化学激光推进的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光推进是利用激光与工质相互作用产生高温高压的气团反喷以获得推力,推动空间飞行器前进的新概念推进技术。传统的激光推进走向实用,需要平均功率百MW量级的激光器。受到激光器制作技术的约束,现有激光器的平均功率最高到105W量级,远达不到实用的要求。研究中,发现一些工质在激光推进过程中存在化学能的释放,从而使推进性能得到大幅提升,我们将其定义为化学激光推进。化学激光推进过程中不仅将激光能量转化为动能,还引入了化学能,可以同时提高冲量耦合系数和比冲,从而提高推力器整体的推进性能,可降低同等推力下对激光功率的要求,且化学激光推力器的工作状态可控,为激光推进技术走向实用提供了新的思路,在空间推进中具有重要应用价值。
     本文针对化学激光推进技术,进行了以下几方面的实验和数值研究:
     (1)化学激光推进机理方面的研究
     以化学能的释放为线索,分析化学激光推进的基本原理,将其物理过程简化为两个阶段:(1)激光与工质相互作用阶段:(2)激光作用后产生的高温高压气团在推力器中的流场演化阶段。化学能的释放既可以出现在激光作用时,也可以出现在激光作用后的高温高压气团在推力器内流场演化过程中。
     化学激光推进的工质一般分为两类:(1)工质本身不含氧化剂,其在化学激光推进中的能量释放主要发生在激光作用后的高温高压气团在推力器中的流场演化过程中,需要外界提供氧气。(2)工质本身含有氧化剂,其在激光与工质相互作用时就会释放大量的化学能,这种能量释放是由工质本身提供的,不需要外界提供氧气。
     在无推力器约束和有推力器约束两种条件下,分别对latm大气和latm氮气两种气体环境中的POM(聚甲醛)工质的推进性能进行了对比实验,发现在推进过程中激光烧蚀后的产物与大气环境中氧气发生了放热反应,验证了在化学激光推进中化学能释放的存在。
     通过分子光谱分析,得到了激光作用于POM工质后产生的气团在真空和大气环境下的最终产物:真空中的最终产物为CH20,大气环境中的最终产物为CO2和H2O。确认了其在latm大气环境中所发生的化学反应,以及所释放的化学能。
     结合高速纹影实验和Fluent数值模拟,追踪推力器约束下的POM工质在激光作用后的流场演化过程。采用有限速率化学反应模型得到的模拟结果与高速纹影实验吻合较好。结果表明,化学能释放的激烈程度与产物气团和大气中氧气的混合程度相关,混合得越充分,化学能释放得越激烈。
     (2)大能量化学激光推进和推力器的研究
     利用单脉冲能量为519J的TEA600型CO2激光器和自研制的掺杂A1粉的POM复合工质,几何构型优化后的直筒型化学激光推力器的冲量耦合系数和比冲分别达到113.2dyne/W和1275.4s,此时,激光能量利用率高达707%,这是目前国际上报道的最高的指标,推进中化学能的贡献超过了86%。
     开展了直筒型推力器多脉冲推进的实验研究,结果表明激光重复频率为20Hz时,前一脉冲产物对后一脉冲推进性能没有明显影响,每个脉冲的推进性能只与激光的功率密度和筒径与光斑直径之比α有关。
     (3)化学激光微推进的研究
     由于激光微推进所用激光器的功率小(W量级),化学能的补充是提高其推进性能的关键技术,我们首先建立了精密微冲量挡板扭摆系统,对自研制的复合双基药薄膜工质进行了系统的实验和数值研究,发现随着工质厚度的增加,冲量耦合系数逐渐增加,但比冲有渐减的趋势。并得到了化学能释放和激光功率密度的关系。利用功率为1.80W的半导体激光器,25u m厚的复合双基药工质的冲量耦合系数和比冲分别达到了130.8dyne/W和493s,此时,激光能量利用率高达316%,是无化学能释放的工质的6倍以上,化学能的贡献非常明显。
Laser propulsion is a new concept technique for propulsion. It promotes the aircraft by utilizing the counterforce generated during the injection of gases with extremely high temperature and pressure which formed by interaction between high-power laser and propellant. There is a new concept of laser propulsion, called chemical laser propulsion (CLP) which can greatly enhance the propulsion performance because of the supplement of chemical energy during the propulsion process. The kinetic energy of thruster is converted by not only the laser energy, but also the chemical energy during the chemical laser propulsion process. It can also improve the momentum coupling coefficient and specific impulse, so it can greatly improve the overall propulsion performance of the thruster. It provides a new way for developing laser propulsion technology to application stage.
