航空发动机调节/保护系统多目标控制问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在飞行包线内,随着航空推进系统的环境和工作状态(如巡航、最大、加速以及减速等状态)的变化,航空发动机的气动热力过程将发生很大的变化,不同工作状态下控制性能也呈现不同的要求。本文针对航空发动机控制所面临的快速响应与安全性之间的矛盾,研究了航空发动机调节/保护的控制策略。
     首先,通过分析航空发动机的控制任务、运行过程中的安全边界,根据航空发动机运行时工况的复杂性,以及控制中的快速响应与安全性之间的矛盾,提出了具有状态约束、输出量约束、或状态与输出之间的组合函数约束的航空发动机调节/保护多目标的控制问题。阐述了这个多目标的控制问题本质上可归属于一个多模型的控制问题。在系统结构上设置多个控制回路,并按照某种切换规则进行切换的控制模式。将安全性和快速响应的指标要求分解,在航空发动机正常运行时,投入正常的控制回路,保证发动机的性能要求;在系统运行逼近安全边界时,则切换到保护控制回路,保证发动机的安全要求。从而通过在相对简单的控制器之间的切换,解决航空发动机的快速响应和安全性之间的矛盾。
     其次,分析了航空发动机多回路切换的规则。针对目前存在于航空发动机中的Min/Max规则进行了分析。分析了Min/Max规则对发动机动态响应能力与安全性上带来的优势,详细阐述了Min/Max切换规则机理,指出了Min/Max切换规则的不足之处。在完成对Min/Max切换规则的分析之后,论文给出一种改进型的规则,此种规则消除了前者的不足。并从理论上分析了这种切换规则本质上属于状态依赖的切换规则,通过实时判断被控制对象运行过程中所处的状态进而选择控制发动机的回路。最后给出了基于Lyapunov函数的多回路稳定性条件。
     然后,针对某型涡扇发动机的控制问题,给出基于平衡流形展开模型结构的表征涡扇发动机安全边界的特征参数,分析其控制系统要求与各控制回路的动态特性。仿真结果表明利用多回路切换控制方法在不影响系统安全性的前提条件下,可提高涡扇发动机的动态响应能力。
     最后,将多回路切换控制应用于冲压发动机控制系统设计当中。研究了冲压发动机控制系统的设计要求与设计限制因素,给出了各个子控制回路的特性,确定了各子控制回路的被控参数以及控制模型,分析了冲压发动机实际运行过程中存在的摄动因素,通过对典型工况的仿真表明利用多回路切换控制的设计方法在保证安全的前提条件下,可使发动机获得更好的性能。同时可降低闭环系统的增益,有效抑制外干扰的影响作用。从这个角度上看,如果单回路设计的控制器不能使一个系统具有良好的H∞性能指标γ,可在给定的控制器之间使用切换技术实现这一目的。
With the changes of the aero engine proplusion systems enviroment and the working conditions (such as speed, accelerating, decelearating, etc), the aero engine aerodynamic and thermodynamic process will change greatly, the control problems have some particularites, so the basic problems of the aero engine control should be researched.
     This paper makes scientific research and in-depth discussion on aero engine control as follows:
     First of all, the paper analyzed the control tasks, safe boundaries during working, the aero engine working conditions, and the contradiction between the shortage of the control parameter numbers and the of the controlled parameter numbers, the paper presented a multi-objective regulating and protecting control problem in aero engine, which had states constraints, outputs constratints and the functions constraints combinated the states with ouputs. And the paper expounded the multi-objective control problem is a multi-model control problem, and proposed the multi-loop control system in structure, and according to one switching strategy to control. The concept is that we can decompose the safety problem and rapid response in aero engine control. The normal control loop control the aero engine to ensure the aero engine performances. And when the aero engine works near the security boundaries, the control system switched to the protection control loop to ensure the safety problem. And through the relatively simple method to switch between the controllers, the aero engine can get balance between the rapid response and safety.
