西佛碱类受体分子的离子识别及其分子逻辑性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子识别是超分子化学研究的核心内容。分子识别包括阳离子识别、阴离子识别和中性分子识别。近年来人们将分子识别运用到分子逻辑上,在未来的微电子学和信息技术上有很大的发展空间。水杨醛类西佛碱分子可以与多种阴阳离子作用,其离子识别性质在分子逻辑上有广阔的应用前景。本论文的主体思想是设计并合成新颖的水杨醛类西佛碱分子,进而详细研究其对阴阳离子的识别性质,并尝试将其运用到分子逻辑电路中。本论文开展了以下几个方面的研究:
     1、利用一系列含有推电子基团、拉电子基团和不同共轭程度的六种水杨醛分子分别与对苯二胺和2-苯基-3-(对胺基苯)丙烯腈通过简单的醛胺缩合反应得到两大类水杨醛西佛碱分子。
     2、利用含氯原子取代水杨醛西佛碱B2分子(3,5-二氯水杨醛与2-苯基-3-(对胺基苯)丙烯腈)反应得到)研究其阴离子识别性质。发现该分子在THF溶液中通过荧光光谱可选择性识别CN~ ̄,在THF溶液和THF与水的混合溶液(4:1, v/v)中通过紫外光谱可选择性识别CN~ ̄,同时可以达到“裸眼”识别的效果。
     3、利用含胺基取代水杨醛西佛碱B5分子(3,5-二叔丁基水杨醛与2-苯基-3-(对胺基苯)丙烯腈)反应得到)研究其在THF溶液中对阴阳离子的识别性质。研究表明B5分子通过紫外和荧光光谱可以选择性地识别Zn~(2+)、Cu~(2+)、F~-和CN~ ̄,同时可以“裸眼”识别Cu~(2+)、F~-和CN~ ̄,其中Cu~(2+)的识别对于其它阳离子有很好地抗干扰能力。
     4、基于B5分子与阴阳离子作用的性质以及各种离子加入顺序的不同产生的荧光光谱结果,通过设定合适的逻辑阈值,我们构建了两个NOR门,一个XNOR门,两个INHIBIT门。同时依据加入10倍当量CN~ ̄和3倍当量Cu~(2+)顺序不同时产生不同的荧光输出信号,成功构建一个具有逻辑存储功能的分子键盘。
Supramolecular chemistry is“the chemistry beyond the molecule”, as opposed to molecular chemistry based on covalent bonds between atoms, supramolecular chemistry is based on weak intermolecular interaction. There is a need for more intermolecular binding sites and interaction to form strong intermolecular forces. Molecular recognition is one of the cores for molecular recognition, it includes cation recognition, anion recognition and neutral molecular recogniton. Molecular recognition is applied to molecuar logic function recently, there are excellent application prospects for microelectronics and information technology in the future. There are C = N bond and hydroxyl group on the benzene ring for the structure of salicylidene Schiff bases, which makes salicylidene Schiff bases can chelate with a variety of cations, while salicylaldehyde Schiff bases react with a lot of anions through nucleophilic addition reactions and intermolecular hydrogen bonding, so it is possible for salicylaldehyde Schiff bases to recognize the ions selectively and be used in molecular logic circuits. Therefore, the design and synthesis for new salicylaldehyde Schiff bases with ion recognition are great significance. We designed a series of salicylidene Schiff bases in order to research the selective recognition for ions and use them in molecular logic circuit.
     The work in this thesis mainly includes five parts as follow:
     First, we used six salicylaldehyde molecules with donating electron groups, withdrawing electron groups and different conjugated level's goups to react with p- phenylenediamine and 2-phenyl-3-(p-aminophenyl)acrylonitrile by condensation reaction between aldehyde group and amine group, and the molecules' purity were verified by NMR spectra.
     Second, we used three molecules with slightly different structures, namely, B1, B2 and C, to study the anion recognition ability by UV and fluorescence spectroscopy and found that only salicylidene Schiff base with chlorine atoms (B2) can selectively recognize CN~- better. Among the seven anions (10 equiv.) tested in THF solution, the UV-vis and fluorescence spectral changes for B2 upon addition of CN~-, AcO~ ̄and H_2PO_4~- were same, while there were no changes for spectroscopy adding Cl ̄, Br ̄and I ̄into solution of B2. Unlike spectral changes of the six aions above, UV-vis and fluorescence spectra had a large change upon addition of CN~-, so B2 can recognize CN~- through spectral changes, and the naked eye observation also showed that only CN~- can result in colorless, orange to violet color changes. Andthen the corresponding color changes under a UV lamp were brown, red and blue. Moreover the absorbance spectra change of B2 with the addition of cyanide in THF-H2O (4:1, v/v) solution was large, and the color of the solution could also changed from colorless to yellow in the meantime. However, the addition of other anions including F~-, AcO~- and H_2PO_4~- didn’t promote any change of the absorbance spectra. Therefore cyanide could be detected by both the absorbance change and the naked-eye color change even in aqueous media.
