类硅烯硅烯结构和反应的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类硅烯和硅烯是有机硅反应的一类重要的活性中间体,其反应是合成含硅新键和含硅杂环的有效方法。理论和实验研究表明:类硅烯具有亲电和亲核的双重反应性,能进行多种化学反应,如插入反应、取代反应、加成反应等。基于类硅烯和硅烯的研究现状,本论文主要进行了以下几个方面的工作:
     第一章绪论对类硅烯和硅烯性质和研究现状进行了概括。
     第二章研究方法简介对本论文用的主要研究方法(从头算法和密度泛函理论方法)进行了简单的介绍。
     第三章用密度泛函的方法研究了类硅烯H_2SiLiF和CH_3XH_(n-1)(X=F,Cl,Br,O,N;n=1,1,1,2,3)取代和插入反应。
     1) H_2SiLiF和CH_3XH_(n-1)取代反应是亲核取代的放热反应。反应有背面进攻和正面进攻两条反应路径,两条路径得到相同的最终产物H_2SiFCH_3和LiX。两条路径的反应势垒对于同一族和同一周期的X的体系,随着X原子序数的增加而降低,背面进攻的路径的势垒较低,在反应中占优势。
     2)类硅烯H_2SiLiF插入CH_3XH_(n-1)中C-X的反应是协同反应,反应最终可得到H_2SiCH_3X和LiF。反应的势垒,对于同一族X的体系,插入反应的势垒变化不大,对于同一周期X的体系,随着原子序数X的增加,插入反应的势垒逐渐增大。
     3)插入反应过渡态的总能量比相应的取代反应过渡态的能量高。因此对于H_2SiLiF和CH_3XH_(n-1)反应体系来说,取代反应比插入反应容易进行。所以在该反应体系的产物中,取代产物量会大于插入产物的量。
     第四章研究了类硅烯(TSi)BrSiLi_2与Me_3SiCl的反应。
     1) CH_3BrSiLi_2、C(SiH_3)_3BrSiLi_2以及(TSi)BrSiLi_2的构型计算表明,这一类型的类硅烯主要有p络合物、平面和折状三种构型。一般情况下,p络合物构型的能量最高,平面构型和折状构型的能量相近。平面构型和折状构型是这类类硅烯存在的可能构型。
     2) H_2SiLiBr、CH_3BrSiLi_2、C(SiH_3)_3BrSiLi_2与Me_3SiCl的插入反应是一协同的反应过程,反应的实质是类硅烯硅原子的空P轨道和3S电子分别与Me_3SiCl中的正电部分Me_3Si和负电部分Cl发生作用。插入反应的势垒以H_2SiLiBr>C(SiH_3)_3BrSiLi_2>CH_3BrSiLi_2的顺序逐渐降低。对于CH_3BrSiLi_2类型类硅烯的插入反应,大的推电子取代基团C(SiH_3)_3使插入反应的势垒升高。
     3) H_2SiLiBr、CH_3BrSiLi_2、C(SiH_3)_3BrSiLi_2中的带负电的硅原子可以与Me_3SiCl发生亲核取代反应。反应的势垒以C(SiH_3)_3BrSiLi_2>H_2SiLiBr>CH_3BrSiLi_2的顺序变化。
     4)从反应过程的能量变化来看,插入反应的势垒均高于取代反应的势垒。对于CH_3BrSiLi_2、C(SiH_3)_3BrSiLi_2类型的类硅烯与Me_3SiCl的反应,推电子基团C(SiH_3)_3使取代反应相对于插入反应的优势更大。
     5)类硅烯与Me_3SiCl插入和取代反应生成不同的产物。由于取代反应比插入反应有优势,所以在反应所生成的产物混合物中,取代产物的量大于插入产物。
     第五章用从头算分子轨道和密度泛函的方法研究了类硅烯H_2SiLiX(X=F,Cl)对甲醛的加成反应。
     1)类硅烯H_2SiLiX采用三元环和p络合物两种构型,从加成过程的势垒上看,三元环构型的类硅烯H_2SiLiX更容易进行与甲醛加成反应,并且卤素元素为氟的类硅烯比氯的类硅烯易与H_2CO加成。
     2)H_2SiLiX(X=F,Cl)和H_2CO的不对称加成反应与H_2SiLiX(X=F,Cl)与乙烯、乙炔的对称性的加成反应相比,形成的前期复合物的结构不同。
     3)在THF和在乙醚中,在B3LYP/6-31G(D)水平下的计算表明,在极性溶剂中更易发生H_2SiLiX(X=F,Cl)和甲醛的加成反应,溶液的极性越大反应越易进行;并且在极性较大的溶剂中,产物复合物更易分解而得到硅杂环氧甲烷。
     第六章研究了五配位类硅烯PhCH_2(NH_2)CH_3SiLiF的结构和反应。
     1)类硅烯PhCH_2(NH_2)CH_3SiLiF有三种平衡构型,三元环构型1、p-络合物构型2和σ-络合物构型3。在溶剂THF中,类硅烯的三种构型的结构和在真空条件下类似。它们的能量顺序在THF溶剂和真空条件下相同,均为2>1>3。
     2) PhCH_2(NH_2)CH_3SiLiF插入C-F的反应机理与PhCH_2(NH_2)CH_3Si相似。前者的势垒比后者高62.9kJ/mol。类硅烯PhCH_2(NH_2)CH_3SiLiF比相应硅烯PhCH_2(NH_2)CH_3Si稳定。
     3) PhCH_2(NH_2)CH_3SiLiF插入C-F的反应势垒比PhCH_3CH_3SiLiF的要高。表明N原子对类硅烯PhCH_2(NH_2)CH_3SiLiF的稳定性起了很重要的作用。
     第七章研究了硅烯与H_2B-X(X=F,Cl,Br)化合物的插入反应。硅烯插入B-X键的反应是一个协同反应过程,反应势垒分从F到Br逐渐增大。
     本论文的创新性成果主要表现在如下几个方面:
     1)类硅烯和硅烯可发生类似的化学反应。在第三章和第四章中,本文系统地研究了类硅烯和CH_3XH_(n-1)(X=F,Cl,Br,O,N;n=1,1,1,2,3)与Me_3SiCl取代和插入反应。发现类硅烯和CH_3XH_(n-1)与Me_3SiCl的取代反应比插入反应容易进行,反应以取代反应为主。而硅烯和CH_3XH_(n-1)与Me_3SiCl易发生插入反应,在这一点上,硅烯和类硅烯不同。本章的研究不仅和实验结果相吻合,并可为这一类型的实验反应设计提供理论指导。
     2)相对于四配位的类硅烯来说,对五配位的类硅烯的研究较少。本文首次在理论上对五配位类硅烯的结构进行了研究,并讨论了配位原子N对类硅烯性质的影响。这一研究结果对于进一步开展五配位的类硅烯的实验研究有重要的理论指导意义。
     3)类硅烯的加成反应是类硅烯的一种重要的反应,文献中对类硅烯加成反应的理论研究均是对称性加成反应。在第四章中,本文首次在理论上研究了类硅烯的不对称加成反应,并与对称性的加成反应进行了比较。
     4)硅硼类化合物是一类非常重要的化合物,但合成方法有限。本文研究了硅烯插入硼卤键的插入反应本质和规律,为实验上利用这一方法进行硅硼类化合物的合成提供理论支持。
Silylenoids and silylenes are important intermediates in some organosilicon reactions and their reactions were recognized as important and effective methods for the preparation of new silicon-bonded and heterocyclic silicon compounds.Both experimental and theoretical results show that silylenoids and silylenes have ambiphilic character,nucleophilicity and electrophilicity,and can take part in many reactions,such as insertion,addition,rearrangement,and polymerization.Based on the present research, this dissertation is mainly composed of the:following parts.