     Secondly, the paper analyzed the multi-loop switch strategy in aero engine. The Min/Max strategy was researched detailly. The paper analyzed the andvantage between the dynamic response performance and the safety in Min/Max switching strategy. And the paper detailed the Min/Max switching strategy’s mechanism, pointed out that the Min/Max switch strategy’s shortcomings. Upon completion analysis of the Min/Max switch strategy, the paper presented a modified strategy to remove the former deficiencies. The strategye is judged by real-time control targets in the course of running the state which in turn choose the engine control loop. Based on the Lyapunov function, the paper gave stability conditions of the multi-loop switching.
     Thirdly, this paper dealt the turbofan engine with multi-loop switching control method. The paper used the equilibrium manifold expansion model to give safe parameters’models in turbofan engine, and analyzed the dynamic characteristics. The simulations show that using the method not only can improve the dynamic performance of the engine control system, but also can guarantee the stability in some occasions.
     Finally, this paper used the switching control design method to ramjet control system. The paper researched the demands and the constraints in designing the control system, and gave the dynamic characterisitics of sub-systems. Controlled paremeters and the models were given, and the uncertainties were investigated. Then through some simulations, the paper showed that using the method the safety can be guaranteed, and the performance can be got. With the method, the conservatism is reduced, the dynamic performance is improved and the multi-loop controllers are regulated well.
引文
1樊思齐,徐芸华等编著.航空推进系统控制[M].西安:西北工业大学出版社, 1995.
    2邢家瑞.航空发动机的防喘控制[J].航空发动机, 1996,(1): 45-51.
    3 Jinkun Lee, Chuntaek Kim, Sooseok Yang. Surge Line Measurement of a Gas Turbine Engine by Fuel Spiking Test[J]. AIAA 2005-810.
    4 Moore F K,Greitzer E M. A theory of post-stall transients in a axial compressor systems:Part-I development of equations[J]. Journal of Engineering for Gas Turbines and Power. 1986, 108: 68-76.
    5王小艳,赵虹,罗雄麟.叶轮压缩系统喘振的主动控制[J].动力工程. 2006, 26(6): 421-425.
    6刑家瑞,张绍基,姜彩虹,马亚泉.昆仑发动机发射武器防喘控制系统的研制[J].航空动力学报. 2004, 19(6): 462-465.
    7 R.Kura, R. C. White. Surge Avoidance in Gas Compression Systems[J]. Journal of Turbomachinery. 2004, 126(4): 501-506.
    8 Epstein, A. H., Ffowcs Williams. Active Suppression of Compressor Instabilities[J]. AIAA-86-199.
    9 A. Roudakov, V. Semenov. Recent Flight Test Results of the Joint CIAM-NASA Mach 6.5 Scramjet Flight Program[J]. AIAA Paper 98-1643, 1998.
    10朱旭津.航空发动机先进控制概念和高稳定性发动机控制系统研制[J].燃气涡轮试验与研究, 2002, 15(3): 5-10.
    11 Samar.R, Postlethwaite. Multivariable controller design for a high performance aero-engine[C]. Control 94 International Conference. 1994, 2:1312– 1317.
    12刘大响.航空动力发展的历史性机遇[J].航空发动机, 2005, 31(2): 1-3.
    13 Glenn B. Gilyard and John S.Orme. Perfoemance Seeking Control:Program Overview and Future Direations. NASA Technical Memorandum 4531, 1993.
    14 Jonathan S. Litt. Autonomous Propulsion System Technology Being Developed to Optimize Engine Performance Throughout the Lifecycle. NASA Glenn's Research & Technology reports,216-433-3748,2004.
    15 Link C. Jaw, Sanjay Garg. Propulsion Control Technology Development in the United States A Historical Perapective. NASA/TM-2005-213978, 2005.
    16黄万伟.鲁棒控制在航空发动机上的应用[D].工学硕士学位论文, 1994年,西北工业大学.