     Third, we used salicylidene Schiff base with amino group (B5) in THF to study the cation recognition ability through adding eihgteen kinds of cations (3 equiv.) by UV-vis and fluorescence spectra and found that molecule B5 can selectively recognize Cu~(2+) and Zn~(2+) better. Then upon addition of Zn~(2+), the fluorescence emission intensity of B5 increased largely, while the fluorescence emission intensity quenched by adding CU2+ into the solution of B5, at the same time, the addition of other cations promoted no change of the fluorescence spectra or slightly decrease of the fluorescence intensity. So B5 can recognize Cu~(2+) and Zn~(2+) through fluorescence spectral changes, andthen the emission profiles of the B5/ Cu~(2+) complexes were unperturbed in the presence of other metal ions. In addition, B5 can only recognize Cu~(2+) through absorption spectral changes, and the absorption band centered at 423 nm gradually decreased with a light blue shift of the absorption band, moreover, the naked eye observation also showed that Cu~(2+) can bring about yellow to light yellow color changes.
     Fourth, we used salicylidene Schiff base with amino group (B5) in THF to study the anion recognition ability through adding seven anions (10 equiv.) by UV-vis and fluorescence spectra and found that molecule B5 can selectively recognize F~- and CN~- better. And upon addition of CN~-, the band centered at 543 nm gradually decreased with a new peak emerged at 470 nm, while the fluorescence emission intensity increased largely by adding F~- into the solution of B5, what is more, the addition of other ations didn?t promote any change of the fluorescence spectra. So B5 can recognize CN~- and F~- through fluorescence spectral changes. Andthen, B5 can recognize CN~- and F~- through absorption spectral changes, also ,the naked eye observation indicated that F~- and CN~- can bring about yellow to sepia and claybank changes respectively.
     Fifth, based on properties that B5 reacted with ions and changes of the fluorescence emission intensity by adding ions into B5 with different order, we successfully constructed two NOR gates, one XNOR gate and two INHIBIT gates by setting logic threshold reasonably. In addition, the chemical inputs of CN~- (10equiv.) and Cu~(2+) (3equiv.) in a sequential manner generated an output which mimicked the functions of a security keypad lock.
引文
[1] R. Warmuth and M. A. Marvel, 1,2,4,6-Cycloheptatetraene: Room-Temperature Stabilization inside a Hemicarcerand[J]. Angew. Chem. Int. Ed., 2000, 39, 1117–1119.
    [2] F. Hof, S. L. Craig, C. Nuckolls, and J. Rebek, Jr, molecular Encapsulation[J]. Angew. Chem. Int. Ed., 2002, 41, 1488–1508.
    [3] J. Rebek, Jr, Simultaneous Encapsulation: molecules Held at Close Range[J]. Angew. Chem. Int. Ed., 2005, 44, 2068–2078.
    [4] A. Lützen, S. D. Starnes, D. M. Rudkevich and J. Rebek, Jr, A self-assembled phthalocyanine dimer[J]. Tetrahedron Letters., 2000, 41, 3777–3780.
    [5] J. M. Lehn, Binuclear Coyptates: Dimetallic Macropolycyclic Inclusion Complexes Concepts-Design-Prospects[J]. Pure Appl Chem., 1980, 52, 2441–2459.
    [6]刘育,尤长城,张衡益编,超分子化学-合成受体的分子识别和组装[M].南开大学出版社,2001:l-5.
    [7] D. J. Cram, The Design of molecular Hosts, Guests, and Their Complexes[J]. Angew. Chem. Int. Ed. Engl., 1988, 27, 1009–1020.
    [8] J. M. Lehn. Progress in Biophysics and molecular Biology., 1996, 65, 1.
    [9] A. Bianchi, K. Bowman-James, E. Garcia-Espana, Supra molecular chemistry of anions[M]. Wiley-VCH, New York, 1997.
    [10] P. Nandhikonda, M. P. Begaye, M. D. Heagy, Highly water-soluble, OFF–ON, dual fluorescent probes for sodium and potassium ions[J]. Tetrahedron Letters., 2009, 50, 2459–2461.
    [11] Y. Xiang, A. J. Tong, P. Y. Jin and Y. Ju, New Fluorescent Rhodamine Hydrazone Chemosensor for Cu(II) with High Selectivity and Sensitivity[J], Org.Lett., 2006, 8, 2863–2866.