     Chapter 1 introduces the characters and the previous researches of silylenoids and silylenes.
     Chapter 2 mainly illustrates the ab initio and density functional theory.
     In chapter 3,the DFT investigation on the insertion and substitution reactions of H_2SiLiF and CH_3XH_(n-1)(X=F,Cl,Br,O,N;n=1,1,1,2,3) is performed.
     1) The theoretical results indicate that the substitution reactions of H_2SiLiF with CH_3XH_(n-1) occur in a concerted manner via two reaction paths,ⅠandⅡ,forming same products,H_2SiFCH_3 and LiXH_(n-1).For both pathways,the substitution barriers decrease with the increase of the atomic number of the element X for the same family systems or for the same row systems.PathⅠis more favorable than pathⅡ.
     2) H_2SiLiF inserts into a C-X bond via a concerted manner,forming H_2SiXH_(n-1)CH_3 and LiF.For C-X bonds,the order of reactivity by A insertion indicates the reaction barriers increase for the same-row element X from right to left in the periodic table,whereas change very little for the insertion into X-C bonds of the same-family element X.
     3) The total energies of the insertion transition states are higher than those of the corresponding substitution states.Thus,the substitution reactions are more favorable than the insertion reactions for the H_2SiLiF and CH_3XH_(n-1) systems.It is reasonable to expect that the amount of substitute product H_2SiFCH_3 is more than that of insertion product H_2SiXH_(n-1)CH_3 among the final products.
     The research in chapter 3 is about the reaction of(TSi)BrSiLi_2 and Me_3SiCl.
     1) The calculations indicate that CH_3BrSiLi_2,C(SiH_3)_3BrSiLi_2 and(TSi)BrSiLi_2 have three probably structures,p complex structure,the plain structures and the folded structures.The energy of the p complex is highest and the energy of the plain structure nearly equals to that of the folded structure.
     2) The insertion of CH_3BrSiLi_2,C(SiH_3)_3BrSiLi_2 and(TSi)BrSiLi_2 into Si-Cl bond is a concerted reaction.The insertion barriers is in the order of H_2SiLiBr>C(SiH_3)_3BrSiLi_2>CH_3BrSiLi_2.The big group C(SiH_3)_3 make the insertion more difficult.
     3) The negative silicon in silylenoids can nucleophilicly substitute with Me3SiCl. The energy barriers are in the order C(SiH_3)_3BrSiLi_2>H_2SiLiBr>CH_3BrSiLi_2.
     4) On the view of energy,substitution barriers are lower that those of insertion. The electron-donating group,C(SiH_3)_3,makes the barrier difference(between the substitution and the insertion) for the case of C(SiH_3)_3BrSiLi_2 relative to the case CH_3BrSiLi_2.
     5) Due to the lower barriers of the substitutions,the substitution products are dominant in the reaction system.
     In chapter 5,the addition reactions of H_2SiLiX(X=F,Cl) and H_2CO are discussed.
     1) The three-member ring and the p complex structures of H_2SiLiX(X=F,Cl) are adopted in this study.The addition of the three member ring structure to H_2CO is easy to occur,and the barrier of H_2SiLiF is lower that of H_2SiLiCl.
     2) The structures of the precursor complexes in the asymmetric additions of H_2SiLiX(X=F,Cl) to H_2CO are different from those in the symmetric additions of H_2SiLiX(X=F,Cl) to C_2H_4 and C_2H_2.
     3) The calculations at the B3LYP/6-31G(d) level indicate that the addition reactions of H_2SiLiX(X=F,Cl) to H_2CO easily occur in the polar solvent.The higher the solvent polarity is,the lower the barriers of the addition reactions are.The final complexes also easily dissociate into oxasilacyclopropane and LiX in the polar solvent.
     In chapter 6,the theoretical investigation on the structures and reactions of silylenoid PhCH_2(NH_2)CH_3SiLiF is performed.
     1) Silylenoid PhCH_2(NH_2)CH_3SiLiF has three isomers,1(three member ring structure),2(p complex structure) and 3(σcomplex structure).The structures of silylenoid PhCH_2(NH_2)CH_3SiLiF in THF are similar to those in vacuum.Their energies are in the order of 2 > 1 > 3 both in vacuum and in THF.
     2) The insertion of Silylenoid PhCH_2(NH_2)CH_3SiLiF into the C-F bond is similar to that of silylene into the C-F bond.The activation barrier for the former is 62.9 kJ/mol higher than that for the latter.Silylenoid PhCH2(NH2)CH3SiLiF is more stable than silylene PhCH_2(NH_2)CH_3Si.
     3)The energy barrier of PhCH_2(NH_2)CH_3SiLiF insertion into C-F is higher than that of PhCH_3CH_3SiLiF,showing that the N atom plays an important role on the stability of silylenoid PhCH_2(NH_2)CH_3SiLiF.
     In chapter 7,the insertion reaction of silylene into H_2B-X(X=F,Cl,Br) is considered.The reaction is in a concert manner and barriers increase from F to Br.
     The valuable results in this dissertation can be summarized as follows:
     1)Silylenes and silylenoids have similar characters in reactions.In chapter 3 and chapter,this dissertation investigates the reactions of silylenoids with CH_3XH_(n-1)(X=F, Cl,Br,O,N;n=1,1,1,2,3) and Me_3SiCl.It is found that the barriers of substitutions are lower than those of corresponding insertions,and that the substitutions are dominant. But insertions usually occur in the silylene with CH_3XH_(n-1)(X=F,Cl,Br,O,N;n=1,1,1, 2,3) and Me_3SiCl systems.So silylenes and silylenoids are different in this point.This calculated results are in agreement with experiments and can provide theoretical guide for the design of silylenoid experiments.
     2) Relative to the tetracoordinate silylenoids,the researches on the pentcoordinate silylenoids are rare.The chapter 5 theoretically studies the structures for the first time, and the effect of the coordinate atom,N,on the character of silylenoid are also discussed.This may support guides for the further study of pentcoordinate silylenoids.
     3)The addition reactions are very.important ones for silylenoids.Previous researches are all concerned about the symmetric additions.This paper investigate the asymmetric additions of silylenoids and a contrast is made between the asymmetric and symmetric additions.
     4) Borosilicate compounds are important in chemical reactions,but syntheses are rather difficult.The chapter 7 discusses the character and laws for the insertion of silylene into C-X(X=F,Cl and Br).This will be useful to the syntheses of borosilicate compounds.