     In the present thesis, the following researches, focused on the CLP technology, have been studied.
     (1) The mechanism research of CLP
     The physical process of CLP is divided into two stages by analysing the basic principle of CLP based on the release of chemical energy. The first one is the stage of interaction between high-power laser and propellant, and the last one is the stage of flow field evolution of gases with high temperature and pressure in thruster. The supplement of chemical energy can occur in both the first stage and the last one.The propellants of CLP are divided into energetic propellants and non-energetic propellants. In general, the supplement of a large amount of chemical energy of energetic propellant, which can release chemical energy itself without oxygen provided extra, occurs in the last stage. And that of non-energetic propellant, which needs oxygen provided extra to release chemical energy, occurs in the first stage.
     The propulsion performance of the propellant has been studied both in1atm atmospheric environment and in1atm nitrogen environment under the constrained conditions by thruster and unconstrained conditions. The results show that there is an exothermic reaction in the propulsion process, occurred with oxygen contained in1atm atmospheric environment. The existence of chemical energy release in CLP has been validated.
     Based on the molecular spectroscopy analysis, the the final products of the chemical reaction between gas in environment and that, which formed by interaction between high-power laser and propellant with extremely high temperature and pressure, have been ascertained. The final product in vacuum environment is CH2O. The final products with1atm atmospheric environment are CO2and H2O. The chemical reactions in1atm atmospheric environment and the chemical energy released in the reactions have been deduced.
     The flow field evolution of gases with high temperature and pressure, formed by interaction between high-power laser and propellant, has been obtained by the high speed schlieren experiment and the numerical simulation using Fluent. It has given a very good agreement between simulation and experiment results. The chemical energy and the release rate of chemical energy curves have been given by numerical simulation. It shows that the release intensity of chemical energy depends on how well the product gas is mixed with oxygen in the atmosphere. The release intensity of chemical energy is greater while the gases are mixed more fully.
     (2) The research of CLP with large energy and thruster
     The numerical simulation of the propulsion performance of cylindrical thruster has been studied. There are two important factors affecting the propulsion performance of cylindrical nozzle thrusters:the length L of thruster and the thruster diameter to laser-spot diameter ratio α. We get the best value of L and a, which is identical with the experimental results. When we use TEA600CO2laser with the energy of519J and the best configuration of cylindrical thruster with POMAl as the propellant, the momentum coupling coefficient and specific impulse is113.2dyne/W and1275.4s, while laser energy coefficient is707%, which is the biggest value reported.
     The propulsion performance of cylindrical thruster under two repeated pulses has been studied experimentally. The results show the products generated by ablation under the first pulse has no effect on the propulsion performance under the second pulse.
     (3) The research of chemical laser micro-propulsion
     We have designed a baffle torsion pendulum testing system, the measuring principle of which is described, and the measurement error of the system has been analyzed. The effect of the thickness of double base propellant on the propulsion performance has been stydied by using this system. The experimental results show that the momentum coupling coefficient increases with the increase of thickness, while the specific impulse decreases. The effect of laser power density on the release of chemical energy has been studied. When we use semiconductor laser with the power of1.8W and the double base propellant, which is designed ourselves, the momentum coupling coefficient and specific impulse is130.8dyne/W and493s, while laser energy coefficient is316%, which is six times better than the propellant without the release of chemical energy.
引文
[1]龚平.大气呼吸模式激光推进的研究[D],合肥:中国科学技术大学,2004:4.
    [2]Kantrowitz, A., Propulsion to Orbit by Ground Based Lasers [J], Astronautics & Aeronautics, 10(5):74-76,1972.
    [3]Qaude Phipps. ORION:challenges and benefits [C]. SPIE,3343:575-582,1998.
    [4]C. R. Phipps, J. P. R. eilly, J. W. Campbell. Laser launching a 5-kg object into low Earth orbit [C]. Proceedings of SPIE,4065:502-510,2000.