    17王曦,曾庆福.航空发动机结构参数和非结构参数不确定系统鲁棒H∞输出反馈控制[J],航空动力学报, 1999,14(3):305-308.
    18王曦,韩乃湘,李喜发,李运华.航空发动机鲁棒/PI状态反馈控制[J].推进技术, 2003,24(4):364-367. H∞
    19杨刚,孙建国,李秋红.航空发动机控制系统中的增广LQR设计方法[J].航空动力学报, 2004,19(1):153-158.
    20潘慕绚,黄金泉.基于相似理论的航空发动机转速自适应PID控制[J].推进技术, 2003,24(5):429-431.
    21郭迎清,徐德民,樊思齐.一种新的变结构自适应控制方法及其应用研究[J].航空动力学报, 1999,14(2):199-201.
    22黄金泉,胡文霏.基于ε-滤波LMS算法的航空发动机自适应逆控制[J].推进技术, 2005,26(1):54-57.
    23 Adibhatla, S.Brown, Hetal. Intelligent Engine Control[J]. AIAA-92-3484, 1992.
    24王芳,樊思齐,吴丹,任新宇. MAPS方法在航空发动机性能寻优控制中的应用[J].航空动力学报, 2005, 20(3): 97-102.
    25孙丰诚,孙健国.航空发动机加力状态最小油耗优化控制[J].推进技术. 2005, 26(6): 97-102.
    26袁春飞,孙健国,熊智,李松林.推进系统优化控制模式研究[J].航空动力学报. 2003, 19(1): 97-102.
    27高光良.序列二次规划法在航空发动机加力过程最优控制中的应用研究[D].西北工业大学硕士论文. 2005.
    28 Nobbs. G, Jacobs.S, Donahue. D J. Development of the Full-envelop Performance Seeking Control Alogotithm[J]. AIAA Paper,89-2687, 2001
    29时瑞军,樊思齐.基于遗传算法的涡扇发动机多变量加速寻优控制[J].推进技术. 2003, 24(4): 529-533.
    30 A.N.Lakshminarasimha, M.P.Boyce. Analysis of Gas Turbine Performance Deterioration[J]. Journal of Engineering for Gas Turbines and Power. 1994, 11(6): 394-397.
    31吴虎,廉小纯,苏三买.改善双轴发动机加速性的变喷管调节技术[J].推进技术, 2000, 21(6): 25-27.
    32 Mathioudakis, A.Stamatis. Turbofan Performance Deterioration TrackingUsing Nonllinear Models and Optimization Techniques[J]. Jouranl of TurboMachinery Transaction of ASME. 2002, 124(4):580-587.
    33 Stammatis A, Mathiondakis K, Papailious D. Adaptive Simulation of Gas Turbine Performance[J]. ASME Transaction Journal of Engineering for GasTurbine and Power. 1990, 112(2):168-175.
    34朱玉斌,樊思齐,李华聪,杨垂柏.航空发动机性能寻优控制混合优化算法[J].航空动力学报. 2006, 21(2): 97-102
    35李本威,贾忠湖,高国胜,郭卫刚.航空发动机的智能化控制[J].航空发动机. 2000, 1(4): 39-43
    36李立君,尹泽勇,乔渭阳.基于多目标遗传算法的航空发动机总体性能优化设计[J].航空动力学报. 2006, 21(1): 561-565
    37陈恒,张玉琢,左晓阳.基于遗传算法的发动机模糊控制[J].计算机仿真, 2002,19(3):40-43.
    38刘建勋,李应红,陈永刚,尉询楷.航空发动机递归神经网络分路式解耦控制[J].航空动力学报, 2005,20(2):287-292.
    39侯胜利,吴云,刘建勋,李应红.基于混沌变量的航空发动机模糊神经网络控制[J].航空动力学报, 2005,20(3):494-498.
    40贺尔铭.民用航空发动机控制原理及典型系统[M].北京:国防工业出版社, 2002.