引文
[1]杜作栋等,有机硅化学[M],高校教育出版社,1986年
    [2]Yu.Skryshevski,Yu.Piryatinski,A.Vakhnin,I.Blonsky,A.Kadashchuk,S.Nespurek,Triplet state spectroscopy of σ-conjugated poly[methyl(phenyl)silylene][J].Optical Materials,Volume 30,Issue 3,November 2007,Pages 384-392
    [3]E.Chamorro,J.C.Santos,C.A.Escobar,E Perez,Electrophilicity and spin polarization of simple substituted silylenes[J].Chemical Physics Letters,Volume 431,Issues 1-3,11 November 2006,Pages 210-215
    [4]Max C.Holthausen,Wolfram Koch,Yitzhak Apeloig,Theory Predicts Triplet Ground-State Organic Silylenes[J].J.Am.Chem.Soc.1999,121,2623-2624
    [5]M.Z.Kassaee,S.M.Musavi,M.Ghambarian,A quest for triplet silylenes XHSi_3 at ab initio and DFT levels(X = H,F,Cl and Br)[J].Journal of Organometallic Chemistry,Volume 691,Issue 9,15 April 2006,Pages 1845-1856
    [6] M.Z. Kassaee, S.M. Musavi, N. JalaliManesh, M. Ghambarian, A theoretical study on phosphasilylenes CPSi-X (X=H, CN, NH_2 and OMe) [J]. Journal of Molecular Structure: THEOCHEM, Volume 761, Issues 1-3,17 March 2006, Pages 7-16
    
    [7] Nicholas J. Hill, Robert West, Recent developments in the chemistry of stable silylenes[J]. Journal of Organometallic Chemistry, Volume 689, Issue 24, 29 November 2004, Pages 4165-4183
    
    [8] Thomas A. Schmedake, Michael Haaf, Bryan J. Paradise, Anthony J. Millevolte,Douglas R. Powell, Robert West, Electronic and steric properties of stable silylene ligands in metal(O) carbonyl complexes[J]. Journal of Organometallic Chemistry,Volume 636, Issues 1-2,25 November 2001, Pages 17-25
    
    [9] L. A. Leites, S. S. Bukalov, M. Denk, R. West, M. Haaf, Raman evidence of aromaticity of the thermally stable silylene (~tBuNCH=CHN~tBu)Si: [J]. Journal of Molecular Structure, Volumes 550-551, 5 September 2000, Pages 329-335
    
    [10] Renji Okazaki, Robert West, Chemistry of Stable Disilenes[J]. Advances in Organometallic Chemistry, Volume 39, 1996, Pages 231-273
    
    [11] Yuanzhi Xia, Yahong Li, Wu Li, Theoretical study on the consecutive 1,2-hydroboration and 1,1-organoboration reactions of alkyn-l-yl(vinyl)silane with borane[J]. Journal of Organometallic Chemistry, Volume 693, Issue 25, 1 December 2008, Pages 3722-3728
    
    [12] Yuhua Qi, Dacheng Feng, Rui Li, Shengyu Feng , Theoretical study on the substitution and insertion reactions of silylenoid H_2SiLiF with CH_3XH_(n-1) (X = F, Cl,Br, O, N; n= 1, 1, 1, 2, 3) [J]. Journal of Organometallic Chemistry, Volume 694,Issue 5, 1 March 2009, Pages 771-779
    
    [13] Anna Chrostowska, Virginie Lemierre, Alain Dargelos, Patrick Baylere, William J.Leigh, Ghassoub Rima, Lothar Weber, Michaela Schimmel, Gas-phase synthesis and characterization of heteroleptic divalent germanium compounds by FVT/UV-PES[J]. Journal of Organometallic Chemistry, Volume 694, Issue 1, 1 January 2009, Pages 43-51
    
    [14] S.H. Huh, D.G. Shin, D.H. Riu, E.J. Jin, E.B. Kong, K.Y. Cho, C.Y. Kim, H.-E. Kim,A simple synthetic route of polycarbosilane precursor using nanoporous anodized aluminum oxide[J].Catalysis Communications,Volume 10,Issue 2,15November 2008,Pages 208-212
    [15]Gilman H,Peterson D J.Reaction of diphenyldichlorosilane with lithium[J].J.Am.Chem.Soc.,1965,87:2389-2394.
    [16]Clifford L.Smith and Robert Gooden.1-oxa-2-silacyclohexanes:Mechanism of formation from magnesium halide catalyzed reactions of some dichlorosilanes and magnesium metal in tetrahydrofuran[J].Journal of Organometallic Chemistry,1974,81(1):33-40.
    [17]West R.The polysilane high polymers[J].Journal of Organometallic Chemistry,1986,300:327-346.
    [18]Tamao K,Kawachi A,Ito Y.The first stable functional silyl anions:(aminosilyl)lithiums[J].J.Am.Chem.Soc.,1992,114:3989-3990.
    [19]Lee M E,Cho H M,Lim Y M,Choi J K,Park C H,Jeong S E,Lee U.Syntheses and reactivities of stable halosilylenoids,(Tsi)X_2SiLi(Tsi=C(SiMe_3)_3,X=Br,Cl)[J].Chem.Eur.J.,2004,10:377-381.
    [20]Molev G,Bravo-Zhivotovakii D,Karni M,Tumanskii B,Botoshansky M,Apeloig Y.Synthesis,Molecular Structure,and Reactivity of the Isolable Silylenoid with a Tricoordinate Silicon[J].J.Am.Chem.Soc.,2006,128(9):2784-2785.
    [21]Clark T,Schleyer P v R.The isomeric structures of SiH_2LiF[J].J.Organometal.Chem.,1980,191:347-353.
    [22]冯圣玉.山东大学研究生学位论文[M].1992.10.
    [23]冯圣玉,居冠之,邓从豪.类硅烯的结构与反应性的理论研究---Ⅰ.类硅烯H_2SiLiCl的构型及其异构化[J].中国科学(B),1991,9:907-914.
    [24]Feng S Y,Deng C H.Theoretical studies on the structures and reactivity of silylenoids.Ⅱ.The reaction of H_2SiLiCl with H_2[J].Chem.Phys.Lett.,1991,186:248-252.
    [25]Feng S Y,Feng D C,Deng C H.Theoretical studies on the structures and reactivity of silylenoids.Ⅲ.The structures and isomerization of silylenoid H_2SiNaF[J].Chem. Phys.Lett.,1993,214(1):97-102.
    [26]冯圣玉,邓从豪.钠卤类硅烯的结构与稳定性[J].化学学报,1993,512):138-141.
    [27]Feng S Y,Feng D C,Deng C H.Structures of silylenoids and effects of metallic and haloid atoms on their stability[J].Chin.J.Chem.,1995,13(1):19-23.
    [28]Feng D C,Feng S Y,Deng C H,.The isomeric Structures,Isomerization and Decomposition of Silyenoids H_2SiMX(MX=KF,KCl,LiBr,NaBr and KBr)[J].Chin.J.Chem.,1995,13(6):481-486.
    [29]冯大诚,冯圣玉,邓从豪.锂氟类硅烯与乙烯加成反应的理论研究[J].高等学校化学学报,1996,17(7):1108-1111.
    [30]冯大诚,冯圣玉,邓从豪.烷基对取代锂类硅烯R_2SiLiF的构型和热稳定性的影响[J].高等学校化学学报,1998,19(3):451-454.
    [31]冯大诚,冯圣玉,邓从豪.取代基(NH_2,OH,F)对锂类硅烯构型及稳定性的影响[J].中国科学(B辑),1998,28(2):127-131.
    [32]冯大诚,林启君,冯圣玉,吕文彩.LiSiF_3体系的构型及异构化反应的理论研究[J].中国科学(B),1999,29(5):385-389.
    [33]Feng S Y,Feng D C,Li J H.An ab initio study on the insertion reaction of silylenoid H_2SiLiF with H_2[J].Chem.Phys.Lett.,2000,316:146-150.
    [34]Feng S Y,Feng D C,Li M J,Bu Y X.Theoretical Studies on the Structures and stability of methylene-lithoflorosilylenoid CH_2=SiLiF[J].Chem.Phys.Lett.,2001,339:103-109.
    [35]Feng S Y,Feng D C.Theoretical studies on the structures and isomerization of silylenoid H2SiNaC1[J].J.Mol.Struct.(THEOCHEM),2001,541:171-177.