    [12] H. W. Li, Y. Li, Y. Q. Dang, L. J. Ma, Y. Q. Wu, G. F. Hou and L. X. Wu, An easily prepared hypersensitive water-soluble fluorescent probe for mercury(II) ions[J]. Chem. Commun., 2009, 4453–4455.
    [13] A. P. de Silva, S. A. de Silva.Fluorescent signaling crown ethers; ?swiching on? offluorescence by alkali metal ion recognition and binding in situ[J]. J. Chem. Soc. Chem. Comm., 1986, 1709–1710.
    [14] X. H. Qian, Z. H. Zhu, K. C. Chen, The synthesis, application and prediction stocks shift in fluorecent dyes derived from 1,8-naphthalic anhydride[J]. Dyes and Pigm., 1989, 11, 13–20.
    [15] S. Fery-forgues, J. Bourson, L. Dallery, B. Valeur“NMR and optical spectroscopy studies of cation binding on chromophores and fluorophores linked to monoaza-15-crown-5”[J]. New. J. Chem., 1990, 14, 617–623.
    [16] R. S. Addleman, J. Bennett, S. H. Tweedy, S. Elshani, C. M. Wai, Response of a benzoxainone derivative linked to monoaza-15-crown-5 with divalent heavy metals[J]. Talanta., 1998, 46, 573–581.
    [17] K. Iwamoto, H. Fujishima, S. Shinkai, Fluorogenic calix[4]arene[J]. J. Chem. Soc. Perkin. Trans. 1., 1992, 1885–1887.
    [18] Z. C. Xu, N. J. Singh, J. Lim, J. Pan, H. N. Kim, S. Park, K. S. Kim and J. Y. Yoon, Unique Sandwich Stacking of Pyrene-Adenine-Pyrene forSelective and Ratiometric Fluorescent Sensing of ATP at Physiological pH[J] J. AM. CHEM. SOC., 2009, 131, 15528–15533.
    [19] Z. C. Xu, J. Y. Yoon and D. R. Spring, A selective and ratiometric Cu~(2+) fluorescent probe based on naphthalimide excimer–monomer switching[J]. Chem. Commun., 2010, 46, 2563–2565.
    [20] J. P. S. Farinha and J. M. G. Martinho, Resonance Energy Transfer in Polymer Nanodomains[J], J. Phys. Chem. C., 2008, 112, 10591–10601.
    [21] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, L. M. Lynch, molecular photoionic switches with an internal reference channal for fluorescent pH sensing applications[J]. New. J. Chem., 1996, 20, 871–880.
    [22] D. A. Johnson, V. L. Leathers, A.–M. z. Martine, D. A. Walsh, W. H. Fleteher, Fluorescence resonance energy transfer within a heterochromoatic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insight into the conformational changes that result in cAMP activation[J]. Biochem., 1993, 93, 587–614.
    [23] D. S. Guo, Z. P. Liu, J. P. Ma and R. Q. Huang, A novel ferrocene-based thiacalix[4]arene ditopic receptor for electrochemical sensing of europium(III) and dihydrogen phosphate ions[J]. Tetrahedron Letters., 2007, 48, 1221–1224.
    [24] S. Devaraj, D. Saravanakumar and M. Kandaswamy, Dual chemosensing properties of new anthraquinone-based receptors toward fluoride ions[J]. Tetrahedron Letters., 2007, 48, 3077–3081.
    [25] Y. K. Wu, X. J. Peng, J. L. Fan, S. Gao, M. Z. Tian, J. Z. Zhao, and S. G. Sun, Fluorescence Sensing of Anions Based on Inhibition of Excited-State Intra molecular Proton Transfer[J]. J. Org. Chem., 2007, 72, 62–70.
    [26] N. J. Singh, E. J. Jun, K. Chellappan, D. Thangadurai, R. P. Chandran, I. Hwang, J. Yoon, and K. S. Kim, Quinoxaline-Imidazolium Receptors for Unique Sensing of Pyrophosphate and Acetate by Charge Transfer[J], Org. Lett., 2007, 9, 485-488.
    [27] X. F. Shang, H. Lin, H. K. Lin, The synthesis and recognition properties of colorimetric fluoride receptors bearing sulfonamide[J]. Journal of Fluorine Chemistry., 2007, 128, 530–534.
    [28] C. H. Park, H. E. Simmons, Macrobicyclic Amines.Ш. Encapsulation of HalideIons by in, in-l, (k + 2)-Diazabicyclo[k.l.m]alkaneammonium Ions[J]. J. Am. Chem. Soc., 1968, 98, 2341–2342.
    [29] P. D. Beer and P. A. Gale, Anion Recognition and Sensing: The State of the Art and Future Perspectives[J], Angew. Chem. Int. Ed., 2001,40, 486–516.
