搅拌设备智能化计算机辅助设计系统的完善
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌设备在工业过程中有广泛的应用。但搅拌设备设计中许多问题不能利用传统的数学手段进行分析、建模和求解,大大限制了计算机在搅拌设备设计中的应用。搅拌设备的设计目前仍依赖于经验,它的自动化设计问题迟迟未能解决。将专家系统引入搅拌设备设计领域为解决这一问题提供了新思路。
     浙江大学开发的搅拌设备选型设计的专家系统(MIXiCAD)的原型系统,内容包括:搅拌桨选型、化工设计、详细机械设计、经济分析优化及机械绘图等。本文对搅拌设备设计计算机辅助设计系统的原型系统进行了功能的扩充和系统结构的局部完善,增加了通用设计的传热模块、非牛顿流体搅拌功率模块和专用设计的氯乙烯悬浮聚合反应器、乳液聚合反应器模块。具体取得的主要成果如下:
     1.绝大多数搅拌反应槽在设计时均会考虑到传热问题,确保反应热的及时移出使反应在合适的工艺温度进行,以得到合格的产品。本文系统地研究了搅拌设备的传热过程,分别对搅拌设备常用的传热构件-夹套和内冷管-的传热计算的方法流程进行了分析研究。对应于搅拌槽内液体和冷却介质分别建立了传热计算所需的两个努赛尔准数知识库—被搅液侧的Nu公式库和热载体侧的Nu公式库。设计并实现了搅拌设备传热过程的自动化计算。
     2.梅兹纳(Metzner)常数是计算非牛顿流体的搅拌功率时必须的基础数据。在广泛收集资料的基础上,通过分析建立了在不同雷诺数、不同搅拌桨条件下计算Metzner常数的公式库。在给出体系物性和操作条件时,本文开发的系统可以自动选择合适的公式并计算Metzner常数。
     3.悬浮法是工业生产聚氯乙烯的最主要的方法。氯乙烯悬浮聚合釜设计具有釜容积大,对传热要求高,设计放大条件复杂等特点。通过收集并分析整理氯乙烯悬浮聚合釜设计的数据和资料,确立了氯乙烯悬浮聚合釜设计放大自动化计算的一般步骤,建立了氯乙烯悬浮聚合釜设计的专业设计模块,对设计结果按体系单位体积功耗最小为目标进行了优化。实现了80m~3以下氯乙烯悬浮聚合釜设计的自动化。
     4.乳液聚合具有体系的粘度低,易于传热和混合,生产容易控制等优点在工
    
    浙江大学硕士学位论文
    业上应用广泛。乳液聚合釜设计放大条件复杂,本文在收集并分析整理了乳液聚
    合釜设计的数据和资料的基础上,确立了乳液聚合釜设计放大自动化计算的一般
    步骤,建立了乳液聚合聚合釜设计的专业设计模块。对设计结果按体系单位体积
    功耗最小为目标进行了优化。实现了乳液聚合釜设计的自动化。
     5.对原型系统的人机交互界面进行了改进,使系统和用户可以更友善的交
    流。对有关模块的结构进行了调整,使新增加的模块和数据库与原系统整合为一
    体。采用积木式设计思想的功能模块添加方法,为该软件的进一步完善、提高提
    供途径。
     本文通过对大量知识和数据的收集整理,对原型系统的知识库进行了大规模
    的扩充。对系统的结构和功能进行了完善,添加了新的模块,系统的应用范围更
    广,人机交互界面更友善。相对与原型系统具有了一定的实用意义,今后可以进
    一步扩充完善使系统的功能更完善。
Agitated vessels are widely used in various industries. But in the design of agitated vessels, many problems could not be analyzed, modeled and solved by conventional mathematical methods. It has greatly limited the application of computer in the design of agitated vessel, which is mostly depended on the experience of experts. Therefore, the automatic design of agitator vessel is unsolved. There is a new way to break the bar by using expert system technology to solve this problem.
    Intelligence Computer-Aid Design of mixing equipments system (MIXiCAD) is developed by Zhejiang University includes bellow: selection of agitated vessel, chemical engineering design, detailed machine design, economy analysis and machine painting etc. This thesis precedes the enlargement of the function to the prototype system and perfect with the structure in system partly. In a specific way the main result that obtain is as follows:
    1. While designing agitated vessels, the heat transfer problem should be considered seriously for insureing the reaction heat could be removed away to maintain suitable temperature in the reactor to ensure the product is good. This thesis studied the heat transfer process of agitated vessels systemically and analysis the calculation method of heat transfer in agitated vessels. Two Nu knowledge bases are estimated correspond to the feed in vessel and cool-water in the jacket and coil for calculation of heat transfer coefficient. Realize the automatic calculation of the heat transfer of Agitated vessels.