    [36]Feng S Y,Feng D C,Li M J,Zhou Y F.Theoretical Studies on the Structures and stablity of methylene-lithochlorosilylenoid CH_2=.SiLiCl[J].Int.J.Qaut.Chem.,2002,87:360-365.
    [37]Feng S Y,Zhou Y F,Feng D C.Addition reactions of Silylenoids H_2SiLiX(X=F,Cl)to acetylene[J].J.Phys.Chem.A,2003,107(20):4116-4121.
    [38]Feng S Y,Lai G Q,Zhou Y F,Feng D C.An ab initio study on structures and isomerization of magnesium chlorosilylenoid H_2SiC1MgCl[J].Chem.Phys.Lett.,2005,415:327-332.
    [39]解菊.山东大学研究生学位论文[M].2006.4.
    [40]Ju Xie,Dacheng Feng,Maoxia He,Shengyu Feng.Insertion reactions of Silylenoid Ph2SiLi(OBu-t) into X-H Bonds(X=F,OH and NH2)[J].Journal of Physical Chemistry A,2005,109(46),10563-10570.
    [41]Ju Xie,Dacheng Feng,Shengyu Feng,Jie Zhang.Theoretical Study on Insertion of Silylenoid H_2SiLiF into X-H Bonds(X=CH_3,SiH_3,NH_2,PH_2,OH,SH and F)[J].Journal of Molecular Structure(THEOCHEM),2005,755,55-63.
    [42]Ju Xie,Dacheng Feng,Shengyu Feng.Insertion of the p-Complex Structure of Silylenoid H_2SiLiF into X-H Bonds(X=C,Si,N,P,O,S,and F)[J].Journal of Organometallic Chemistry,2006,691(1-2),208-223.
    [43]Ju Xie,Dacheng Feng,Shengyu Feng.Theoretical Study on the Isomeric Structures and the Stability of Silylenoid(Tsi)Cl_2SiLi(Tsi=C(SiMe3)3)[J].Journal of Computational Chemistry,2006,27(8),933-940.
    [44]Ju Xie,Dacheng Feng,Shengyu Feng,Jie Zhang.Theoretical Study on the Reaction of Silylenoid H_2SiLiF with HF[J].Chemical Physics,2006,323,185-192.
    [1]Foresman J B,Head-Gordon M,Pople J A,Frisch M J.Toward a systematic molecular orbital theory for excited states[J].J.Phys.Chem.,1992,96:135-149.
    [2]Moiler C,Plesset M S.Note on an Approximation Treatment for Many-Electron Systems[J].Phys.Rev.,1934,46:618-622.
    [3]Head-Gordon M,Pople J A,Frisch M J.MP2 energy evaluation by direct methods [J]. Chem. Phys. Lett., 1988, 153: 503-506.
    [4] Frisch M J, Head-Gordon M, Pople J A. A direct MP2 gradient method [J]. Chem.Phys. Lett., 1990, 166: 275-280.
    [5] Frisch M J, Head-Gordon M, Pople J A. Semi-direct algorithms for the MP2 energy and gradient [J]. Chem. Phys. Lett., 1990, 166: 281-289.
    [6] Head-Gordon M, Head-Gordon T. Analytic MP2 frequencies without fifth-order storage. Theory and application to bifurcated hydrogen bonds in the water hexamer [J]. Chem. Phys. Lett, 1994,220: 122-128.
    [7] Saebo S, Almlof J. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation [J]. Chem. Phys. Lett, 1989, 154: 83-89.
    [8] Krishnan R, Pople J A. Approximate fourth-order perturbation theory of the electron correlation energy [J]. Int. J. Quant. Chem, 1978, 14: 91-100.
    [9] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev, 1964, 136:B864-B871.
    [12] Barone V, Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model [J]. J. Phys. Chem. A, 1998,102: 1995-2001.
    [11] Barone V, Cossi M, Tomasi J. Geometry optimization of molecular structures in solution by the polarizable continuum model [J]. J. Comp. Chem, 1998, 19:404-417.
    [12] Cammi R, Tomasi J. Remarks on the use of the apparent surface charges (ASC) methods in salvation problems: iterative versus matrix-inversion procedures and the renormalization of the apparent charges [J]. J. Comp. Chem, 1995, 16(12):1449.1458.
    [1]H.Gilman,D.J.Peterson.Reaction of Diphenyldichlorosilane with Lithium[J].J.Am.Chem.Soc.,1965,87(11):2389-2393.
    [2]O.M.Nefedow,M.N.Manakow.Entstehung und Reaktionen des Dimethylsilylens,eines Siliciumanalogons der Carbene.[J]Angew.Chem.1964,76(6):270.
    [3]冯大诚,冯圣玉,邓从豪,锂氟类硅烯与乙烯加成反应的理论研究[J],高等学校化学学报,1996,17,1108-1111.
    [4]S.Y.Feng,Y.F.Zhou and D.C.Feng,Addition reactions of Silylenoids H_2SiLiX(X=F,C1) to acetylene,J.Phys.Chem.A,2003,107(20),4116-4121..
    [5]Y.Qi,D.Feng,S.Feng,Theoretical study on the addition reactions of silylenoids H2SiLiX(X=F,C1) to formaldehyde,J.Mol.Struct.(Theochem).2008,856:96-104
    [6]Tom G.Driver and K.A.Woerpel Mechanism of Silver-Mediated Di-tert-butylsilylene Transfer from a Silacyclopropane to an Alkene,J.Am.Chem.Soc.,2004,126(32),pp 9993-10002
    [7]P.B.Glaser,T.D.Tilley,Catalytic Hydrosilylation of Alkenes by a Ruthenium Silylene Complex.Evidence for a New Hydrosilylation MechanismJ.Am.Chem.Soc.2003,125:13640-13641.
    [8]Barbara Gehrhus,Peter B.Hitchcock,and Michael F.Lappert,The Thermally Stable Silylene Si[{N(CH_2But)}_2C_6H_4-1,2]:Reactivity toward CO Double Bonds,Organometallics,1997,16:4861-4864.
    [9]R.Becerra,J.P.Cannady,and R.Walsh.Gas-Phase Reaction of Silylene with Acetone:Direct Rate Studies,RRKM Modeling,and ab Initio Studies of the Potential Energy Surface[J]J.Phys.Chem.A.,1999,103(23) 4457-4464.
    [10]Per N.Skancke.Computational Study of the Reaction between Singlet Silylene and Propene and of Rearrangement Reactions of Methylsilacyclopropane.[J]J.Phys.Chem.A.,1997,101(27) 5017-5021.
    [11]R.Becerra,J.P.Cannady,R.Walsh The Gas-Phase Reaction of Silylene with Acetaldehyde. 2. Theoretical Calculations of Isotope Effects for SiH_2 versus SiD_2 Addition. [J] J. Phys. Chem. A, 2002,106 (47) 11558-11564.
    [12] Wataru Ando, Masayuki Ikeno, and Akira Sekiguchi. Evidence of the formation of oxasilacyclopropane from the reaction of silylene with ketone. [J]. J. Am. Chem.Soc. 1977, 99 (19) 6447-6449.
    [13] Wataru Ando, Kazuyoshl Haglwara, and Akira Sekiguchi. Silacarbonyl and silathiocarbonyl ylides [J]. Organometallices, 1987, 6 (10) 2270-2271.