    [5]C. R. Phipps, J. P. R. eilly, J. W. Campbell. Optimum Parameters for Laser-launching Objects into Low Earth Orbit [J]. LASER AND PARTICLE BEAMS,18(4):661-695,2000.
    [6]C. R. Phipps, J. P. R. eilly, J. W. Campbell. Requirements for launching payloads into low Earth orbit with a ground-based laser [C]. XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, Proceedings of SPIE Vol.4184:517-520, 2001.
    [7]Zuu-Chang Hong, Jia Ming Liu, Jeng-Shing Chern. Overall Payload of a Combined Laser and Chemical Propulsion System for GEO Launch [J].Acta Astronautica 50(7):417-426,2002.
    [8]Jonathan W.Campbell, Claude Phipps, Larry Smalley et al.. The impact imperative:Laser ablation for deflecting asteroids, meteoroids, and comets from impacting the earth [C].1st International Symposium on Beamed Energy Propulsion,AIP Conference Proceedings, p509-520, 2003.
    [9]Anatoliy F. Nastoyashchii. Laser Application in the Control of Satellite Orbit [C].2nd International Symposium on Beamed Energy Propulsion, AIP Conference Proceedings, p274-279, 2004.
    [10]C. R. Phipps, J. Luke, J. Marquis. Diode laser-driven microthrusters-A new departure in high specific impulse, long life engines[C].36th A1AA/ASME/SAE/ASEE Joint Propulsion Conference 17-19 July 2000 Huntsville, Alabama.
    [11]C. R. Phipps, J. Luke, Micro Laser Plasma Thrusters for Small Satellites[C]. Proceeding of SPIE 4065:801-809,2000.
    [12]C. R. Phipps, J. Luke. Diode Laser-Driven Microthrusters A New Departure for Micropropulsion[J]. AIAA 40(2):310-318,2002.
    [13]Wolfgang O. Schall. Removal of small space debris with orbiting lasers[C]. Proceeding of SPIE,3343:564-567,1998.
    [14]Peter Hammerling, John L. Remo. Ablation scaling laws for laser space debris clearing[C].Proceeding of SPIE,3343:590-599,1998.
    [15]Jonathan W. Campbell Charles R. Taylor. Power beaming for orbital debris removal[C]. SPIE, 3343:583-589,1998.
    [16]Shigeaki Uchida, Xianglin Zhou, Kazuo Imasaki et al. Study on momentum coupling efficiency of laser ablation for space debris removal[C], SPIE 3885:65-71,2000.
    [17]James. T. Early, Camille Bibeau, Claude Phipps. Space debris de-orbiting by vaporization impulse using short pulse Iaser[C].2nd International Symposium on Beamed Energy Propulsion (ISBEP2), edited by K. Komurasaki,702, AIP Conference Proceedings, p190-201,2004.
    [18]K. Watanabe, T. Takahashi, A. Sasoh et al. Useful In-space Impulse Generation Powered by Laser Energy[C].2nd International Symposium on Beamed Energy Propulsion (ISBEP2),edited by K. Komurasaki,702, AIP Conference Proceedings, p115-121,2004.
    [19]Phipps C R, Luke J, Micro laser plasma thrusters for small satellites[C], Proceeding of SPIE, Vol 4065,2000.
    [20]Phipps C R, Luke J, Diode laser-driven microthrusters:A new departure for micropropulsion [J], AIAA JOURNAL,40(2):310-318,2002.
    [21]詹亚峰,马正新,曹志刚.现代微小卫星技术及发展趋势[J].电子学报,28(7):235-239,2000.
    [22]张维胜,王红兵,李辉.美国军用卫星现状与性能[J].中国航天,6:43-44,2001.
    [23]朱振才,杨根庆等.微小卫星组网与编队技术的发展[J].上海航天,6:46-49,2004.
    [24]尤政,张高飞,任大海MEMS微推进技术的研究[J].纳米技术与精密工程,2(2):98-105,2004.
    [25]尤政,张高飞.基于MEMS的微推进系统的研究现状与展望[J].微精细加工,1:1-8,2004.
    [26]John Anderson, John Blandino, et al..Advanced propulsion concepts, prepared by the Mechanical Propulsion Technology Group, Jet Propulsion Laboratory, California Institute of Technology,1998.
    [27]Pirri AN, Monsler MJ, Nebolsin PE.Propulsion by Absorption of Lsaer Radiation [J]. AIAA JOURNAL,12(9):1254-1261,1974.