    2. Metzner constant is the basic data that apply to the evaluation of Mixing Power of non-Newtonian fluid. A database of Metzner constant is built up which can be applied to different Re constant and different impellers conditions by analysis the extensive collected data. Realize the automatic calculation of Metzner constant.
    3. Suspension polymerization is the main way in industrial production of PVC. The design of it has those characters: huge volume, high demand of heat transfer,
    
    
    
    magnify complexly and etc. A professional module of PVC vessel design is. built up by analysis the extensive collected data. Realize the computer-aid design of PVC vessel. The result is optimum for minimum power consumption.
    4. Emulsion has those characters: low viscosity, heat transfer and mixing easily, controllable etc. magnify emulsion vessel is complexly. A professional module of Emulsion vessel design is built up by analysis the extensive collected data. Realize the computer-aid design of emulsion vessel. The result is optimum for minimum power consumption.
    5. Hand over to interface of the prototype system; making system can communicate with customer more friendly. By adjusting the construction of the relevant module made new module and database integrative with original system as a whole.The new function module could be added by "building blocks" design method . in order to perfect the software easily.
    The prototype system was expanded largely on the base of abundant collected data and knowledge in this thesis. The configuration of system is perfected, new module is added, the ability of system is enhanced, and interface is changed more friendly. It is a stable base for prefect and expand in the future.
引文
[1] J.M. Morrison, P. N. Sharratt and K. J. Carpenter. An expert system for the selection of agitators for stirred vessels. I. Chem. E. Symposium, 1990, 120:13-19
    [2] A. Knoch and M. bottlinger. Expert systems in chemical engineeringexamples in the configuration of agitators. Chem. Ing. Tech. 1993, 65(7):802-809
    [3] Andre Bakker, Jerry R Morton and Gary M Berg. Computerizing the steps of mixer selection. Chem. Eng., 1994, 3: 120-129.
    [4] T. Koiranen, A. kraslawski and L. Nystrom., Knowledge-based system for the preliminary design of mixing equipment. Ind. Eng. Chem. Res., 1995, 34,3059-3067
    [5] 王嘉骏,搅拌设备的智能化计算机辅助设计研究,博士论文,浙江大学,2000.2
    [6] Oldshue J Y Fluid Mixing Technology.New York:McGraw-Hill Pub Co,1983
    [7] 王凯,冯连芳,混合设备设计,机械工业出版社,2000.7
    [8] 武波,马玉祥,专家系统(修订版),北京理工大学出版社,2000.1
    [9] 蔡自兴,徐光佑,人工智能及其应用(第二版),清华大学出版社
    [10] 项曙光,许春明,人工智能技术及其在化工中的应用(Ⅰ),青岛化工学院学报,1997,Vol 18,No.4
    [11] Gani, Rafiqul, Knowledge based system for the selection of thermodynamic models, Comput Chem Eng (1989),13(4-5),397~404
    [12] Banares-Alcantara R. Development of a Consultant for Physical Porperty Predictions, Master's thesis, camegie-Mellgn University, 1982
    [13] Grimes, Lewis E. (Carnegie-Mell0n Univ, Pittsburgh, Pa, USA); Rychener, Michael D.; Westerberg, Arthur W, SYNTHESIS AND EVOLUTION OF NETWORKS OF HEAT EXCHANGE THAT FEATURE THE MINIMUM NUMBER OF UNITS.Chem Eng comm.1982,14(3-6):339~360
    [14] Chen, B.; Shen, J.;Sun, Q.;Hu, S. Development of an expert system for synthesis of heat exchanger networks, Comput Chem Engm (1989),13(11-12):1221~1227