    [30] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr. Sect. A., 1976, 32, 751–767.
    [31] F. P. Schmidtchen, Inclusion of Anions in Macrotricyclic Quaternary Ammonium Salts[J]. Angew. Chem. Int. Ed. Engl., 1977, 16, 720–721.
    [32] P. B. Savage, S. K. Holmgren, and S. H. Gellman, Anion and Ion Pair Complexation by a Macrocyclic Phosphine Oxide Disulfoxide[J]. J. Am. Chem. SOC., 1994, 116, 4069–4070.
    [33] P. B. Savage, S. K. Holmgren, and S. H. Gellman, Optimization of a Phosphine Oxide Disulfoxide Array for Multipoint Hydrogen Bonding to Ammonium Ions[J]. J. Am. Chem. SOC., 1993, 115, 7900–7901.
    [34] P. A. Gale, J. L. Sessler, V. Král, and V. Lynch, Calix[4]pyrroles: Old Yet New Anion-Binding Agents, J. Am. Chem. Soc., 1996, 118, 5140–5141.
    [35] A. Andrievsky, F. Ahuis, J. L. Sessler, F. V(O|¨)gtle, D. Gudat,and M. Moini, Bipyrrole-Based [2]Catenane: A New Type of Anion Receptor[J]. J. Am. Chem. Soc., 1998, 120, 9712–9713.
    [36] P. Bühlmann, S. Nishizawa, K. P. Xiao, and Y. Umezawa, Strong Hydrogen Bond-Mediated Complexation of H_2PO_4~ ̄by Neutral Bis-Thiourea Hosts[J]. Terrahedron., 1997, 53, 1647–1654.
    [37] A. P. Bisson, V. M. Lynch, M. C. Monahan and E. V. Anslyn, Recognition of Anions through NH-πHydrogen Bonds in a Bicyclic Cyclophane---Selectivity for Nitrate[J]. Angew. Chem. Inr. Ed. Engl., 1997, 36, 2340–2342.
    [38] R. A. Pascal, Jr, J. Spergel and D. V. Engen, Synthesis and X-ray crystallographic characterization of a (1, 3, 5) cyclophane with three amide N-H groups surrounding a central cavity. A neutral host for anion complexation[J]. Tetrahedron Lett.,1986, 27, 4099–4102.
    [39] Y. Kubo, M. Tsukahara, S. Ishihara and S. Tokita, A simple anion chemosensor based on a naphthalene–thiouronium dyad[J] Chem.Commun., 2000, 653–654.
    [40] Y. Azuma and M. Newcom, Macrocycles Containing Tin. Syntheses of Symmetrical Macrocycles Containing Two or Four Diphenylstanna Units[J]. Organometallics., 1984, 3, 9–14.
    [41] J. D. Wuest and B. Zacharie, Multldentate Lewls Acids. Halide Complexes of 1, 2-Phenyienedimercury Dthalldes[J]. Organometallics., 1985, 4, 410–411.
    [42] X. G. Yang, C. B. Knobler and M. F Hawthorne, Macrocyclic Lewis Acid Host-Halide Ion Guest Species. Complexes of Iodide Ion[J]. J. Am. Chem. SOC., 1992, 114, 380–382.
    [43] X. G.. Yang, C. B. Knobler, M. F. Hawthorne,“[12]Mercuracarborand-4”, the First Representative of a New Class of Rigid Macrocyclic Electrophiles: The Chloride Ion Complex of a Charge-Reversed Analogue of [12]Crown-4[J]. Angew. Chem. Int. Ed. Engl., 1991, 30, 1507–1508.
    [44] Y. Inoue, T. Hakushi,Y. Liu, L. H. Tong, B. J. Shen and D. S. Jin, Thermodynamics of molecular Recognition by Cyclodextrins. 1. Calorimetric Titration of Inclusion Complexation of Naphthalenesulfonates with -,β-, andγ-Cyclodextrins:Enthalpy-Entropy Compensation, J. Am. Chem. SOC. 1993, 115, 475–481
    [45] J. L. Atwood, K. T. Holman and J. W. Steed, Laying traps for elusive prey: recent advances in the non-covalent binding of anions[J]. Chem. Commun., 1996, 1401–1407.
    [46] E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff and C. J. Chang,Boronate-Based Fluorescent Probes for Imaging Cellular Hydrogen Peroxide[J]. J. AM. CHEM. SOC., 2005, 127, 16652–16659.
    [47] O. Rusin, N. N. St. Luce, R. A. Agbaria, J. O. Escobedo, S. Jiang, I. M. Warner, F. B. Dawan, K. Lian and R. M. Strongin, Visual Detection of Cysteine and Homocysteine[J]. J. AM. CHEM. SOC., 2004, 126, 438–439.