    [14] Ju Xie, Dacheng Feng and Shengyu Feng. Insertion of the p-complex structure of silylenoid H_2SiLiF into X-H bonds (X=C, Si, N, P, O, S, and F) [J]. Journal of Organometallic Chemistry, Volume 691, 2006, Issues 1-2: 208-223.
    [15] Ju Xie, Dacheng Feng, Shengyu Feng and Jie Zhang. Theoretical study on insertion of silylenoid H_2SiLiF into X-H bonds (X=CH_3, SiH_3, NH_2, PH_2, OH, SH and F) [J].Journal of Molecular Structure: THEOCHEM, 2005, 755(1-3)30: 55-63.
    [16] Shengyu Feng, Dacheng Feng and Jihai Li. An ab initio study on the insertion reaction of silylenoid H_2SiLiF with H_2 [J]. Chemical Physics Letters,2000,316(1-2, 7): 146-150.
    [17] Shengyu Feng and Conghao Deng .Theoretical studies on the structures and reactivity of silylenoids. II. The reaction of H_2SiLiCl with H_2 [J]. Chemical Physics Letters, 1991, 186( 2-3, 8): 248-252.
    [18] Bourque, L. E.; Cleary, P. A.; Woerpel, K. A. Metal-Catalyzed Silylene Insertions of Allylic Ethers: Stereoselective Formation of Chiral Allylic Silanes [J]. J. Am. Chem. Soc.; (Communication); 2007; 129(42); 12602-12603.
    [19] Kent P. Steele, William P. Weber. Kinetic isotope effects for silylene insertions into oxygen-hydrogen and silicon-hydrogen bonds[J]. Inorg. Chem.; 1981; 20(4);1302-1304.
    [20] Krishnan Raghavachari, Jayaraman Chandrasekhar, Michael J. FrischAb initio study of silylene insertion into oxygen-hydrogen bonds. Stability of zwitterionic intermediates[J]. J. Am. Chem. Soc; 1982; 104(13); 3779-3781.
    [21] Krishnan Raghavachari, Jayaraman Chandrasekhar, Mark S. Gordon, Ken Dykema. Theoretical study of silylene insertion into nitrogen-hydrogen, oxygen-hydrogen,fluorine-hydrogen, phosphorus-hydrogen, sulfur-hydrogen, and chlorine-hydrogen bonds[J]. J. Am. Chem. Soc.; 1984; 106(20); 5853-5859.
    [22] Daniel F. Moser, Todd Bosse, Jordan Olson. Halophilic Reactions of a Stable Silylene with Chloro and Bromocarbons [J]. J. Am.Chem.Soc.2002,124,4186-4187.
    [23] Su, M.-D Theoretical Study of Halophilic Reactions of Stable Silylenes with Chloro- and Bromocarbons [J]. J. Am. Chem. Soc. (Communication); 2003;125(7); 1714-1715.
    [24] Molev, G.; Bravo-Zhivotovskii, D.; Kami, M.; Tumanskii, B.; Botoshansky, M.;Apeloig, Y. Synthesis, Molecular Structure, and Reactivity of the Isolable Silylenoid with a Tricoordinate Silicon [J]. J. Am. Chem. Soc; (Communication);2006; 128(9); 2784-2785.
    [25] Beck A D.Density-functional thermochemistry.III.The role of exact exchange [J].J.Chem.Phys.,1993,98:5648-5662.
    [26] A. D. Beck, Accurate numerical study of the stability of Nal9-cluster dimers[J].Phys.Rev.A. 1988, 38: 3098-3099.
    [27] Vosko S H,Wilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis [J].Can.J.Phys.,1980,58:1200-1203.
    [28] Lee, C, Yang, W., Parr, R. G.. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev.,1988,B37:785-789.
    [29] J. P. Foster, F. Weinhold, Natural hybrid orbitals [J]. J. Am. Chem. Soc. 1980,102: 7211-7218.
    [30] A. E. Reed, F. Weinhold, Natural bond orbital analysis of near-Hartree—Fock water dimer [J]. J. Chem. Phys. 1983, 78: 4066-4073.
    [31] F. Weinhold, in: P. V. R. Schleyer (Ed.), Encyclopedia of Computational Chemistry, 1998, Vol.3.
    [32] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, Gaussian-3 theory using reduced M(?)ller-Plesset order [J]. J. A. Pople, J. Chem. Phys. 1999, 110:4703.
    [33] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects[J].Chem.Phys. 1981, 55: 117-129.
    [34] S. Miertus, J. Tomasi, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes [J]. Chem. Phys. 1982, 65: 239-245
    [35] Cossi M, Barone V, Cammi R, Tomasi J., Ab initio study of solvated molecules: a new implementation of the polarizable continuum model[J]. J Chem Phys Lett,1996,255: 327-335.
    [36] E. Cances, B. Mennucci, J. Tomasi, A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics [J]. J. Chem. Phys. 107 (1997) 3032-3036.
    [37] V. Barone, M. Cossi, J. Tomasi, "A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J. Chem. Phys.,1997, 107(8):3210-3221.
    [38] Cossi M, Barone V, Tomaso J. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J]. J Chem Phys Lett, 1998,286,253—263.
    [39] Barone V, Cossi M, Tomaso J. Geometry optimization of molecular structures in solution by the polarizable continuum model [J]. J. Comp. Chem, 1998, 19(4):404—417.
    [40] V. Barone, M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model [J]. J. Phys. Chem. A. 1998,102: 1995-2001.
    [41] B. Mennucci, J. Tomasi, Continuum Solvation Models. A New Approach to the Problem of Solute's Distribution and Cavity Boundaries[J]. J. Chem. Phys. 1997,106:5151-5160.
    [42] J. Tomasi, B. Mennucci, E.Cances, The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level [J]. J. Mol. Struct. (Theochem). 1999,464: 211-226.
    [43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G E. Scuseria, M. A. Robb, J. R.Cheeseman, J. A. Montgomery, N. J. Vreven, T. K. Kudin, J. C. Burant, J. M.Millam, S. S. Iyengar, J. B. Tomasi, V. Mennucci, B. M. Cossi, G. Scalmani, N.Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, 0. Kitao, H. Nakai, M. Klene, X.Li, J. E. Knox, H. R Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A.D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G Baboul, S.Clifford, J. Cioslowski, B. B. Stefanov, G. Liu; A. Liashenko, P. Piskorz, I. R.Komaromi, L. D. Martin, J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A.Nanayakkara, M. Challacombe, P. M. Gill, W. B. Johnson, W. Chen, M. W. Wong,C. Gonzalez, J. A. Pople, Gaussian 03, revision. Gaussian, Inc. Pittsburgh PA, 2003.
    [44] T. Clark, P.R. Schleyer, The isomeric structures of SiH_2LiF [J]. J. Organomet.Chem. 1980, 191: 347-353.
    [45] S. Feng, D. Feng, C. Deng, Theretical studies on the structures and reactivity of silylenoids III [J]. Chem.Phys.Lett, 1993,214: 97.
    [46] S. Feng, D. Feng, Theoretical studies on the structures and isomerization of silylenoid H_2SiNaCl [J]. J. Mol. Struct. (Theochem) 2001, 541: 171-177.
    [47] D. Feng, J. Xie, S. Feng, theoretical study on the structures and isomerization of silylenoid [(tert-butoxy)diphenylsilyl]lithium [J]. Chem. Phys. Lett., 2004, 396:245-251.
    
    [48] Feng Shengyu, Ju Guanzhi and Deng Conghao, Theoretical studies on the structures and reactivity of silyenoids I. Structures and isomerization of silyenoid H_2SiLiCl [J]. Sci. Chin.(B), 1992,35,523.