    [28]D. W. Gregg and S. J. Thomas, Momentum Transfer Produced by Focused Laser Giant Pulses [J]. J. Appl. Phys.37(7),2787-2789,1966.
    [29]C. H. Skeen and C. M. York, LASER-INDUCED "BLOW-OFF" PHENOMENA [J]. Appl. Phys. Lett.,12(11):369-371,1968.
    [30]A. N. Pirri, R. Schlier, D. Northam. Momentum transfer and plasma formation above a surface with a high-power CO2 laser [J]. Appl. Phys. Lett.,21(3):79-81,1972.
    [31]A. N. Pirri. Theory for momentum transfer to a surface with a high-power laser[J]. The Physics of Fluids,16(9):1435-1440,1973.
    [32]S. A. Metz. Impulse loading of targets by subnanosecond laser pulses[J]. Appl. Phys. Lett., 22(5):211-213,1973.
    [33]J. F. Ready. Impulse produced by the interaction of CO2 TEA laser pulses[J]. Appl. Phys. Lett.,25(10):558-560,1974.
    [34]J. E. Lowder, L.C.Pettingill. Measurement of CO2-laser-generated impulse and pressure[J]. Appl. Phys. Lett,24(4):204-207,1974.
    [35]S. Marcus, J. E. Lowder. Impulsive loading of targets by HF laser pulses[J]. Journal of Applied Physics,46(5):2293-2294,1975.
    [36]D.I. Rosen, J. Mitteldorf, G. Kothandaraman, A. N. Pirri, E. R. Pugh. Coupling of pulsed 0.35 u m laser radiation to aluminum alloys[J]. Journal of Applied Physics,53(4):3190-3200, 1982.
    [37]D. I. Rosen, D. E. Hastings, G. M. Weyl. Coupling of pulsed 0.35 μm laser radiation to titanium alloys. Journal of Applied Physics[J],53(8):5882-5890,1982.
    [38]M. Bass, M. A. Nassar, R. T. Swimm. Impulse coupling to aluminum resulting from Nd:glass laser irradiation induced material removal[J]. Journal of Applied Physics,61(3):1137-1144,1987.
    [39]C. R. Phipps, T. P. Turner, R. F. Harrison, Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers[J]. J. Appl. Phys.,64(3):1083-1096,1988.
    [40]张凌.固态工质激光推进的实验研究[D],合肥:中国科学技术大学,46-47,2008.
    [41]彭杰.烧蚀模式激光推力器的实验研究[D],合肥:中国科学技术大学,17,2009.
    [42]Schall W O,Tegel J.Eckel H A.Ablation Performance Experiments With Metal Seeded Polymers[C]. Proc of SPIE,766:423-432,2005.
    [43]程建中,蔡建,胡云等.掺杂金属颗粒的高分子工质激光推进实验研究[J].强激光与粒子束,20(7):1190-1194,2008.
    [44]彭杰,郑航,胡晓军等.激光烧蚀掺杂金属粉工质的推进性能[J].强激光与粒子束,21(6):821-825,2009.
    [45]C. R. Phipps et al. Laser ablation of organic coatings as a basis for micropropulsion[J], Thin Solid Films,453:573-583,2004.
    [46]彭杰.烧蚀模式激光推力器的实验研究[D],合肥:中国科学技术大学,17-18,2009.
    [47]T. Lippert, M.Hauer et al. Polymers designed for laser applications-fundamentals and applications [C]. Proc of SPIE,4670:63-71,2002.
    [48]R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont. Physical study of laser-produced plasma in confined geometry[J]. J. Appl. Phys.,68(2):775-784,1990.
    [49]C. R. Phipps, Daniel B. Seibert II et al. Very High Coupling Coefficients at Low Laser Fluence with a Structured Target[C], Proceedings of SPIE.,4065:931,2000.
    [50]Phipps C R, Luke J, Micro laser plasma thrusters for small satellites[C], Proceeding of SPIE, Vol 4065,2000.
    [51]C. R. Phipps, J. R. Luke, G. G. Mcduff, T. Lippert. Laser-driven micro-rocket[J]. Applied Physics A,77:193-201,2003.
