium on System Theory Tennessee Technological University Cookeville, USA,Mar. 2006:406~410
    78 H. C. Zhao, W. J. Gu, Y. A. Hu, et al. Second-Order Sliding Mode Control forAerodynamic Missiles Using Backstepping Design. Proc. 5th World Congresson Intelligent Control and Automation, China. 2004, 6:5471~5474
    79 A. Thukral, I. Mario. A Sliding Mode Missile Pitch Autopilot Synthesis forHigh Angle of Attack Maneuvering. IEEE Transactions on Control System.1998, 6(3):359~371
    80周军,周凤岐,冯文剑.基于变结构控制理论的BTT导弹自动驾驶仪的三通道独立设计.宇航学报. 1991, (1):42~47
    81朱志刚,杨文利. BTT导弹协调式耦合变结构自动驾驶仪设计.宇航学报.1997, 18(1):8~12
    82林枫,刘国刚.最优控制与姿控喷流在导弹姿态控制中的应用.航天控制.2004, 22(3):20~22
    83 H. C. Bang, C. S. Oh. Predictive Control for the Attitude Maneuver of a FlexibleSpacecraft. Aerospace Science and Technology. 2004, (8):443~452
    84张云鹏,缪栋,刘云峰.基于特征点分段的导弹姿态全程滑态变结构控制研究.战术导弹技术. 2005, (2):48~51
    85许化龙,赵大炜,陈光军,等.战略导弹姿态系统的变结构自适应控制研究.弹箭与制导学报. 2003, 23(1):17~20
    86 G. Y. Moon, Y. D. Kim, S. B. Cho. Variable Structure Control with OptimizedSliding Surface for Aircraft Control System. AIAA Guidance, Navigation, andControl Conference. 2004, 8:16~19
    87 S. H. Tan, C. C. Hang, J. S. Chai. Gain Scheduling: From Conventional toNeuro-Fuzzy. Automatica. 1997, 33(3):411~419
    88 S. Q. Lee, Y. Kim, D. G. Gweon. Continuous Gain Scheduling Control for aMicro-Positioning System: Simple, Robust and No Onershoot Response. Con-trol Engineering Practice. 2000, 8(2):133~138
    89 D. J. Stilwell, W. J. Rugh. Interpolation of Observer State Feedback Controllersfor Gain Scheduling. IEEE Trans. Automatic Control. 1999, 44(6):1225~1229
    90 A. Helmersson. Mu Synthesis and LFT Gain Scheduling with Real Uncertain-ties. Int. J. Robust and Nonlinear Control. 1998, 8(7):631~642
    91 D. J. Leith, W. E. Leithead. Gain-Scheduled and Nonlinear Systems: Dy-namic Analysis by Velocity-Based Linearization Families. Int. J. Control. 1998,70(2):289~317
    92 D. J. Leith, W. E. Leithead. Input-Output Linearization by Velocity-Based Gain-Scheduling. Int. J. Control. 1999, 72(3):229~246
    93 R. P. Ignatov, D. A. Lawrence. Gain Scheduling Via Control Signal Interpo-lation: The Ball and Beam Example. Proceedings of the 33rd SoutheasternSymposium on System Theory, IEEE. 2001:419~423
    94 B. Kuipers, K. A?stro¨m. The Composition and Validation of HeterogeneousControl Laws. Automatica. 1994, 30:233~249
    95 Y. B. Shtessel, I. A. Shkolnikov, A. Levant. Smooth Second-order SlidingModes: Missile Guidance Application. Automatica. 2007, 43(8):1470~1476
    96 T. Shima, M. Idan, O. M. Golan. Sliding-mode Control for Integrated Mis-sile Autopilot Guidance. Journal of Guidance Control and Dynamics. 2006,9(2):250~260
    97 M. U. Salamci, M. K. Ozgoren, S. P. Banks. Sliding Mode Control with OptimalSliding Surfaces for Missile Autopilot Design. Journal of Guidance Control andDynamics. 2000, 23(4):719~727
    98 D. Zhou, C. D. Mu, W. L. Xu. Adaptive Sliding-Mode Guidance of a HomingMissile. Journal of Guidance Control and Dynamics. 1999, 22(4):589~594
    99 H. W. J. Lee, K. L. Teo. Control Parametrization Enhancing Technique for Solv-ing a Special Ode Class with State Dependent Switch. Journal Of OptimizationTheory And Applications. 2003, 118(1):55~66