    41邢家瑞.发动机燃气温度控制系统设计中的几个问题[J].航空发动机. 1998, 4:5-10.
    42 M. Athans. Command and Control Theroy: A Challenge to Cotrol Science[J]. IEEE Transaction on Automatic Control, 1987,32(4):286-293.
    43 J. L. Bail, H. Alla, R. David. Hybrid Petri Nets[C]. European Control Conference, France, 1991:1472-1477.
    44 R. Alur, C. Courcouberis, T. A. Henzinger, P. H. Ho. Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems[C]. In Workshop on Theroy of Hybrid Systems,Lecture Notes in Computer Science, Denmark, 1992:209-229.
    45 Haifeng Zhai, Hongye Su, Jian Chu, Weimin Wu,Haidong Wu. Optical Control for Hybrid Systems Based on Mixed Dynamical Programming[C]. Proceedings of the 3rd World Congress on Intelligent Control and Automation, June 28-July 2, 200, Hefei, P. R. China, 2374-2378.
    46 Jogen Malmborg. Analysis and Design of Hybrid Control Systems[D]. Department of Automatic Control, Lund Institute of Technology, Sweden, 1998.
    47 Michael Tittus, Bo Egardt. Control Design for Integrator Hybrid Systems. IEEE Transactions on Automatic Control, 1998, 43(4):491-500.
    48 Panos J. Antsaklis. Special Issue on Hybrid Systems: Theory and Applications A Brief Introduction to the Theory and Applications of Hybrid Systems.Proceedings of the IEEE, 2000, 88(7):879-887.
    49 Sun Z. D, Ge S. S., Lee T. H. Controllability and Reachability Criteria for Switched Linear Systems[J]. Automatica, 2002, 38(5): 775–786.
    50 Daniel Liberzon, A. Stephen Morse. Basic problems in stability and design of switched systems[J]. Control Systems Magazine, 1999,19(5):59-70.
    51 Boyd S. P., Barratt C. H. Linear Controller Design: Limits of Performance[M]. New Jersey: Prentice-Hall, 1991.
    52 Eker J., Malmborg J. Design and Implementation of A Hybrid Control Strategy[J]. IEEE Control System Magazine, 1999, 19(5):12–21.
    53 Narendra K. S., Balakrishnan J. Adaptive Control Using Multiple Models[J]. IEEE Transactions on Automatic Control, 1997, 42(2): 171–188.
    54 Hespanha J. P., Morse A. S. Towards the High Performance Control of Uncertain Processes via Supervision[J]. In Proceedings of the 30th annual Conference on information science & systems, 1996, pp:405–410.
    55 Tomlin C., Pappas G. J., Sastry S. Conflict Resolution for Air Traffic Management: A Study in Multi-agent Hybrid Systems[J]. IEEE Transactions on Automatic Control, 1998, 43(4):509-521.
    56 Varaiya P. P. Smart Car on Smart Roads: Problems of Control[J]. IEEE Transactions on Automatic Control, 1993, 38(2):195-207.
    57 Jeon D., Tomizuka M. Learning Hrbrid force and Positon Control of Robot Manipulators[J]. IEEE Transactions on Robotics Automatic, 1996, 9:423-431.
    58刘晓锋,隋岩峰,何宝成,于达仁.涡扇发动机多回路切换系统稳定性分析[J].航空动力学报, 2006, 21(3):601-605.
    59 S.Pettersson, B. Lennartson. Exponential Stability of hybrid Systems Using Piecewise Quadratic Lyapunov Functions Resulting in LMIs[C]. Proceeding of the 14th IFAC, Beijing, China, July, 1999.
    60 Branicky M.S. Studies in Hybrid systems: Modeling, Analysis, and Control[D]. Massachusetts Institute of Technology, 1995.
    61 Branicky M.S., Borker V.S., Mitter S.K. A Unified Framework for Hybrid Control: Model and Optimal Control Theory[J]. IEEE Transactions on Automatic Control, 1998, 43(1):31-45.
