新型铱金属配合物电子结构及光谱性质的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,过渡金属配合物在电致发光领域中的潜在应用成为人们研究的一大热点。目前,通过光谱和电化学技术对发光效率较高的铱金属配合物研究较多,但是对其发光、载流子传输过程等机理还尚未探明。因此,铱金属配合物的理论研究越来越受到重视。量子化学计算方法尤其是密度泛函理论已经广泛应用于解决分子结构设计、电荷转移、电子结构与光谱性质之间的关系这类问题。这不仅为实验数据提供理论依据,而且为设计高效率金属配合物材料提供理论指导。本文通过密度泛函理论深入研究了两类新型铱金属配合物的电子结构和光谱性质,而且已经得到一些理想的结论。
     1、实验研究指出,第一配体为2-苯基吡啶(ppy),第二配体为2-(2'-羟基苯基)苯并噻唑(BTZ)及其衍生物2-(3-甲基-2'-羟基苯基)苯并噻唑(3-MeBTZ),2-(4-甲基-2'-羟基苯基)苯并噻唑(4-MeBTZ),2-(4-三氟甲基-2'羟基苯基)苯并噻唑(4-TfmBTZ)的一种新型铱金属配合物(ppy)2Ir(R-BTZ)(R-BTZ=BTZ,3-MeBTZ,4-MeBTZ,4-TfmBTZ)是一种室温下呈现多发射带的单分子白光材料。本文采用密度泛函理论较为系统的研究了其发光机理,所计算的理论值和实验值一致。此外,第二配体BTZ四位上-CF3取代可以明显影响配合物的电子结构,影响HOMO和LUMO分布,从而改变电子的转移特性,使得吸收和发射光谱明显红移。研究还发现,单分子多发射带现象是由于同时存在不同类型的电荷转移。对于所有配合物,蓝色带是来自于Ir(R-BTZ)片段的配体R-BTZ中心π→π*类电子转移跃迁发光,绿色带来自于Ir(ppy)2的MLCT(ppy→Ir)电荷转移。对于配合物1-3,红色谱主要来自于LLCT(R-BTZ→ppy)电荷转移,配合物4其红色谱主要来自于Ir(4-TfinBTZ)的MLCT(4-TfmBTZ→Ir)电荷转移跃迁。最低能发射在652-672 nm之间变化。通过一系列的理论研究可以证实实现单分子白光是可行的。
     2、配体为1-苯基吡唑(ppz)的配合物Ir(ppz)3是一类室温不发光的金属配合物,实验通过引入第二配体BTZ及其衍生物合成了一系列新型室温发光的铱金属配合物(ppz)2Ir(R-BTZ)(R-BTZ=BTZ,3-MeBTZ,4-MeBTZ, 4-TfmBTZ),并对其光电性质进行了测试。为了给实验现象提供合理的理论依据,本文利用密度泛函理论对其电子结构及光谱性质之间的关系进行了理论计算和分析。研究表明,最低能发射主要来源于Ir(R-BTZ)部分的MLCT(R-BTZ→Ir)电荷转移跃迁,且100%来自HOMO→LUMO的跃迁。第二配体上不同位置引入不同吸电子或推电子基团对发光有不同程度的影响,最低能发射在653-689 nm范围内变化。第二配体R-BTZ在光发射过程中起到明显作用,理论上解释了第二配体对发光颜色的调控。
Recent years, transition metal complexes have attracted considerable attention due to their potential applications in organic light-emitting diodes (OLEDs).Up to now, high efficient Ir(Ⅲ) complexes have been extensively studied by optical spectroscopy and electrochemistry techniques, but the processes of luminescence and charge carrier transporting were still not understood distinctly. So the theory studies of the Ir(Ⅲ) metal complexes have attracted more and more attention. Now, the quantum chemistry calculation method, especially the density functional theory, was applied to solve the problems such as the design of molecular structure^ charge transition and the relationship of electronic structure and spectroscopy property. It can provide theory guides for efficient complexes as well as large support in experimental data. In this paper, the electronic structures and spectroscopy property was studied deeply for a new type of Iridium metal complexes by density functional theory, and the desired results were obtained.