    [48] S. H. Li, C. W. Yu and J. G. Xu, A cyclometalated palladium–azo complex as a differential chromogenic probe for amino acids in aqueous solution[J], Chem. Commun., 2005, 450–452.
    [49] P. A. Packan, Device physics: pushing the limits[J]. Science., 1999, 285, 2079–2081.
    [50] R. W. Keyes, Fundamental limits of silicon technology[ J]. Proc IEEE., 2001, 89: 227–239.
    [51] R. F. Service, molecules get wired[J]. Science., 2001, 294, 2442–2443.
    [52] R. J. Mitchell, Microprocessor Systems:An Introduction[M]. London, 1995.
    [53] B. Butterworth, The Mathematical Brain[M]. London: Papermac, 2000.
    [54] G. J. Brown, A. P. de Silva and S. Pagliari, molecules that add up[J]. Chem. Commun., 2002, 2461–2464.
    [55] F. M. Raymo, Digital Processing and Communication with molecular Switches[J]. Adv. Mater., 2002, 14,401–414.
    [56] A. P. de Silva and N. D. Mc Clenaghan, molecular-Scale Logic Gates[J]. Chem. Eur. J., 2004, 10, 574–586.
    [57] A. P. de Silva, H. Q. N. Gunaratne and C. P. McCoy, molecular Photoionic AND Logic Gates with Bright Fluorescence and“Off-On”Digital Action[J]. J. Am. Chem. Soc., 1997, 119, 7891–7892.
    [58] P. Ghosh, P. K. Bharadwaj, J. Roy and S. Ghosh, Transition Metal (Ⅱ)/(Ⅲ), Eu(Ⅲ), and Tb(Ⅲ) Ions Induced molecular Photonic OR Gates Using Trianthryl Cryptands of Varying Cavity Dimension[J]. J. Am. Chem. Soc., 1997, 119, 11903–11909.
    [59] A. P. de Silva, S. A. de Silva, A. S. Dissanayake and K. R. A. S. Sandanayake, Compartmental fluorescent pH indicators with nearly complete predictability of indicator parameters; molecular engineering of pH sensors[J]. J. Chem. Soc. Chem. Commun., 1989, 1054–1056.
    [60] M. Samiappan, Z. Dadon and G. Ashkenasy, Replication NAND gate with lightas input and output[J]. Chem. Commun., 2011, 47, 710–712.
    [61] P. N. Cheng, P. T. Chiang and S. H. Chiu, A switchable macrocycle–clip complex that functions as a NOR logic Gate[J]. Chem. Commun., 2005, 1285–1287
    [62] Y. Q. Liu, A. Offenh?usser and D. Mayer, An Electrochemically Transduced XOR Logic Gate at the molecular Level[J]. Angew. Chem. Int. Ed., 2010, 49, 2595–2598.
    [63] M. Asakawa, P. R. Ashton, V. Balzani, A. Credi, G. Mattersteig, O. A. Matthews, M. Montalti, N. Spencer, J. F. Stoddart and M. Venturi, Electrochemically Induced molecular Motions in Pseudorotaxanes: A Case of Dual-Mode (Oxidative and Reductive) Dethreading[J]. Chem. Eur. J., 1997, 3, 1992–1996.
    [64] V. Balzani, M. Venturi and A. Credi, molecular Devices and Machines[M]. Wiley-VCH, Weinheim,2003.
    [65] J. M. Montenegro, E. Perez-Inestrosa, D. Collado, Y. Vida and R. Suau,A Natural-Product-Inspired Photonic Logic Gate Based on Photoinduced Electron-Transfer-Generated Dual-Channel Fluorescence[J]. Org. Lett., 2004, 6, 2353–2355.
    [66] R. Joseph, B. Ramanujam, A. Acharya, and C. P. Rao, Lower Rim 1,3-Di{bis(2-picolyl)}amide Derivative of Calix[4]arene (L) as Ratiometric Primary Sensor toward Ag+ and the Complex of Ag+ as Secondary Sensor toward Cys: Experimental, Computational and Microscopy Studies and INHIBIT Logic Gate Properties of L[J]. J. Org. Chem., 2009, 74, 8181–8190.
    [67] D. Margulies, C. E. Felder, G. Melman, and A. Shanzer, A molecular Keypad Lock: A Photochemical Device Capable of Authorizing Password Entries[J]. J. AM. CHEM. SOC., 2007, 129, 347–354.
    [68] P. Singh, J. Kaur and W. Holzer, Acridone based Cu2+-F ̄/F ̄-Cu2+ responsive ON/OFF key pad[J]. Sensors and Actuators B., 2010, 150, 50–56.