    62 Branicky M.S. Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems[J]. IEEE Transactions on Automatic Control, 1998, 43(4):475-482.
    63 Boyd S, Ghaoui L.E., Feron E, et al. Balakrishnan. Linear Matrix Inequalities in System and Control Theory[C]. Proc. Annual Allerton Conf. on Commuication, Control and Computing, Allerton House, Monticello, Illinois, 1993:237-246.
    64 Johansson M, Rantzer A. Computation of Piecewise Quadratic Lyapunov Functions for Hybrid Systems[J]. IEEE Transactions on Automatic Control, 1998, 43(4):555-559.
    65 Xuping Xu, P. J. Antsaklis. Design of stabilizing control laws for second-order switched systems[C]. In 14th World Congress of IFAC, Beijing,China.1999, 181-186.
    66 Z. G. Li, C. Y. Wen, Y. C. Soh. Stability of perturbed switched nonlinear systems[C]. In Proc. American Control Conference, San Diego, California, 1999, 2969-2973.
    67 Bo Hu, Xuping Xu, P. J. Antsaklis. Stability anlysis for a class of nonlinear switched systems[C]. In Proc. 38th IEEE Conf. Decision and Control, Phoenix, Arizona, USA. 1999, 4374-4379.
    68 Bo Hu, Xuping Xu, P. J. Antsaklis, A. N. Michel. Robust stabilizing control laws for a class of second-order switched systems[J]. Systems & Control Letters, 1999, 38(1):197-207.
    69 A. Y. Pogromsky, M. Jistrand, P. Spangeus. On stability and passivity of a class of hybrid systems[C]. In Proc. 37th IEEE Conf. Decision and Control, Tampa, Florida, USA, 1998, 3705-3710.
    70 Beldiman, L. Bushnell. Stability, Linearization and robustness for hybrid systems[C]. In Proc. American Control Conference, San Diego, Calfornia, 1999, 2950-2954.
    71 S. Pettersson, B. Lennartson. Stability and robustness for hybrid systems[C]. In Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, 1996, 1202-1207.
    72 Daniel Liberzon, A. Stephen Morse. Basic problems in stability and design of switched systems[J]. Control Systems Magazine, 1999, 19(5):59-70.
    73 W. P. Dayawansa, C .F. Martin. A converse Lyapunov theorem for a class of dynamical systems which undergo switching[J]. IEEE Trans. On Automatic Control, 1999, 44(4):751-760.
    74 J. L. Mancilla-Aguilar, R. A. Garcia. A converse Lyapunov theorem for nonlinear switched systems[J]. Systems & Control Letters, 2000, 41(1):67-71.
    75 Y. Mori, T. Mori and Y. Kuroe. On a class of linear constant systems which have a common quadratic Lyapunov function[C]. In Proceeding of the 37th IEEE Conference on Decision and Control, 1998, 2808-2809.
    76 T. Ooba and Y. Funahashi. On a common quadratic Lyapunov function for widely distant systems[J]. IEEE Tran. Automatic Control, 1994, 2469-2471.
    77 T. Ooba and Y. Funahashi. Two conditions concerning common quadratic Lyapunov functions for linear systems[J]. IEEE Tran. Automatic Control, 1997,719-721.
    78 K. S. Narendra, J. Balakrishnan. A common Lyapunov function for stable LTI systems with commuting A-matrices[J]. IEEE Trans. On Automatic Control, 1994, 39(12):2469-2471.
    79 A. S. Morse. Supervisory control of families of linear set-point controllers-part 1: exact matching[J]. IEEE Trans. Automatic Control, 1996, 41(10):1413-1431.
    80 Hespanha J. P. and A. S. Morse.. Stability of switched systems with average dwell-time[C]. In Proceeding of 38th Conference on Decision and Control, 1999, 2655-2660.