    [49] Feng Shengyu, Feng Dacheng and Deng Conghao, Structures of silyenoids and effects of metallic and haloid atoms on their stability [J]. Chin.J.Chem.,1995,13,19.
    [50] G. D. Homer, L. H. Sommer, Facile reactions of functionally substituted 1,3,5,7-tetrasilaadamantanes with nucleophilic reagents [J]. J. Organomet. Chem.,49(1973) C13.
    [51] George S. Hammond, A Correlation of Reaction Rates [J]. J. Am. Chem. Soc.,1955, 77 (2): 334-338.
    [1]Shengyu Feng,Yufang Zhou,Dacheng Feng.Addition reactions of silylenoids H_2SiLiX(X=F,C1) toacetylene[J].J.Phys.Chem.A,2003,107(20),4116.
    [2] Yuhua Qi, Dacheng Feng , Shengyu Feng. Theoretical study on the addition reactions of silylenoids H_2SiLiX (X = F, Cl) to formaldehyde[J].Journal of Molecular Structure: THEOCHEM.2008, 856: 96-104
    [3] Driver, T. G., Woerpel, K. A. Mechanism of Silver-Mediated Di-tert-butylsilylene Transfer from a Silacyclopropane to an Alkene [J] J. Am. Chem. Soc. 2004,126,9993-10002.
    [4] P. B.Glaser, T. D. Tilley. Catalytic Hydrosilylation of Alkenes by a Ruthenium Silylene Complex. Evidence for a New Hydrosilylation Mechanism[J]. J. Am. Chem.Soc. 2003,125:13640.
    [5] B. Gehrhus, P. B. Hitchcock, M. Lappert. The thermally stable silylene Si[(NCH_2But)_2C_6H_4-1,2]: reaction with pyridine and quinoline [J]. Journal of Organometallic Chemistry Organometallics. 2004, 689:1350-1354.
    [6] R. Becerra, J. P. Cannady, R. Walsh. Reactions of Silylene with Unreactive Molecules. 2. Nitrogen: Gas-Phase Kinetic and Theoretical Studies [J]. J. Phys.Chem. A. 1999,103:4457.
    [7] P. N. Skancke. Computational Study of the Reaction between Singlet Silylene and Propene and of Rearrangement Reactions of Methylsilacyclopropane [J]. J. Phys.Chem. A. 1997,101:5017-5021.
    [8] R. Becerra, J. P. Cannady, R. Walsh. The Gas-Phase Reaction of Silylene with Acetaldehyde. 2. Theoretical Calculations of Isotope Effects for SiH2 versus SiD2 Addition [J]. J. Phys. Chem. A. 2002, 106:11558-11564.
    [9] W Ando, M. Ikeno, A. Sekiguchi, Evidence of the formation of oxasilacyclopropane from the reaction of silylene with ketone[J].J.Am.Chem.Soc.1977,99:6447-6449.
    [10]W.Ando,K.Haglwara,A.Sekiguchi.Silacarbonyl and silathiocarbonyl ylides[J].Organometallices 1987,6:2270-2271.
    [11]G.Molev,D.Bravo-Zhivotovskii,M.Karni,B.Tumanskii,M.Botoshansky,Y.Apeloig.Synthesis,Molecular Structure,and Reactivity of the Isolable Silylenoid with a Tricoordinate Silicon[J].J.Am.Chem.Soc.(Communication).2006,128:2784-2785.
    [12]Ju Xie,Dacheng Feng,Shengyu Feng.Insertion of the p-Complex Structure of Silylenoid H_2SiLiF into X-H Bonds(X=C,Si,N,P,O,S,and F)[J].Journal of Organometallic Chemistry.2006,691(1-2):208-223
    [13]Ju Xie,Dacheng Feng,Shengyu Feng,Jie Zhang.Theoretical Study on Insertion of Silylenoid H_2SiLiF into X-H Bonds(X=CH_3,SiH_3,NH_2,PH_2,OH,SH and F)[J].Journal of Molecular Structure(THEOCHEM),2005,755:55-63
    [14]S.Feng,D.Feng,J.Li.An ab initio study on the insertion reaction of silylenoid H_2SiLiF with H_2[J].Chem.Phys.Lett.2000,316:146-150.
    [15]S.Feng,C.Deng,Chem.Phys.Lett.Theoretical studies on the structures and reactivity of silylenoids.Ⅱ.The reaction of H_2SiLiCl with H_2[J].1991,186:248-252
    [16]L.E.Bourque,P.A.Cleary,K.A.Woerpel,Metal-Catalyzed Silylene Insertions of Allylic Ethers:Stereoselective Formation of Chiral Allylic Silanes[J].J.Am.Chem.Soc.(Communication).2007,129:12602-12603.
    [17]K.P.Steele,W.P.Weber,Inorg.Chem.20(1981) 1302-1304.Kinetic isotope effects for silylene insertions into oxygen-hydrogen and silicon-hydrogen bonds[J].Inorg.Chem.,1981,20(4):1302-1304.
    [18]K.Raghavachari,J.Chandrasekhar,M.J.Frisch.Ab initio study of silylene insertion into oxygen-hydrogen bonds.Stability of zwitterionic intermediates[J].J.Am.Chem.Soc.1982,104:3779-3781.
    [19]K.Raghavachari,J.Chandrasekhar,M.S.Gordon,K.Dykema.Theoretical study of silylene insertion into nitrogen-hydrogen,oxygen-hydrogen,fluorine-hydrogen,phosphorus-hydrogen,sulfur-hydrogen,and chlorine-hydrogen bonds[J].J.Am.Chem.Soc.1984,106:5853-5859.
    [20]Beck A D.Density-functional thermochemistry.Ⅲ.The role of exact exchange[J].J.Chem.Phys.,1993,98:5648-5662.
    [21]A.D.Beck,Accurate numerical study of the stability of Nal9-cluster dimers[J].Phys.Rev.A.1988,38:3098-3099.
    [22]Vosko S H,Wilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis [J].Can.J.Phys.,1980,58:1200-1203.
    [23]Lee,C.,Yang,W.,Parr,R.G..Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.,1988,B37:785-789.
    [24]J.P.Foster,F.Weinhold,Natural hybrid orbitals[J].J.Am.Chem.Soc.1980,102:7211-7218.
    [25]A.E.Reed,F.Weinhold,Natural bond orbital analysis of near-Hartree--Fock water dimer[J].J.Chem.Phys.1983,78:4066-4073.
    [26]F.Weinhold,in:P.V.R.Schleyer(Ed.),Encyclopedia of Computational Chemistry,1998,Vol.3.
    [27] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, Gaussian-3 theory using reduced M(?)ller-Plesset order [J]. J. A. Pople, J. Chem. Phys. 1999, 110:4703.
    [28] S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects [J]. Chem. Phys. 1981, 55: 117-129.
    [29] S. Miertus, J. Tomasi, Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes [J]. Chem. Phys. 1982, 65: 239-245
    [30] Cossi M, Barone V, Cammi R, Tomasi J., Ab initio study of solvated molecules: a new implementation of the polarizable continuum model[J]. J Chem Phys Lett,1996,255: 327-335.
    [31] E. Cances, B. Mennucci, J. Tomasi, A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics [J]. J. Chem. Phys. 107 (1997) 3032-3036.
    [32] V. Barone, M. Cossi, J. Tomasi, "A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J]. J. Chem. Phys.,1997,107(8):3210-3221.
    [33] Cossi M, Barone V, Tomaso J. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J]. J Chem Phys Lett, 1998,286,253—263.