     1、The experimental study revealed that (ppy)2Ir(R-BTZ) ((ppy=2-phen ypyriryl,2-(2'-hydroxyphenyl) benzothiazole (BTZ),2-(3-methyl-2'-hydroxy-phenyl) benzothiazole (3-MeBTZ),2-(4-methyl-2'-hydroxyphenyl) benzothiazole (4-MeBTZ),2-(4-trifluoromethyl-2'-hydroxyphenyl) benzothiazole(4-TfmBTZ)) is a new type of single component complexes with multicolor emitting at room temperature. In this paper, the luminescent mechanism was investigated by quantum chemical calculations based on density functional theory (DFT) and the calculation results are consistent with the experimental data. The-CH3 on 4-position of BTZ influences the electronic structure and the distribution of HOMOs and LUMOs more obvious so that makes the absorption and emission spectra red-shift more distinctively. It is found that the multi-emission bands under ultraviolet light excitation at room temperature were caused by the different energy transfers between different excited states. The blue emitting relates to the ligand center (π→π*) of R-BTZ and the green emission originates in MLCT (ppy→Ir) emission of Ir(ppy)2 fragment. The red emission corresponds to LLCT transition (R-BTZ→ppy) for complexes 1-3, but MLCT (4-TfmBTZ→Ir) transition of Ir(4-TfmBTZ)2 fragment for 4. It can reveal that it is possible to realize a single compound material with broad white emission.
     2、We all know that Ir(ppz)3 with the 1-phenylpyrazole (ppz) ligand is no-luminous at room temperature. A new type of Ir(Ⅲ) complexes (ppz)2Ir(R-BTZ) (R-BTZ=BTZ,3-MeBTZ,4-MeBTZ,4-TfmBTZ) which were luminous at room temperature were synthesized and the photoluminescence property was measured. In this paper, the relationship of electronic structure and spectroscopy property of these complexes were investigated by quantum chemical calculations based on DFT to provide theory guides for experimental data. It found that the low-lying emission relates to the MLCT (R-BTZ→Ir) of Ir(R-BTZ) fragment and the electronic transition of HOMOs to LUMOs. The red emission peak wavelengths can be fine-tuned from 653 to 689 nm by the electron withdrawing or donating substituent at 3- or 4-position of BTZ ligand. R-BTZ plays an important part in color tuning, and obtained the luminescence mechanism with new ancillary ligand 2-(2-hydroxyphenyl) benzothiazole.
引文
[1]Colle M, Gmeiner J, Milius W, etal. Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3)[J]. Adv.Funct.Mater, 2003,13(2):108-112.
    [2]Sapochak L S, Padmaperuma A, Washton N, etal. Effects of Systematic Methyl Substitution of Metal(Ⅲ) Tris(n-Methyl-8-Quinolinolato) Chelates on Material Properties for Optimum Electroluminescence Device Performance[J]. J.Am.Chem.Soc. 2001,123(26):6300-6307.
    [3]Wang H, Hao Y, Gao Z, etal. Preparation and Spectral Analysis of a New Type of Blue Light-Emitting Material δ-Alq3[J]. SPECTROSC SPECT ANAL,2006,26(10): 1884-1887.
    [4]Sapochak L S, Benincasa F E, Schofield R S, etal. Electroluminescent Zinc(Ⅱ) Bis(8-hydroxyquinoline):Structural Effects on Electronic States and Device Performance[J]. J.Am.Chem.Soc.,2002,124(21):6119-6125.
    [5]Hamada Y, Sano T, Fujii H, etal. White-Light-Emitting Material for Organic Electroluminescent Devices[J]. Jpn.J.Appl.Phys.,1996,35:1339-1341.
    [6]苏忠民,程红,高洪泽,等.8-羟基喹啉铝光电性质的Ab initio和DFT研究[J].高等学校化学学报,2000,21(9):1416-1421.
    [7]苏忠民,程红,高洪泽,等.发光金属配合物8-羟基喹啉镓的电子性质及其分子设计[J].中国科学,2001,31(1):16-27.
    [8]Halls M D and Schlegel H B. Molecular Orbital Study of the First Excited State of the OLED Material Tris(8-hydroxyquinoline)aluminum(Ⅲ)[J]. Chem. Mater.,2001,13(8): 2632-2640.