    81 P. Peleties, R. A. Decarlo. Asymptotic stability of m-switched systems using Lyapunov-like functions[C]. In Proc. American Control Conf., 1991, 1679-1684.
    82 R. A. DeCarlo, M. S. Branicky, S. Pettersson and B. Lennartson. Perspectives and results on the stability and stabilizability of hrbrid systems[C]. Proceeding of the IEEE, 2000, 1069-1082.
    83 P. Peleties, R. A. DeCarlo. Asymptotic stability of m-switched systems using Lyapunov-like functions[C]. In proc. American Control Conf., 1991, 1679-1684.
    84 M. Dogruel, U. Ouzgner. Stability of Hybrid Systems[C]. In IEEE International Symposium on Intelligent Control, 1994, 129-134.
    85 M. A. Wick, P. Peleties, R. A. Decarlo. Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems[J]. European J. Control, 1998, 4(1):140-147.
    86 M. A. Wick, P. Peleties, R. A. Decarlo. Construction of piecewise Lyapunov functions of stabilizing switched systems[C]. In Proc. 33rd IEEE Conf. Decision and control, Lake Buena Vista, FL, 1994, 3492-3497.
    87 E. Feeron. Quadratic stabilization of switched systems via state and output feedback. Technical reportCICS-P-468, MIT, 1996.
    88 E. Skafidas, I. R. Petterssen, R. J. Evans, A. V. Savkin. Quadratic stabilizability of state feedback hybrid control systems[C]. In Proc. 14th International Conf. on control, automation, Roboties and Vision(ICARCV’96), 1996.
    89 M. A. Wick, P. Peleties, R. A. Decarlo. Switched controller synthesis for the quadratic stabilization of a pair of unstable linear systems[J]. European J. Control, 1998, 4(1):140-147.
    90 P. Peleties, R. A. Decarlo. Asymptotic stability of m-switched systems using Lyapunov-like functions[C]. In Proc. 31st IEEE conf. on Decision and Control, 1992, 3438-3439.
    91 P. Peleties, R. A. Decarlo. Asymptotic stability of 2-switched systems using Lyapunov-like functions[C]. In Proceeding of the 1993 American Controlconference, 1993, 3089-3093.
    92 J. Malmborg, B. Bernhardsson and K. J. Astrom. A stabilizing switching scheme for multi-controller systems[C]. In Proc. 13th IFAC, 1996, 229-234.
    93 Johan Eker, J. Malmborg. Design and implementation of a hybrid control strategy[J]. IEEE control Systems, 1999, (1):12-21.
    94张霄力,赵军.任意切换下不确定线性切换系统的鲁棒镇定[J].自动化学报, 2002, 19(5):731-736.
    95谢广明,郑大钟.切换规则不确定线性切换系统的鲁棒稳定性[J].清华大学学报(自然科学版), 2002, 42(3):396-397.
    96 Xuping Xu, Panos, J. Antsaklis. Stabilization of Second-order LTI Switching Systems[J]. International Journal of Control, 2000, 73(14):1261-1279.
    97 Brockett, R. W. Hybrid Modes for Motion Control System. In H. L. Trentelman & J. C. Willems(Eds.), Essays in Control Boston: Birkhauser, 1993.
    98 Gollu, A., Varaiya, P. P. Hybrid Dynamical System[C]. Proceeding of 28th IEEE Conference Decision and Control, Tampa, USA, 1989, 3228-3234.
    99 Kolmanovsky, Gilbert. Multimode Regulators of Systems with States & Control Constraints and Disturbance Input[C]. Lecture Notes in Control and Information Science, Springer-Verlag, 1996:105-117.
    100 S. R. Kulkarni, P. J. Rarnadge. On the Performance and Complexity of A Class of Hybrid Controller Switching Policies[C]. Control Using Logic-Based Switching, 1997, 222: 248-261.