    [34] Barone V, Cossi M, Tomaso J. Geometry optimization of molecular structures in solution by the polarizable continuum model [J]. J. Comp. Chem, 1998, 19(4):404—417.
    [35] V. Barone, M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model [J]. J. Phys. Chem. A. 1998,102: 1995-2001.
    [36] B. Mennucci, J. Tomasi, Continuum Solvation Models. A New Approach to the Problem of Solute's Distribution and Cavity Boundaries[J]. J. Chem. Phys. 1997,106:5151-5160.
    [37] J. Tomasi, B. Mennucci, E.Cances, The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level [J]. J. Mol. Struct. (Theochem). 1999,464: 211-226.
    [38] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman, J. A. Montgomery, N. J. Vreven, T. K. Kudin, J. C. Burant, J. M.Millam, S. S. Iyengar, J. B. Tomasi, V. Mennucci, B. M. Cossi, G. Scalmani, N.Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li,J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G.Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D.Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G Baboul, S.Clifford, J. Cioslowski, B. B. Stefanov, G. Liu; A. Liashenko, P. Piskorz, I. R.Komaromi, L. D. Martin, J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A.Nanayakkara, M. Challacombe, P. M. Gill, W. B. Johnson, W. Chen, M. W. Wong, C.Gonzalez, J. A. Pople, Gaussian 03, revision. Gaussian, Inc. Pittsburgh PA, 2003.
    [1]B.Gehrhus,M.F.Lappert,Chemistry of thermally stable bis(amino)silylenes[J].J.Organometallic chemistry,2001,617:209-223.
    [2]M.Haaf,T.A.Schmedake,and R.West,stable silylene[J].Acc.Chem.Res.,2000,33:704-714.
    [3](a)Jelena Cirakovic,Tom G.Driver,and K.A.Woerpel,Metal-Catalyzed Di-tert-butylsilylene Transfer:Synthesis and Reactivity of Silacyclopropanes[J].J.Am.Chem.Soc.,2004,69:4007-4012;
    (b)Paul B.Glaser,T.Don Tilley,Catalytic Hydrosilylation of Alkenes by a Ruthenium Silylene Complex.Evidence for a New Hydrosilylation Mechanism[J].J.Am.Chem.Soc.,2003,125:13640-13641;
    (c)Barbara Gehrhus,Peter B.Hitchcock,and Michael.Lappert,The Thermally Stable Silylene Si[{N(CH_2But)}_2C_6H_4-1,2]:Reactivity toward CO Double Bonds[J].Organometallics.,1997,16:4861-4864;
    (d) R.Becerra,J.P.Cannady,and R.Walsh,Gas-Phase Reaction of Silylene with Acetone:Direct Rate Studies,RRKM Modeling,and ab Initio Studies of the Potential Energy Surface[J].J.Phys.Chem.A.,1999,103:4457-4464;
    (e) Per N.Skancke,Computational Study of the Reaction between Singlet Silylene and Propene and of Rearrangement Reactions of Methylsilacyclopropane[J].J.Phys.Chem.A.,1997,101:5017-5021;
    (f)R.Becerra,J.P.Cannady,R.Walsh,The Gas-Phase Reaction of Silylene with Acetaldehyde.2.Theoretical Calculations of Isotope Effects for Sill2 versus SiD2 Addition[J].J.Phys.Chem.A.,2002,106:11558-11564.
    [4](a)W.Ando,M.Ikeno,and A.Sekiguchi,Evidence of the formation of oxasilacyclopropane from the reaction of silylene with ketone[J].J.Am.Chem.Soc.,1977,99:6447-6449;
    (b)W.Ando,K.Haglwara,and A.Sekiguchi,Silacarbonyl and silathiocarbonyl ylides[J].Organometallices,1987,6:2270-2271.
    [5]卢秀慧,王沂轩,硅烯与甲醛环加成反应的理论研究[J].化学学报,1998,56:1075-1078
    [6]M.E.Lee,H.M.Cho,Y.M.Lim,J.K.Choi,C.H.Park,S.E.Jeong,and U.Lee,Stable Halodilithiosilanes:Synthesis and Reactivity of TsiXSiLi_2(X=Br and C1)[J].Chem.Eur.J.,2004,10:377-381.
    [7]冯大诚,冯圣玉,邓从豪。锂氟类硅烯与乙烯加成反应的理论研究[J].高等学校化学学报,1996,17:1108-1111.
    [8]Shengyu,Feng,Yufang Zhou,Dacheng Feng,Addition reactions of silylenoids H 2SiLiX(X=F,C1) toacetylene[J].J.Phys.Chem.A,2003,107(20),4116-4121.
    [9](a)Beck A D.Density-functional thermochemistry.Ⅲ.The role of exact exchange[J].J.Chem.Phys.,1993,98:5648-5662.
    (b)A.D.Beck,Accurate numerical study of the stability ofNa19-cluster dimers[J].Phys.Rev.A.1988,38:3098-3099.
    (c)Vosko S H,Wilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations:A critical analysis[J].Can.J.Phys.,1980,58:1200-1203.
    (d)Lee,C.,Yang,W.,Parr,R.G..Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J].Phys.Rev.,1988,B37:785-789.
    [10]L.A.Curtiss,P.C.Redfern,K.Raghavachari,V.Rassolov,Gaussian-3 theory using reduced Mφller-Plesset order[J].J.A.Pople,J.Chem.Phys.1999,110:4703.
    [11]L.A.Curtiss,P.C.Redfern,K.Raghavachari,V.Rassolov,J.A.Pople,Gaussian 03 theory using reduced Mφller-Plesset order[J].J.Chem.Phys.1999,110:4703-4709.
    [12] (a)J. P. Foster, F. Weinhold, Natural hybrid orbitals [J]. J. Am. Chem. Soc. 1980,102: 7211-7218. (b)A. E. Reed, F. Weinhold, Natural bond orbital analysis of near-Hartree-Fock water dimer[J]. J. Chem. Phys. 1983, 78: 4066-4073. (c) F.Weinhold, in: P. V. R. Schleyer (Ed.), Encyclopedia of Computational Chemistry,1998, Vol. 3.
    
    [13] (a)S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects[J]. Chem. Phys. 1981, 55: 117-129. (b) S. Miertus, J. Tomasi,Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes[J]. Chem. Phys. 1982, 65: 239-245. (c)Cossi M, Barone V,Cammi R, Tomasi J., Ab initio study of solvated molecules: a new implementation of the polarizable continuum model[J]. J Chem Phys Lett, 1996, 255: 327-335.(e)E. Cances, B. Mennucci, J. Tomasi, A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics[J]. J. Chem. Phys. 107 (1997) 3032-3036. (f)V.Barone, M. Cossi, J. Tomasi, "A new definition of cavities for the computation of solvation free energies by the polarizable continuum model[J]. J. Chem. Phys.,1997,107(8):3210-3221. (g)Cossi M, Barone V, Tomaso J. Ab initio study of ionic solutions by a polarizable continuum dielectric model[J]. J Chem Phys Lett, 1998,286, 253—263. (h)Barone V, Cossi M, Tomaso J. Geometry optimization of molecular structures in solution by the polarizable continuum model[J]. J Comp Chem, 1998, 19(4): 404—417. (i)V. Barone, M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model[J]. J. Phys. Chem. A. 1998, 102: 1995-2001. (j) B. Mennucci, J. Tomasi,Continuum Solvation Models. A New Approach to the Problem of Solute's Distribution and Cavity Boundaries[J]. J. Chem. Phys. 1997, 106 :5151-5160. (k) J. Tomasi, B. Mennucci, E.Cances, The IEF version of the PCM solvation method:an overview of a new method addressed to study molecular solutes at the QM ab initio level[J]. J. Mol. Struct. (Theochem). 1999,464: 211-226.