    [69] O. A. Bozdemir, R. Guliyev, O. Buyukcakir, S. Selcuk, S. Kolemen,G. Gulseren, T. Nalbantoglu, H. Boyaci and E. U. Akkaya, Selective Manipulation of ICT and PET Processes in Styryl-Bodipy Derivatives: Applications in molecular Logic and Fluorescence Sensing of Metal Ions[J]. J. AM. CHEM. SOC., 2010, 132, 8029–8036.
    [70] V. Luxami and S. Kumar, molecular half-subtractor based on3,3’-bis(1H-benzimidazolyl-2-yl)[1,1’]-binaphthalenyl-2,2’-diol[J]. New J. Chem., 2008, 32, 2074–2079.
    [71] F. Remacle, S. Speiser, R. D. Levine, Intermolecular and Intramolecular Logic Gates[J]. J. Phys. Chem. B., 2001, 105, 5589–5591.
    [72] L. Bomble, D. Lauvergnat, F. Remacle and M. Desouter-Lecomteabc, Controlled full adder–subtractor by vibrational computing[J]. Phys. Chem. Chem. Phys., 2010, 12, 15628–15635.
    [73] J. Andréasson, S. D. Straight, T. A. Moore, A. L. Moore and D. Gust, molecular All-Photonic Encoder-Decoder[J]. J. AM. CHEM. SOC., 2008, 130, 11122–11128.
    [74] H. Schiff, Mittheilungen aus dem Universit?tslaboratorium in Pisa: Eine neue Reihe organischer Basen[J]. Justus Liebigs Ann. Chem., 1864, 131, 118–119.
    [75] B. K. So, W. J. Kim, S. M. Lee, M. C. Jang, H. H. Song and J. H. Park, Novel bent-shaped liquid crystalline compounds: III. Synthesis of Schiff base liquid crystal dimers[J]. Dyes and Pigments., 2007, 75, 619–623.
    [76] C. R. Bhattacharjee , G. Das, P. Mondal and N. V. S. Rao, Novel photoluminescent hemI-disclike liquid crystalline Zn(II) complexes of [N2O2] donor 4-alkoxy substituted salicyldimine Schiff base with aromatic spacer Polyhedron., 2010, 29, 3089–3096.
    [77] R. T. Ruck and E. N. Jacobsen, Asymmetric Catalysis of Hetero-Ene Reactions with Tridentate Schiff Base Chromium(III) Complexes[J]. J. AM. CHEM. SOC.2002., 124, 2882–2883.
    [78] J. J. Bozell and B. R. Hames, Cobalt -Schiff Base Complex Catalyzed Oxidation of Para-Substituted Phenolics. Preparation of Benzoquinones[J]. J. Org. Chem., 1995, 60, 2398–2404.
    [79] H. Mitsunuma and S. Matsunaga, Dinuclear Ni2-Schiff base complex-catalyzed asymmetric 1,4-addition ofβ-keto esters to nitroethylene towardγ2,2-amino acid synthesisw[J]. Chem. Commun., 2011, 47, 469–471.
    [80] X. G. Zhou, X. Q. Yu, J. S. Huang, S. G. Li, L. S. Li and C. M. Che, Asymmetric epoxidation of alkenes catalysed by chromium binaphthyl Schiff base complex supported on MCM-41[J]. Chem. Commun., 1999, 1789–1790.
    [81] K. N. yarku, E. Mavuso, J. Sou. Afri. Chem, 1998, 51, 168.
    [82]徐莉,徐世平. 2-吲哚醛西佛碱化合物的合成及其抗癌活性研究[J].药学学报,2000, 35, 269–272.
    [83] L. Y. Zhao, D. Sui, J. Chai, Y. Wang and S. M. Jiang, Digital Logic Circuit Based on a Single molecular System of Salicylidene Schiff Base[J]. J. Phys. Chem. B., 2006, 110, 24299–24304
    [84] M. Shamsipur, M. Yousefi, M. Hosseini, M. R. Ganjali, H. Sharghi and H. Naeim, A Schiff Base Complex of Zn(II) as a Neutral Carrier for Highly Selective PVC Membrane Sensors for the Sulfate Ion[J]. Anal. Chem., 2001, 73, 2869–2874.
    [85] N. Kobayashi, Dimers, trimers and oligomers of phthalocyanines and related Compounds[J]. Coord. Chem. Rev., 2002, 227, 129–152.
    [86] G. A. Delzenne, J. Adv. Photochem. 1979, 11, 2.
    [87] E. Hadjoudis, I. M. Mavridis, Photochromism and thermochromism of Schiff bases in the solid state: structural aspects[J]. Chem. Soc. Rev., 2004, 33, 579–588.