    [15] 高维平,于为人,韩放煜,智能法合成最优换热网络,化工学报.(1990),(3):353~363
    [16] Quantrille T E, Liu Y A. Artificial Intelligence in Chemical Engineering Academic Press. Inc. 1994
    [17] Watmschafft, O. M.; Jurain, T. R;Westerberg, A. W., Split. A separation process designer, Comput Chem Eng (1991), 15(8): 565~581
    [18] L. Beltramini and R. L. Motard, Knod—a knowledge based approach for process design, Comput Chem Eng, 1988, 12(9-10): 939~958
    [19] R.L. Kirkwood, M. H. Locke and J. M. Douglas. Aprototype expert system for synthesizing chemical process flowsheets, Comput Chem Eng, 1988, 12(4):
    
    239~343
    [20] D.R. Lewin and M. Morari, ROBEX: An expert system for robust control synthesis, Comput Chem Eng,1988,12(9-10):1187~1198
    [21] Konar A F at al. XIMKON-An Expert Simulation and Controlprogram. In:Mavrovouniotis M. L. (ed.), Artifical intelligence in Process Engineering Academic Press. 1990,223
    [22] D. R. Myers and J. F. DavistD. J. Herman, A task-oriented approach to knowledge-based systems for process engineering design, Comput Chem Eng,1988, 12(9-10): 959~971
    [23] G.Stephanopoulos, J. Johnston, T. Kriticos, R. Lakshmanan, M.Mavrovouniotis and C. Siletti. Design-kit: An object-oriented environment for process engineering, Comput Chem Eng,1987,11:655~674
    [24] Rowan, Duncan A. (DuPont, Newark, DE, USA), ON-LINE FAULT DIAGNOSIS:INITIAL SUCCESS AND FUTURE DIRECTIONS.Advance in Instrument. 1987,42(pt2):1211~1218
    [25] Lapointe, J.; Marcos, B.;Veillette, M.;LaFlamme, G.;Dumontier, M.. BIOEXPERT.An expert system for wastewater treatment process diagnosis. Comput Chem Eng, (1989), 13(6): 619~630
    [26] S.K. Shum, J. F. Davis, W. F. Punch,Ⅲ and B. Chandrasekaran, An expert system approach to malfunction diagnosis in chemical plants, Comput Chem Eng, 1988, 12(1): 27~36
    [27] T.S. Ramesh, S. K. Shum and J.F.Davis, A structured framework for efficient problem solving in diagnostic expert systems, 1988, 12(9-10): 891~902
    [28] V. Venkatasubramanian and S. H. Rich, An object-oriented two-tier architecture for integrating compiled and deep-level knowledge for process diagnosis, Compu Chem Eng, 1988, 12(9-10): 903~921
    [29] D Ambrosio A Modling Real-World Process: Deep and shallow Knowledge Integrated with Appoximate Rasoning in a Diagnostic Expert System. In:Mavrovouniotis, M. L. (ed.) Artifical intelligence in process Engineering,Acadmic Press,1990, 223
    [30] Myers D R et al. An Expert System for Diagnosis of a Sequential, PLC Controlled Operation.In:Mavrovouniotis, M. L. (ed.) Artifical intelligence in process Engineering, Acadmic Press, 1990, 223
    [31] Samdani G, Fouhy K. Smart software[J], Chem Eng 1982, 99(4):30~34
    [32] Moore R L, Kramer M A. Expert Systems in On Line Process Control, In Morari, M, McAvoy T. J. (ed.). Chemical Process Control-CPC Ⅲ, Elservier, 1980 893
    [33] Kraus, T. W. (Foxboro Co); Myron, T. J. SELF-TUNING PID CONTROLLER USES PATTERN RECOGNITION APPROACH, Control Engineering, 1984, 31(6): 106~111
    [34] G.J. Birky and T. J. McAvoy, A general framework for creating expert systems for control system design, Comput Chem Eng, 1990, 14(7): 713~728
    [35] 时均等,化学工程手册第27编,北京:化学工业出版社,1996
    [36] R. Banares-Alcantara, A. W. Westerberg, E. I. Ko and M. D. Rychener.