    [52]Takashi Yabe, Ryou Nakagawa, Masashi Yamaguchi et al. Simulation and Experiments on Laser Propulsion by Water Cannon Target[C]. First International Symposium on Beamed Energy Propulsion (ISBEP1), AIP Conference Proceedings 664, p185-193,2003.
    [53]Shigeaki Uchida, Kazuhisa Hashimoto, Kazuhisa Fujita et al.. Characteristics of volume expansion of laser plasma for efficient propulsion[C]. Proceeding of SPIE Vol.4760:810-820, 2002.
    [54]郑志远,张杰,郝作强,远晓辉,张喆,鲁欣,王兆华,魏志义.靶结构对激光等离子体动量耦合系数的影响[J].物理学报,55(1):526-530,2006.
    [55]Ageev V.P., Barchukov A.I., Bunkin F.V. et al.. Laser air-breathing jet engine [J]. Soviet Journal of Quantum Electronics.7(12):1430-1436,1977.
    [56]M.A. Antonison, W.L. Smith, L.N. Myrabo. The Apollo Lightcraft Project. AIAA-4486, p.1-6,1988.
    [57]L.N. Myrabo. Lightcraft Technology Demonstrator. Final Technical Report, Rensselaer Polytechnic Institute, prepared under Contract No.2073803 for Lawrence Livermore National Laboratory and the SDIO Laser Propulsion Program,30 Jun 89.
    [58]L.N. Myrabo, D. G. Messitt, F. B. Mead, Jr, et al. Ground and flight tests of a laser propelled vehicle. AIAA 1001, p.1-10,1998.
    [59]F. B. Mead, Jr, L.N. Myrabo, D. G. Messitt. Flight and ground tests of a laser-booted vehicle. AIAA-3735, p.1-10,1998.
    [60]L.N. Myrabo. World record flights of beam-riding rocket lightcraft-Demonstration of disruptive propulsion technology [J]. AIAA-3798, p.1-15,2001.
    [61]W.O.Schall, W.L.Bohn, H.-A.Eckel, et al. Lightcraft Experiments in Germany[C], High-Power Laser Ablation III, Proc. of SPIE,4065:472-481,2000.
    [62]W.O. Schall. Removal of small space debris with orbiting lasers[C]. Proceeding of SPIE, 3343:564-567,1998.
    [63]彭杰.烧蚀模式激光推力器的实验研究[D],合肥:中国科学技术大学,52-59,2009.
    [64]H.H. Legner, Douglas-Hamilton D H, CW. Laser Propulsion [J], Journal of Energy,2:85-94, 1978.
    [65]A.A. Ageichik, M.S. Egorov, Y.A. Rezunkov, et al.. Experimental Study On Thrust Characteristics Of Airspace Laser Propulsion Engine[C]. Second International Symposium on Beamed Energy Propulsion,49-60,2003.
    [66]张庆红.激光推力器的设计及研究[D],合肥:中国科学技术大学,19-21,2007.
    [67]唐志平,张庆红.分离式全方位接收激光推力器,中国发明专利,专利申请号200610164810.6
    [68]Luke J, Phipps C R, Laser plasma microthruster performance evaluation[C],1st International Symposium on Beamed Energy Propulsion,664:223-229,2003.
    [69]C.R. Phipps, J. Luke. Advantages of a ns-pulse micro-laser plasma thruster[C]. First International Symposium on Beamed Energy Propulsion,664:230-239,2003.
    [70]Phipps C.R. Laser ablation powered mini-thruster[J]. High-Power Laser Ablation,4760(4): 833-842,2002.
    [71]Luke J. and PhippsC.R. Laser plasma thruster[J]. Applied Physics A.77(2):343-348,2003.
    [72]Phipps C.R.,Luke J. Laser-driven micro-rocket[J]. Applied Physics.77(2):193-201,2003.
    [73]C.R. Phipps, J. Luke, Wesley Helgeson and Richard Johnson. Performance Test Results for the Laser-Powered Microthruster[C].Fourth International Symposium on Beamed Energy Propulsion.830:224-234,2006.
    [74]Lippert T, et. al. Polymers designed for laser applications fundamentals and applications[C]. Proceeding of SPIE,4760:63-71,2002.
    [75]Lippert T, et. al. Novel applications for laser ablation of photopolymers[J], Applied Surface Science,186:14-23,2002.