    100 K. L. Teo. Control Parametrization Enhancing Transform to Optimal ControlProblems. Nonlinear Analysis. 2005, 63:e2223~e2236
    101 R. Li, K. L. Teo, K. H. Wong, et al. Control Parameterization Enhancing Trans-form for Optimal Control of the Switched Systems. Mathematical and Com-puter Modelling. 2006, 43:1393~1403
    102 C. Z. Wu, K. L. Teo, Y. Zhao. Solving an Identification Problem as an Impul-sive Optimal Parameter Selection Problem. Computers and Mathematics withApplications. 2005, 50:217~229
    103 C. Z. Wu, K. L. Teo. A Global Computation Approach to Impulsive PotimalControl Problems. Journal of Industrial and Management Optimization. 2006,2(4):435~450
    104 R. Li, K. L. Teo, G. R. Duan. Optimal Piecevise State Feedback Control forNonlinear Dynamical Systems. The World Congress on Intelligent Control andAutomation. 2006, (2):1118~1122
    105 C. L. Lin, R. M. Lai. A Novel Approach to Guidance and Control SystemDesign Using Genetic-Based Fuzzy Logic Model. Control Systems Technology,IEEE Transactions. 2002, 10(4):600~610
    106 A. R. Mehrabian, S. V. Hashemi, J. Roshanian. Gain-scheduled Flight ControlLaw Design Using a New Fuzzy Clustering Technique. Systems, Man andCybernetics, 2007. ISIC. IEEE International Conference. 2007:795~800
    107 A. R. Mehrabian, J. Roshanian. Design of Gain-Scheduled Autopilot for aHighly-Agile Missile. Systems and Control in Aerospace and Astronautics,2006. ISSCAA 2006. 1st International Symposium. 2006:144~149
    108 J. Q. Yu, L. Liu, H. X. Zhao, et al. Robust Gain-Scheduled Controller Designfor Air Defense Missile. Control Conference, 2006. CCC 2006. 2006:713~718
    109 S. V. Hashemi, A. R. Mehrabian, J. Roshanian. Control-Oriented Fuzzy Multi-Model Identification of a Highly Nonlinear Missile. Intelligent Systems, 20063rd International IEEE Conference. 2006:326~331
    110 A. R. Mehrabian, J. Roshanian. Skid-to-turn Missile Autopilot Design Us-ing Scheduled Eigenstructure Assignment Technique. Aerospace Engineering.2006, 220:225~239
    111于剑桥,刘莉,靳东亚,等.导弹线性分式变换模型及其在H∞增益调度自动驾驶仪设计中的应用.兵工学报. 2007, 28(7):844~848
    112 M. Tai, K. Uchida. Gain Scheduled Output Feedback Control of Discrete-TimeNetworked Systems. IEEE 22nd International Symposium on Intelligent Con-trol. 2007:59~64
    113 W. J. Rugh, J. S. Shamma. Research on Gain Scheduling. Automatica. 2000,36:1401~1425
    114 F. Wu, K. Dong. Gain-Scheduling Control of LFT Systems Using Parameter-Dependent Lyapunov Functions. Automatica. 2006, 42:39~50
    115周荻.寻的导弹新型导引规律.国防工业出版社. 2002:16
    116谢克明.现代控制理论基础.北京工业大学出版社. 2000:192~196
    117李士勇.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社.1996:266
    118 H. C. Zhao, H. Y. Yu, W. J. Gu. Fuzzy Neural Network-Based Sliding ModeControl for Missile’s Overload Control System. 2005 Neural Networks andBrain International Conference. 2005, 3:1786~1790
    119 H. Y. Yu, H. C. Zhao, W. J. Gu. Adaptive Fuzzy Sliding Mode Control forCross Beam System. 2005 Neural Networks and Brain International Confer-ence. 2005, 2:1058~1061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700