    
    Decade—A hybrid expert system for catalyst selection—Ⅰ. Expert system consideration, Comput Chem Eng, 1987, 11(3):265~277
    [37] R.Banares-Alcantara, E. I. Ko, A. W. Westerberg and M. D. Rychener DECADE—a hybrid expert system for catalyst seleetion—Ⅱ. Final architecture and results, Comput Chem Eng, 1988, 12(9-10):923~938
    [38] James A. Dumesic, Andres A. Trevino, Beth A. Milligan, Leonardo A. Greppi,Vijay R. Balse, Kenneth T. Sarnowski, Charles E. Beall, Takuo Kataoka, Dale F. Rudd, A kinetic modeling approach to the design of catalysts:formulation of a catalyst design advisory program, Ind Eng Chem Res, 1987, 26(7):1399~1407
    [39] 王凯,冯连芳,顾雪萍,乔斌,王嘉骏,聚合搅拌设备的计算机辅助设计和软件开发,研究报告,1997
    [40] Bondy, Frederick (Heyward-Robinson Co, New York, NY, USA); Lippa,Shepherd,HEAT TRANSFER IN AGITATED VESSELS. Chemical Engineering(New York),1983,90(7):62~71
    [41] Yuji Sano, Hiromoto Usui, Tatuo Nishimara, Eiji Saite, Correlation of heat transfer cofficient at the wall of mixing vessel, 化工学工学论文集,1978, 4(2):159~165
    [42] 佐野雄二等,化学工学论文集,1981:(3):253
    [43] 王凯,非牛顿流体的流动、混合和传热,浙江大学出版社,1,(1988)
    [44] 永田进治等,化学工学,1971,35(8):924
    [45] Bourne, J. R. (Eidg Tech Hochsch,Zurich, Switz); Buerli, M.; Regenass, W.,HEAT TRANSFER AND POWER MEASUREMENTS IN STIRRED TANKS USING HEAT FLOW CALORIMETRY.Chem. Eng. Sci, 1981, 36(2):347~354
    [46] 宫入嘉夫,高粘性流体搅拌槽传热关研究,博士学位论文,日本九州大学,(1976),
    [47] Shibashi K, I. Heat transfer in agitated.vessel with special types of impellers, Chem Eng Japan, 1979, 12(3):230~234
    [48] Nagata S, Heat transfer to cooling coil acting as rotating impeller in highly viscous liquids, J Chem Eng. Japan, 1972, 5(2):187~192
    [49] 唐福瑞等,化工学报,1983(4):389
    [50] 俞生尧,徐步泉,宋秋安,王凯等,非牛顿流体在搅拌槽内传热的研究,合成橡胶工业,1986,9(5):322~326
    [51] 王凯,朱秀林,宋秋安,非牛顿流体在过渡流域的搅拌功率和混合效率,化学反应工程与工艺,(1985),1(3):21~29
    [52] Gluz M D, Zhurnal Prikladuoi khimi, 39(11): 2475
    [53] Pollard J, T.A Kantyka, Heat transfer to agitated non-newtonian fluid. Trans Instn Chem Engrs, 1969, 47:T21
    [54] EDNEY HGS, EDWARDS MF, MARSHALL VC, HEAT-TRANSFER TO A COOLING COIL IN AN AGITATED VESSEL, T I CHEM ENG-LOND 1973, 51(1):4~9
    [55] 永田进治等,化学工学论文集,1975,1(1):68
    [56] 谭天恩,麦本熙,丁惠华,化工原理,化学工业出版社,1999
    
    
    [57] 朱秀林,宋秋安,徐步泉,王凯,高粘度非牛顿流体用搅拌器的混合特性,合成橡胶工业,(1984),7(4):255~259
    [58] 朱秀林,宋秋安,王凯,高粘度非牛顿流体用搅拌器的动力特性,化学工程,1985,(2):52~56
    [59] 朱秀林,宋秋安,徐步泉,王凯,回转兼上下动搅拌器混合非牛顿流体时的功率消耗及混合特性,合成橡胶工业,(1985),8(6):421~425
    [60] 朱秀林,宋秋安,徐步泉,王凯,半椭圆板一导流筒搅拌器的功率消耗和混合效率,合成橡胶工业,(1985),8(2):77~81
    [61] Hocker H, Labger, G Werner, U. Power consumption of stirrers in non-newtonian liquids,. Ger. Chem. Eng. 1981(4):113~123
    [62] 谷山岩,佐藤忠正,回分搅拌槽混合速度,化学工学,(1965),29(9):709~714
    [63] Begachev V I, Gurvich A R, Braginskii L N, Teoretichskie Osnovy Khimicheskoi Teknologii, 198014(1):106
    [64] Edwards M F, Godfrey J C, Kashani M M, Journal of non-Newtonian fluid mechanics, 1976,1:309
    [65] Hall K R, Godfrey, J.C. Power consumption by helical ribbon impellers, Trans.Instn. Chem. Engrs. 1970, 48(7-10):T201~208
    [66] Nagata S, Nishikawa M, Power consumption of mixing impellers in pesudoplastic liquids. J. Chem. Eng. Japan, 1971, 4(1):72~76
    [67] Takabashi K, Yokota T. Konno, H.. Power consumption of helical ribbon agitators in highly viscous pseudoplastic liquids, J Chem Eng Japan, 1984, 17(6):657~659