    [88] M. A. Baseer, V. D. Jadhav and R. M. Phule, Synthesis and antibacterial activity of some new schiff bases[J]. Orient. J. Chem., 2000, 16, 553–556.
    [89] Y. S. Zheng, Y. J. Hu, D. M. Li and Y. C. Chen, Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups[J], Talanta., 2010, 80,1470–1474.
    [90] H. E. Smith, S. L. Cook and M. E. Warren, Optically Active Amines. II. The Optical Rotatory Dispersion Curves of the N-Benzylidene and Substituted N-Benzylidene Derivatives of Some Open-Chain Primary Amines[J]. J. Org. Chem., 1964, 29, 2265–2272.
    [91] T. Gunnlaugsson, M. Glynn, G. M. Tocci(née Hussey), P. E. Kruger and F. M. Pfeffer, Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors[J]. Coordination Chemistry Reviews., 2006, 250, 3094–3117.
    [92] C. Suksai and T. Tuntulani, Chromogenic anion sensors[J]. Chem. Soc. Rev., 2003, 32, 192–202.
    [93] G. C. Miller and C. A. Pritsos, Cyanide: Soc., Ind. Econ. Aspects, in: Proc. Symp. Annu.Meet, TMS, 2001, 73–81.
    [94] T. Suzuki, A. Hiolki and M. Kurahashi, Development of a method for estimating an accurate equivalence point in nickel titration of cyanide ions[J]. Anal. Chim. Acta., 2003, 476, 159–165.
    [95] A. Safavi, N. Maleki and H. R. Shahbaazi, Indirect determination of cyanide ionand hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode[J]. Anal. Chim. Acta., 2004,503, 213–221.
    [96] D. Shan, C. Mousty and S. Cosnier, Subnano molar Cyanide Detection at Polyphenol Oxidase/Clay Biosensors[J]. Anal. Chem., 2004, 76, 178–183.
    [97] V. K. Rao, S. Suresh, N. B. S. N. Rao and P. Rajaram, An electrochemical sensor for detection of hydrogen cyanide gas[J]. Bull. Electrochem., 1997, 13, 327–329.
    [98] T. T. Christison and J. S. Rohrer, Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection[J]. J. Chromatogr A., 2007, 1155, 31–39.
    [99] P.Anzenbacher, Jr., D. S. Tyson, K. Jursikováand F. N. Castellano, Luminescence Lifetime-Based Sensor for Cyanide and Related Anions[J]. J. Am. Chem. Soc., 2002, 124, 6232–6233.
    [100] N. Gimeno, X. Li, J. R. Durrant and R. Vilar, Cyanide Sensing with Organic Dyes: Studies in Solution and on Nanostructured Al2O3 Surfaces[J]. Chem.–Eur. J., 2008, 14, 3006–3012.
    [101] Z. A. Li, X. D. Lou, H. B. Yu, Z. Li and J. G. Qin, An Imidazole-Functionalized Polyfluorene Derivative as Sensitive Fluorescent Probe for Metal Ions and Cyanide[J]. Macro molecules., 2008, 41, 7433–7439.
    [102] S. Y. Chung, S. W. Nam, J. Lim, S. Park and J. Yoon, A highly selective cyanide sensing in water via fluorescence change and its application to in vivo imaging[J]. Chem.Commun., 2009, 2866–2868.
    [103] H. T. Niu, D. Su, X. Jiang, W. Yang, Z. Yin, J. He and J. P. Cheng, A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous enviro nment[J]. Org. Bio mol. Chem., 2008, 6, 3038–3040.
    [104] J. V. Ros-Lis, R. Martínez-Má?ez and J. Soto, Subphthalocyanines as fluoro-chromogenic probes for anions and their application to the highly selective and sensitive cyanide detection[J]. Chem. Commun., 2005, 5260–5262.
    [105] J. Ren, W. Zhu and H. Tian, A highly sensitive and selective chemosensor for cyanide[J]. Talanta, 2008, 75, 760–764.
    [106] Y. Sun, Y. L. Liu, M. L. Chen and W. Guo, A novel fluorescent and chromogenic probe for cyanide detection in water based on the nucleophilic addition of cyanide to imine group[J]. Talanta., 2009, 80, 996–1000.
    [107] S. Chen, I. A. Guzei and L. Yu, New Polymorphs of ROY and New Record forCoexisting Polymorphs of Solved Structures[J]. J. AM. CHEM. SOC., 2005, 127, 9881–9885.
    [108] A. P. de Silva, molecular computing-A layer of logic[J]. NATURE., 454, 417–418.
    [109] X. F. Fu, W. Sun, C. J. Fang, R. Guo and C. H. Yan, molecular Logic Function Materials[J]. PROGRESS IN CHEMISTRY., 21, 957–963.