    [9]廖奕,苏忠民,陈亚光,等.8-羟基喹啉铍及其衍生物电子光谱性质的含时密度泛函理论研究[J].高等学校化学学报,2003,24(3):477-480.
    [10]周禾丰,张婷,郝玉英,等.铕(Ⅲ)配合物的合成及发光性能研究[J].光谱学与光谱分析,2010,30(9):2326-2330.
    [11]Park NG, Choi GC, Lee JE, etal. Theoretical studies of cyclometalated phenylpyrazol Ir(Ⅲ) complex using density functional theory[J]. CURR APPL PHYS,2005,5(1): 79-84.
    [12]Chien C H,Hsu F M, Shu C F, etal. Efficient red electrophosphorescence from a fluorene-based bipolar host material[J]. Org. Electron.,2009,10(5):871-876.
    [13]Smothers W K and Wrighton M S. Raman spectroscopy of electronic excited organometallic complexes:a comparison of the metal to 2,2'-bipyridine charge-transfer state of fac-(2,2'-bipyridine)tricarbonylhalorhenium and tris(2,2'-bipyridine) ruthenium(Ⅱ)[J]. J.Am.Chem.Soc,1983,105(4):1067-1069.
    [14]Wang Y S, Liu S X, Pinto M R, etal. Excited-State Structure and Delocalization in Ruthenium(Ⅱ)-Bipyridine Complexes That Contain Phenyleneethynylene Substituents[J]. J.Phys.Chem.A,2001,105(49):11118-11127.
    [15]Tung Y L, Wu P C, Liu C S, etal. Highly efficient red phosphorescent osmium (Ⅱ) complexes for OLED applications [J]. Organometallics,2004,23(15):3745-3748.
    [16]Dominey RN, Hauser B, Hubbard J, etal. Structural, spectral, and charge-transfer properties of ClRe(CO)3(2-PP) [2-PP=N-(2-pyridinylmethylene)phenylamine] and ClRe(CO)3(2-PC) [2-PC=N-(2-pyridinylmethylene)cyclohexylamine][J]. Inorg.Chem, 1991,30(25):4754-4758.
    [17]Sacksteder L, Lee M, Demas J N, etal. Long-lived, highly luminescent rhenium(Ⅰ) complexes as molecular probes:intra- and intermolecular excited-state interactions [J]. J.Am.Chem.Soc,1993,115(18):8230-8238.
    [18]Shinozaki K and Takahashi N. Molecular Orbital Calculation and Spectroscopic Study of the Photochemical Generation of Bis(2,2'-bipyridine)rhodium(Ⅰ) from Bis(2,2'-bipyridine)(oxalato)rhodium(Ⅲ)[J]. Inorg.Chem,1996,35(13):3917-3924.
    [19]Lamansky S, Djurovich P, Murphy D, etal. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. J.Am.Chem.Soc,2001,123(18):4304-4312.
    [20]Baldo M A, Thompson M E and Forrest S R. Phosphorescent materials for application to organic light emitting devices[J]. Pure Appl. Chem.,1999,71(11):2095-2106.
    [21]Baldo M A, Thompson M E, Forrest S R,etal. Highly efficient phosphorescent emission from organic electroluminescent device[J]. Nature,1998,395:151-154.
    [22]Lamansky S, Djurovich P, Murphy D, etal. J.Am.Chem.Soc,2001,123(18):4304-4312.
    [23]Park Y H and Kim Y S. New red electrophosphor based on Ir(Ⅲ) complex of 2,3,4-triphenylquinoline[J]. CURR APPL PHYS,2007,7:500-503.
    [24]Hay P J. Theoretical Studies of the Ground and Excited Electronic States in Cyclometalated Phenylpyridine Ir(Ⅲ) Complexes Using Density Functional Theory [J]. J.Phys.Chem.A,2002,106(8):1634-1641.
    [25]Baldo M A, Lamansky S, Burrows P E, etal. Very high-efficiency green organic light-emitting devices based on electrophosphorescence[J. Appl Phys Lett.,1999,75(1): 4-6.
    [26]Adachi C, Baldo M A, Thompson M E, etal. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. J.Appl.Phys,2001,90:5048-5051.