    [68] Rieger F, Novak V, Power consumption of agitators in highly viscous non-Newtonian liquids. Trans.Inst.Chem.Eng,1973, 51:105~111
    [69] Sawinsky J, Havas G, Deak A. Power requirement of anchor and helical ribbon impellers for the case of agitating Newtonian and pseudo-plastic liquids. Chem.Eng. Sci. 1976, 31:507
    [70] Ayazi Shamlou P, Edwards M F. Power consumption of helical ribbon mixers in viscous newtonian and non-newtonian fluids, Chem. Eng. Sci. 1985, 40(9):1773~1781
    [71] Brito-de la Fuente, E. (Universidad Nacional Autonoma de Mexico); Choplin,L.; Tanguy, P.A, Mixing with helical ribbon impellers: effect of highly shear thinning behaviour and impeller geometry, Chemical Engineering Research & Design, Transactions of the Institute of Chemical Engineers, Part A, 1997, 75(A1):45~52
    [72] Chavan V V, Ulbercht J, Dynamics of agitation of on-newtonian liquids by close-cleaance agitators, Ind Eng Chem Proc Des Dev, 1973, 12(4):472~476
    [73] Chowdhury, Ranajit; Tiwari, Krishna K, POWER CONSUMPTION STUDIES OF HELICAL RIBBON-SCREW MIXERS. Industrial & Engineering Chemistry, Process Design and Development, 1979, 18(2):227~231
    [74] Sestak J, R. Zitny, M Houska, Anchor-agitated system: power input correlation for pesude-plastic and thixotropic fluids in equilibrium. AIChE J, 1986, 32:155~158
    
    
    [75] Tanguy P.A,F, Thibault, et al, A new investigation of the Metzner-Otto concept for anchor mixing impellers. Can J. Chem. Eng, 1996, 74:222
    [76] Nagata S, M. Nishikawa,et al, Mixing of highly viscous non-Newtonian Liquids.Inter.Chem.Eng.1972,12(1),175
    [77] Calderbank P H,Moo-young M B,The power characteristics of agitators for the mixing of newtonian and non-newtonian fluids, Trans. Instn. Chem. Engrs, 1961, 39(5):337~347
    [78] Schilo D, Aspects of mixing in reheologically complex fluids.Chem. Ing. Tech.,1969,(41):253
    [79] Beckner J. L, J. M. Smith, Anchor-agitated systems: power input with Newtonian and Pseudo-plastic fluids. Trans Instn. Chem. Eng, 1966, 44:T224~236
    [80] 王英琛,林猛流,施力田,在假塑性非牛顿流体中锚式搅拌器轴功率的研究,合成橡胶工业,1982,5(6):433
    [81] Pollard J, T. A. Kantyka, Heat transfer to agitated non-Newtonian fluid. Trans. Instn. Chem. Eng, 1969, 47:T21
    [82] Metzner A B, Feehs R H, Agitation of viscous newtonian and non-newtonian fluids, AIChE Journal, 1961,7(1):3~9
    [83] 谷山岩,佐藤忠正,回分搅拌槽混合速度,化学工学,(1965),29(9):709~714
    [84] Richard W. H, Jerry R. M,, Jdhn G.F, How to design agitators for desired process response, Chem. Eng, 1996, 4:102
    [85] 王嘉骏,混合过程中混合时间,排量数和功率数的研究,研究报告,2001
    [86] Nataga S, Mixing principles and Applications,Tokyo, Kodansha LTD Halsted Press, 1975
    [87] Revill B K,pumping capacity of disc turbine agitators-A literature review. Fourth European Conference On MIXING, 1982:12
    [88] Sano, Yuji, Hiromoto, Usui,Interrelations among mixing time, power number and discharge flow rate number in baffled mixing vessels, J Chem. Eng Japan, 1985, 18:57~52
    [89] Fort I, Miloslav H, Description of the flow of mechanically agitated liquid in a system with cylindrical draft-tube and radial baffles, Coll Czech Chem Commun, 1987, 52:1416~1429
    [90] 毛德明,多层桨搅拌釜内流动与混合的基础研究,博士论文,浙江大学1988
    [91] NOMURA M, KOJIMA H, HARADA M, CONTINUOUS FLOW OPERATION IN EMULSION POLYMERIZATION OF STYRENE, J APPL POLYM SCI 1971, 15(3):675

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700