    [14] M. J. Frisch, G. W. Trucks; H. B.Schlegel, G. E. Scuseria, M. A. Robb, J. R.Cheeseman; J. A. Montgomery, Jr., T. Vreven, K. N.Kudin, J. C. Burant, J. M.Millam, S. S. Iyengar, J. B. Tomasi, V., B. Mennucci, M. Cossi, G. Scalmani, N.Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li,J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin; R. Cammi, C. Pomelli, J. W.Ochterski; P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, 0. Farkas, D. K. Malick,A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul,S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu; A. Liashenko, P. Piskorz, I.Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A.Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,C. Gonzalez, and J. A. Pople, Gaussian, Inc. Pittsburgh PA, 2003.
    [15] (a)T. Clark, P.R. Schleyer, The isomeric structures of SiH_2LiF[J]. J. Organomet.Chem. 191(1980) 347-353. (b)S. Feng, D. Feng, C. Deng, Theretical studies on the structures and reactivity of silylenoids III [J]. Chem.Phys.Lett, 1993, 214: 97. (c)S.Feng, D. Feng, Theoretical studies on the structures and isomerization of silylenoid H_2SiNaCl [J]. J. Mol. Struct. (Theochem) 2001, 541: 171-177. (d)D. Feng, J. Xie, S.Feng, theoretical study on the structures and isomerization of silylenoid [(tert-butoxy)diphenylsilyl]lithium [J]. Chem. Phys. Lett., 2004, 396: 245-251.
    
    [16] (a)Feng Shengyu, Ju Guanzhi and Deng Conghao, Theoretical studies on the structures and reactivity of silyenoids I. Structures and isomerization of silyenoid H_2SiLiCl[J]. Sci. Chin.(B), 1992,35,523. (b)Feng Shengyu,Feng Dacheng and Deng Conghao, Structures of silyenoids and effects of metallic and haloid atoms on their stability[J]. Chin.J.Chem., 1995,13,19.
    [1]Timothy Clark,Paul von Rague Schleyer.The isomeric structures of SiH_2LiF[J].J.Organomet.Chem.,1980,191:347-353.
    [2](a).S.Y.Feng,D.C.Feng,C.H.Deng,Theoretical studies on the structures and reactivity of silylenoids.Ⅲ.The structures and isomerization of silylenoid H_2SiNaF [J].Chem.Phys.Lett.,1993,214:97-102.
    (b) 冯圣玉,邓从豪,锂氟类硅烯与乙烯加成反应的理论研究[J].高等学校化学学报,1996,17,1108-1111.
    (c)D.C.Feng,S.Y.Feng,C.H.Deng,Chin.J.Chem.,13(1995) 481.
    (d)冯大诚,冯圣玉,邓从豪,烷基取代锂类类硅烯R_2SiLiF的结构和热稳定性的影响[J],高等学校化学学报,1998,19(3):451-454。
    (e)冯圣玉,居冠之,邓从豪。类硅烯的结构和反应性的理论研究---Ⅰ.类硅烯H_2SiLiCl的结构及其异构化[J].中国科学(B),1991,9:907-914.
    (f) 冯大诚,林启君,冯圣玉,吕文彩.LiSiF3体系的构型及异构化反应的理论研究[J].中国科学(B),1999,28(2):385-389
    (g) 冯大诚,冯圣玉,邓从豪,取代基(NH_2,OH,F)对锂类硅烯构型及稳 定性的影响[J].中国科学(B)1998,28(2):127-131
    [3]Kohei Tamao,Atsushi Kawachi,The Chemistry of Silylenoids:Preparation and Reactivity of(Alkoxysilyl)lithium Compounds[J].Angew.Chem.Int.Ed.Engl.,1995,34:818-820.
    [4]Myong Euy Lee,Hyeon Mo Cho,Young Mook Lim,Jin Kyong Choi,Chang Hee Park,Seong Eun Jeong,Uk Lee Syntheses and Reactivities of Stable Halosilylenoids,(Tsi)X_2SiLi(Tsi=C(SiMe_3)_3,X=Br,C1)[J].Chem.Eur.J.,2004,10:377-381.
    [5]K.Tamao,M.Asahara,T.Sarki,A.Toshimitsu,Enhanced nucleophilicity of ambiphilic silylene and silylenoid bearinag 8-(dimethylamino)-1-naphthyl group[J].J.of Organometallic Chemistry,2000,600:118-123.
    [6]Kohei Tamao,Masahiro Asahara,Tomoyuki Saeki,Akio Toshimitsu,Reaction of Hypercoordinate Dichlorosilanes Bearing 8-(Dimethylamino)-1-naphthyl Group(s)with Magnesium:Formation of the 1,2-Disilaacenaphthene Skeleton[J].Angew.Chem.Int.Ed.Engl.,1999,38:3316-3318.
    [1](a) H.N(o|¨)th and G.H(o|¨)llerer,Angew.Chem.,Int.Ed.Engl.,1962,1,551-552;
    (b) H.N(o|¨)th and G.H(o|¨)llerer,Chem.Ber.,1966,99,2197-2205;
    (c) W.Biffar,H.N(o|¨)th and H.Pommerening,Angew.Chem.,Int.Ed.Engl.,1980,19,56-57;
    (d) W.Biffar,H.N(o|¨)th andR.Schwerth(o|¨)ffer,LiebigsAnn.Chem.,1981,2067-2080;
    (e) J.D.Buynakand B.Geng,Organometallics,1995,14,3112-3115;
    (f) E.Bonnefon,M.Birot,J.Dunogue's,J.-P.Pillot,C.Courseille and F.Taulelle,MainGroup Metal Chem.,1996,19,761-767;
    (g) M.Suginome,T.Matsudaand Y.Ito,Organometallics,2000,19,4647-4649.
    [2]Takashi Kajiwara,Nobuhiro Takeda,Takahiro Sasamori,and Norihiro Tokitoh.Insertion of an Overcrowded Silylene into Hydro- and Haloboranes:A Novel Synthesis of Silylborane Derivatives and Their Properties Organometallics 2004.23.4723-4734
    [3] Beck A D.Density-functional thermochemistry.III.The role of exact exchange [J].J.Chem.Phys.,1993,98:5648-5662.
    [4] A. D. Beck, Accurate numerical study of the stability of Na19-cluster dimers[J].Phys.Rev.A. 1988, 38: 3098-3099.
    [5] Vosko S H,Wilk L,Nusair M.Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis [J].Can.J.Phys.,1980,58:1200-1203.
    [6] Lee, C, Yang, W., Parr, R. G.. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev., 1988,B37:785-789.
    [7] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, Gaussian-3 theory using reduced M(?)ller-Plesset order [J]. J. A. Pople, J. Chem. Phys. 1999, 110: 4703.
    [8] J. P. Foster, F. Weinhold, Natural hybrid orbitals [J]. J. Am. Chem. Soc. 1980, 102:7211-7218.
    [9] A. E. Reed, F. Weinhold, Natural bond orbital analysis of near-Hartree—Fock water dimer[J].J.Chem. Phys. 1983, 78: 4066-4073.
    [10] F. Weinhold, in: P. V. R. Schleyer (Ed.), Encyclopedia of Computational Chemistry, 1998, Vol. 3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700