    [27]郭晓霞,郝玉英,雷俊峰,等.新型绿色磷光铱配合物的合成及其光物理性能研究[J].光谱学与光谱分析,2010,30(1):170-173.
    [28]Adachi C, Kwong R C, Djurovich P, etal. Endothermic energy transfer:A mechanism for generating very efficient high-energy phosphorescent emission in organic materials[J]. Appl Phys Lett.,2011,79:2082-2084.
    [29]Holmes R J, Andrade B W D, Forrest S R, etal. Efficient, deep-blue organic electrophosphorescence by guest charge trapping[J]. Appl Phys Lett.,2003,83: 3818-3820.
    [30]Ren X, Li J, Holmes R J, etal. Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescence Devices[J]. Chem Mater,2004,16:4743-4747.
    [31]D'Andrade B W and Forrest S R. Effects of excition and charge confinement on the performance of white organic p-i-n electrophosphorescent emissive excimer devices[J]. J Appl Phys,2003,94:3101-3109.
    [32]Novaled,2005年新闻发布.
    [33]Zhu W, Mo Y, Yuan M, etal. Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes[J]. Appl Phys Lett.,2001,80(12): 2045-2047.
    [34]Wang Y, Herron N, Grushin V, etal. Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds[J]. Appl Phys Lett.,2001,79(4): 449-451.
    [35]Kim S Y, Kim J H, Ha Y, etal. A study on the characteristics of OLEDs using Ir complex for blue phosphorescence[J]. CURR APPL PHYS,2007,7:380-383.
    [36]Hao Y, Guo X, Lei L, etal. Multicolor emitting from a single component emitter:New iridium(III) complexes with ancillary ligand 2-(2-hydroxyphenyl) benzothiazole[J]. Synth. Met.,2010,160(11-12):1210-1215.
    [37]于建宁,郝玉英,郭晓霞,等.新型苯基吡啶铱(Ⅲ)配合物的合成及光物理性能研究[J].光谱学与光谱分析,2010,30(9):2424-2427.
    [38]You Y and Park S Y. Inter-Ligand Energy Transfer and Related Emission Change in the Cyclometalated Heteroleptic Iridium Complex:Facile and Efficient Color Tuning over the Whole Visible Range by the Ancillary Ligand Structure[J]. J.Am.Chem.Soc,2005, 127:12438-12439.
    [39]Li CF, Yong GP, Li YZ. Phosphorescent iridium (Ⅲ) 2-phenylpyridine complexes: Efficient color tuning by novel ancillary ligands[J]. Inorg.Chem.Commun.,2010,13: 179-182.
    [40]Fei T, Gu X, Zhang M, etal. Optical and electronic properties of phosphorescent iridium(Ⅲ) complexes with phenylpyrazole and ancillary ligands[J]. Synth. Met.,2009, 159:113-118.
    [41]LEE C, YANG W, PARR R G. Phys.ReV.B,1998,37:85-789.
    [42]BECKE A D. Density-functional thermochemistry.Ⅲ.The role of exact exchange [J]. J.Chem.Phys,1993,98:5648-5652.
    [43]Nozaki K. Theoretical Studies on Photophysical Properties and Mechanism of Phosphorescence in [fac-Ir(2-phenylpyridine)3][J]. J.Chin.Chem.Soc,2006,53:101-112.
    [44]Jansson E, Minaev B, Schrader S, etal. Time-dependent density functional calculations of phosphorescence parameters for fac-tris(2-phenylpyridine) iridium[J]. Chem. Phys., 2007,333:57-167.
    [45]Park NG, Choi GC, Lee YH, etal. Theoretical studies on the ground and excited states of blue phosphorescent cyclometalated Ir(Ⅲ) complexes having ancillary ligand[J]. CURR APPL PHYS,2006,6:620-626.
    [46]Liu T, Zhang HX, and Xia BH. Theoretical Studies on Structures and Spectroscopic Properties of a Series of Novel Cationic [trans-(CAN)2Ir(PH3)2]+(CN)ppy, bzq, ppz, dfppy)[J].J.Phys.Chem.A,2007,111:8724-8730.