    [110] A. P. de Silva, molecular Logic Gate Arrays[J]. Chemistry-An Asian Journal., 2011, 6, 750–766.
    [111] F. Pina, A. Roque, M. J. Melo, M. Maestri, L. Belladelli and V. Balzani, Multistate/Multifunctional molecular-Level Systems: Light and pH Switching between the Various Forms of a Synthetic Flavylium Salt[J]. Chem. Eur. J., 1998, 4, 1184–1191.
    [112] M. Inouye, K. Akamatsu and H. Nakazumi, New Crown Spirobenzopyrans as Light- and Ion-Responsive Dual-Mode Signal Transducers[J]. J. Am. Chem. Soc., 1997, 119, 9160–9165.
    [113] F. Diederich, Carbon-rich acetylenic scaffolding: rods, rings and switches[J]. Chem. Commun., 2001, 219–227.
    [114] Z. X. Li, L. Y. Liao, W. Sun, C. H. Xu, C. Zhang, C. J. Fang and C. H. Yan, Reconfigurable Cascade Circuit in a Photo- and Chemical-Switchable Fluorescent Diarylethene Derivative[J]. J. Phys. Chem. C., 2008, 112, 5190–5196.
    [115] C. J. Fang, Z. Zhu, W. Sun, C. H. Xu and C. H. Yan, New TTF derivatives: several molecular logic gates based on their switchable fluorescent emissions[J], New J. Chem., 2007, 31, 580–586.
    [116] A. P. de Silva and N. D. McClenaghan, Proof-of-Principle of molecular-Scale Arithmetic[J]. J. Am. Chem. Soc., 2000, 122, 3965–3966.
    [117] M. Semeraro and A. Credi, Multistable Self-Assembling System with Three Distinct Luminescence Outputs: Prototype of a Bidirectional Half Subtractor and Reversible Logic Device[J]. J. Phys. Chem. C., 2010, 114, 3209–3214.
    [118] Y. C. Zhou, H. Wu, L. Qu, D. Q. Zhang and D. B. Zhu, A New Redox-Resettable molecule-Based HalF ̄Adder with Tetrathiafulvalene[J]. J. Phys. Chem. B., 2006, 110, 15676–15679.
    [119] J. Andreasson, S. D. Straight, G. Kodis, C. D. Park, M. Hambourger, M. Gervaldo, B. Albinsson, T. A. Moore, A. L. Moore and D. Gust, All-Photonicmolecular Half-Adder[J]. J. AM. CHEM. SOC. 2006, 128, 16259–16265.
    [120] J. Wang and C. S. Ha, Azobenzene-based system for fluorimetric sensing of H_2PO_4~ ̄(Pi) that works as a molecular keypad lock[J]. Analyst., 2010, 135, 1214–1218.
    [121] G. Strack, M. Ornatska, M. Pita, and E. Katz, Biocomputing Security System: Concatenated Enzyme-Based Logic Gates Operating as a Bio molecular Keypad Lock[J]. J. AM. CHEM. SOC., 2008, 130, 4234–4235.
    [122] J. Andréasson, S. D. Straight, S. Bandyopadhyay, R. H. Mitchell,T. A. Moore, A. L. Moore and D. Gust, molecular 2:1 Digital Multiplexer[J]. Angew. Chem. Int. Ed., 2007, 46, 958–961.
    [123] Z. Q. Guo, W. H. Zhu, L. J. Shen and H. Tia, A Fluorophore Capable of Crossword Puzzles and Logic Memory[J]. Angew. Chem. Int. Ed., 2007, 46, 5549–5553.
    [124] M. Zhou, X. L. Zheng, J. Wang and S. J. Dong, A Self-Powered and Reusable Biocomputing Security Keypad Lock System Based on Biofuel Cells[J]. Chem. Eur. J., 2010, 16, 7719–7724.
    [125] M. Amelia, M. Baroncini and A. Credi, A Simple Uni molecular Multiplexer/Demultiplexer[J]. Angew. Chem. Int. Ed., 2008, 47, 6240–6243.
    [126] X. Zhang, H. P. Xu, Z. Y. Dong, Y. P. Wang, J. Q. Liu and J. C. Shen, Highly Efficient Dendrimer-Based Mimic of Glutathione Peroxidase[J]. J. AM. CHEM. SOC., 2004, 126, 10556–10557.
    [127] W. L. Wong, K. H. Huang, P. F. Teng, C. S. Lee and H. L. Kwong, A novel chiral terpyridine macrocycle as a fluorescent sensor for enantioselective recognition of amino acid derivatives[J]. Chem. Commun., 2004, 384–385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700