    101 Peleties P A. Modeling and design of interacting continuous-time/discrete event systems[D], West Lafayette: Purdue Univ., 1992
    102 E. J. Davison. The Robust Control of a Servomechanism Problem for Linear Time Invariant Multivariable Systems[J]. IEEE Transactions on Automatic Control, 1976, 21:25-34.
    103 H. H. Rosenbrock. Design of Multivariable Control System Using the Inverse Nyquist Array[C]. Proceeding of IEEE Conference on Decision and Control, Altanta, 1969:1929-1936.
    104 A. G. J. Macfarlane, J. J. Belletrutti. The Characteristic Locus Design Method[J]. Automatica, 1973, 9:575-588.
    105 D. H. Owens. Feedback and Multivariable Systems. Peter Peregrinus LTD. 1978:8-20.
    106 D. Q. Mayne. The Design of Linear Multivariable Systems[J]. Automatica, 1973, 9:201-207.
    107张霖,高黛陵.鲁棒逆Nyquist阵列(RINA)设计方法[J].自动化学报,1994, 20(3):316-323.
    108 G. Zames. Feedback and Optimal Sensitivity: Model Reference Transformation: Multiplicative Seminorms and Approximate Inverses[J]. IEEE Transactions on Automatic Control. 1981, 26:301-320.
    109解学书,钟宜生. H∞控制理论[M].北京:清华大学出版社, 1994:21-33.
    110申铁龙. H∞控制理论及应用[M].北京:清华大学出版社, 1996:4-12.
    111申铁龙.机器人鲁棒控制[M].北京:清华大学出版社, 2000:63-74.
    112 Boyd S, Ghaoui L. E., Feron E., Balakrishnan V. Linear Matrix Inequilities in System and Control Theory[M]. Philadelphia: SIAM, 1994.
    113俞立.鲁棒控制—线性矩阵不等式处理方法[M].北京:清华大学出版社, 2002.
    114赵长安,王子才.鲁棒控制系统[M].北京:宇航出版社, 1991年.
    115 Zong Guang-deng, Wu Yu-qiang. Exponential Stability of Switched Systems with Impulsive Effect[J]. Journal of Control Theory and Applications, 2005,1:60-66.
    116 Daniel Liberzon. Switching in Systems and Control[M]. Birkhauser, Boston, 2003.
    117张霄力.切换系统的稳定性与鲁棒镇定[D].沈阳:东北大学, 2001.
    118 Peleties P A. Modeling and design of interacting continuous-time/discrete event systems[D], West Lafayette: Purdue Univ., 1992
    119 Daniel Liberzon. Switching in Systems and Control[M]. Birkhauser, Boston, 2003.
    120张霄力.切换系统的稳定性与鲁棒镇定[D].沈阳:东北大学, 2001.
    121 Peleties P A. Modeling and design of interacting continuous-time/discrete event systems[D], West Lafayette: Purdue Univ., 1992
    122何保成.弹用涡扇发动机控制系统故障仿真研究[D].哈尔滨工业大学工程硕士论文, 2000.
    123 Peleties P A. Modeling and design of interacting continuous-time/discrete event systems[D], West Lafayette: Purdue Univ., 1992
    124黄琳.稳定性与鲁棒性的理论基础[M].北京:科学出版社, 2003
    125Ю.Н.聂恰耶夫.航空动力装置控制规律与特性[M].北京:国防工业出版社, 1999.
    126隋岩峰.基于平衡流形的涡轮发动机建模与控制方法研究[D].哈尔滨工业大学博士论文, 2005.
    127Ю.В.柳鲍穆德洛夫.相似理论在燃气涡轮发动机调节系统设计中的应用[M].国防工业出版社, 1975.
    128常军涛.高超声速高超声速进气道起动/不起动模式分类及控制[D].哈尔滨工业大学博士学位论文, 2007.
    129崔涛.双模态超燃冲压发动机建模与仿真研究[D].哈尔滨工业大学硕士学位论文, 2001.
    130刘兴洲.飞航导弹动力装置[M].北京:北京宇航出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700