    [47]Schrodinger E. Quantisierung als eigenwertproblem[J]. Ann.Physik,1926, band 79: 361-376.
    [48]Gahungu G, Zhang J, Ntakarutimana V. Combined Effects of One 8-Hydroxyquinoline/Picolinate and "CH"/N Substitutions on the Geometry, Electronic Structure and Optical Properties of mer-Alq3[J]. J.Phys.Chem.A,2010,114:652-658.
    [49]Liu T, Zhou X, Pan Q. A novel series of iridium complexes with alkenylquinoline ligands: Theoretical study on electronic structure and spectroscopic property [J]. J. Organomet. Chem.,2009,694:150-156.
    [50]Liu T, Zhang HX, and Xia BH. Theoretical studies on structures and spectroscopic properties of bis-cyclometalated iridium complexes [Ir(ppy)2X2]-[J]. J. Organomet. Chem.,2008,693:947-956.
    [51]Schrodinger E. An undulatory theory of the mechanics of atoms and molecules [J]. Phys.Rev,1926,28(6):1049-1070.
    [52]Born M and Oppenheimer J R. Quantum theory of molecules[J]. Annalen der Physik, 1927,84(20):457-484.
    [53]Born M and Huang K. Dynamical Theory of Crystal Lattices.Oxford University Press, New York,1954.
    [54]Hartreee D R. Proc.Cambridge Phil.Soc.1928,24:89.
    [55]Fock V.Ann. Physik.1930,61:126.
    [56]Hartree D.calculations of Atomic Structure[J]. Wiley,1957,82-84.
    [57]Roothaan C C J. New developments in molecular orbital theory [J]. Rev.Mod.Phys.1951, 23(2):69-89.
    [58]陈颖健.密度泛函理论和量子化学计算.科技热点.1999,11-14.
    [59]TANG CW and VANSLYK SA. Organic electroluminescent diodes[J]. Appl.Phys.Letter, 1987,51:913-915.
    [60]BURROUGHES J H, BRADLEY D D C, BROWN A R, etal. Light-emitting diodes based on conjugated polymers[J]. Nature,1990,347:539-541.
    [61]MITSCHLE U and BAUERLE P. The electroluminescence of organic materials[J]. J.Mater.Chem,2000,10:1471-1507.
    [62]AVILOV I, MINOOFAR P, CORNIL J, etal. Influence of Substituents on the Energy and Nature of the Lowest Excited States of Heterolptic Phosphorescent Ir(Ⅲ) Complexes: A Joint Theoretical and Expenrimental Study[J]. J.Am.Chem.Soc,2007,129: 8247-8258.
    [63]Exstrom C L, Pomije M K, Mann K R. Infrared Spectroscopy Studies of Platinum Salts Containing Tetracyanoplatinate(Ⅱ) Evidence for Strong Hydrogen-Bonding Interactions in "Vapochromic" Environmental Sensor Materials[J]. Chem.Mater,1998,10(3): 942-945.
    [64]Drew S M, Janzen D E, Mann K R. Characterization of a Cross-Reactive Electronic Nose with Vapoluminescent Array Elements[J]. Anal.Chem,2002,74(11):2547-2555.
    [65]Hohenberg P and Kohn W. Inhomogeneous Electron Gas[J]. Phys.Rev,1964,136: B864-B871.
    [66]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys.Rev,1965,140:A1133-A1138.
    [67]Runge E and Gross E K U. Density-functional theory for time-dependent systems[J]. Phys.Rev.Lett,1984,52(12):997-1000.
    [68]黄纯美.密度泛函理论的若干进展[J].物理学进展,2000,20(3):199-219.
    [69]Collins JB, Schleyer PV, Binkley JS, etal. Self-consistent molecular orbital methods.ⅩⅦ geometries and binding energies of second-row molecules.A comparison of three basis sets[J]. J.Chem.Phys,1976,64(12):5142-5151.
    [70]Binkley J S, Pople J A, Hehre W J. Self-consistent molecular orbital methods.21.small split-valenece basis sets for first-row elements[J]. J.Am.Chem.Soc,1980,102(3): 939-947.
    [71]Gordon M S, Binkley J S, Pople J A, etal. Self-consistent molecular orbital methods.22. small split-valenece basis sets for first-row elements[J]. J.Am.Chem.Soc, 1982,104:2797-2803.
    [72]Petersson GA and Al-Laham MA. A complete basis set model chemistry.Ⅱ. open-shell systems and the total energies of the first-row atoms[J]. J.Chem.Phys,1991,94: 6081-6090.
    [73]Frisch M J, Pople J A, Binkley J S. Self-consistent molecular orbital methods.25.supplementary functional for Gaussian basis sets[J]. J.Chem.Phys,1984,80: 3265-3269.
    [74]Hay P J and Wadt W R. Ab initio effective core potentials for molecular calculations.potentials for the transition metal atoms Sc to Hg [J]. J.Chem.Phys,1985, 82(1):270-283.
    [75]Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations.potentials for main group elements Na to Bi[J]. J.Chem.Phys,1985,82(1): 284-298.
    [76]Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations potentials for K to Au including the outermost core orbitals [J]. J.Chem.Phys,1985, 82(1):299-310.
    [77]Zheng K C, Wang J P, Shen Y, etal. Electronic structures and related properties of complexes M(bpy)3n+(M=Re,Os,and Ir; n=1,2,and 3,respectively) [J]. J.Phys.Chem.A, 2001,105(30):7248-7253.
    [78]Kukhta A V, Kukhta I N, Bagnich S A, etal. Interactions of low-energy electrons with Ir(ppy)3 in the gas phase[J]. Chem.Phys.Lett,2007,434(1-3):11-14.
    [79]王涛.量子化学计算程序包.科学计算应用软件系列介绍.上海超级计算中心,上海.
    [80]Nazeeruddin M, Wegh R, Zhou Z, etal. Efficient green-blue-light-emitting cationic iridium complex for light-emitting electrochemical cells[J]. Inorg.Chem.2006,45(23): 9245-9250.
    [81]Angelis F D, Fantacci S, Evans N, etal. Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes:A Combined Experimental and Theoretical Study [J]. Inorg.Chem,2007,46(15):5989-6001.
    [82]Censo D D,Fantacci S, Angelis F D, Evans N, etal. Synthesis, Characterization, and DFT/TD-DFT Calculations of Highly Phosphorescent Blue Light-Emitting Anionic Iridium Complexes[J]. Inorg.Chem.,2008,47(3):980-989.
    [83]Foresman J B, Head-Gordon M, Pople J A, etal. Toward a systematic molecular orbital theory for excited states[J]. J.Phys.Chem,1992,96(1):135-149.
    [84]Matsuzawa N N and Ishitani A. Time-Dependent Density Functional Theory Calculations of Photoabsorption Spectra in the Vacuum Ultraviolet Region[J]. J.Phys.Chem.A,2001,105(20):4953-4962.
    [85]Stratmann R E, Scuseria G E, Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J.Chem.Phys,1998,109:8218-8224.
    [86]Minaev B, Minaeva V, Agren H. Theoretical Study of the Cyclometalated Iridium(Ⅲ) Complexes Used as Chromophores for Organic Light-Emitting Diodes[J]. J. Phys. Chem. A,2009,113(4):726-735. 2-(1 H-Pyrazol-1-yl)pyridine as the Ancillary Ligand for Efficient Light-Emitting Electrochemical Cells[J]. Adv. Funct. Mater,2008,18(14):2123-2131.
    [88]He L, Qiao J, Duan L, etal. Toward Highly Efficient Solid-State White Light-Emitting Electrochemical Cells:Blue-Green to Red Emitting Cationic Iridium Complexes with Imidazole-Type Ancillary Ligands[J].Adv.Func.Mater,2009,19:2950-2960.
    [89]Jacquemin D, Perpe'te EA, Giovanni Scalmani etal. Absorption and emission spectra in gas-phase and solution using TD-DFT:Formaldehyde and benzene as case studies [J]. Chem. Phys. Lett,2007,438(4-6):208-212.
    [90]GU X, ZHANG HY, FEI T, etal. Electronic Structures and Spectroscopic Properties Studies of Phosphorescent Iridium(III) Complexes with Phenylpyrazole Ligands by Density Functional Theory [J]. Chem.J.Chinese Universities,2009,30(7):1392-1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700