    [76]Phipps C.R., Luke J., Lippert T. Laser ablation of organic coatings as a basis for micropropulsion[J]. Thin Solid Films,453:573-583,2004.
    [77]Phipps C.R., Luke J., Lippert T. Micropropulsion using laser ablation[J]. Appl.Phys.A,79: 1385-1389,2004.
    [78]L.Urech,T.Lippert,C.R.Phipps,A.Wokaun Polymers as fuel for laser-based microthrusters:An investigation of thrust, material, plasma and Shockwave properties[J].Applied Surface Science 253:7646-7650,2007.
    [79]C.R. Phipps, J. Luke,et al.. Performance Test Results for the Laser-Powered Microthruster[C]. 4th International Symposium on Beamed Energy Propulsion.830:224-234,2006.
    [80]李静.激光推进测试仪器和“烧蚀模式”实验研究[D],合肥:中国科学技术大学,2005.
    [81]蔡建.激光微推进的原理和应用研究[D],合肥:中国科学技术大学,40-41,2007.
    [82]Nakano M., Ishikawa, T., Wakabayashi, R., Laser Propulsion Technology on "KKS-1" Microsatellite [J], Review of Laser Engineering,39(1):34-40,2011.
    [83]Rezunkov Y.A., Egorov M.S., Rebrov S.G., et. al.. Laser Fine-adjustment Thruster for Space Vehicles[C],6th International Symposium on Beamed Energy Propulsion, AIP Conference Proceedings 1230:309-318,2009.
    [84]Long Li, Zhiping Tang, Xiaojun Hu, and Jie Peng. Experimental Study on the Effect of Structural Geometry of "Ablation Mode" Thruster on Propulsion Performance[C],7th International Symposium on Beamed Energy Propulsion, AIP Conference Proceedings 1402:258-268,2011.
    [85]Free B.A., Sarner S.F. A Rapid Method for Estimation of Specific Impulse[J]. ARS JOURNAL,29(1):64-67,1959.
    [86]CHERDRON H., KERN W. DER ABBAU VON POLYOXYMETHYLENEN[J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,72(7-8):273,1960.
    [87]陈炜,邹文樵,冯仰婕.聚甲醛的热降解研究[J].应用科学学报,10(4):364-370,1992.
    [88]纪立春,刘志富,李美荣等.聚甲醛技术进展和发展前景[J].精细化工原料及中间体.6:23-24.2006.
    [89]刘莉,徐开杰.聚甲醛改性研究现状[J].工程塑料应用.36(2):71-75,2008.
    [90]李惠林,段怡飞.聚甲醛等温热降解[J].四川大学学报(工程科学版).37(4):65-68,2005.
    [91]钱知勉.聚甲醛的改性方向及其应用[J].上海塑料.131(3):31-33,2005.
    [92]王志刚.国内外聚甲醛生产进展[J].化工中间体.4:17-21,2005.
    [93]聚甲醛的应用[J].广东塑料.2005(08).
    [94]聚甲醛化学和物理特性简析[J].广东塑料.2005(Z1).
    [95]赵红军,蔡绪福,陈山玉等.聚甲醛耐老化性能及其改进研究[J].塑料工业.32(4):19-21,2004.
    [96]于建.聚甲醛的耐热稳定化研究[J].工程塑料应用.29(4):28-31,2001.
    [97]胡萍,黄畴,马定桂等.聚酯弹性体在汽车转向器中的应用研究[J].汽车技术.8:32-34,2003.
    [98]窦强,冯新,陆小华.聚甲醛自润滑复合材料的开发与应用[J].高分子材料科学与工程.19(1):36-40,2003.
    [99]施立新.均聚甲醛降解问题的探讨[J].上饶师范学院学报.21(3):47-49,2001.
    [100]何春霞,史丽萍.聚甲醛等塑料的耐磨性能分析[J].机械设计与制造工程.27(6):48-50,1998.
    [101]曲庆文,李小江,朱均等.汽车万向联轴器滑动轴承的研究[J].润滑与密封.5:58-61,1996.
    [102]于建.聚甲醛在沸水中的老化行为[J].中国塑料.1,1996.
    [103]冀克俭.XPS在聚合物表面降解研究中的应用[J].高分子材料科学与工程.5:12-17,1994.
    [104]苏诚伟,张德震,徐种德,胡企中.聚甲醛的热重分析研究[J].功能高分子学报.7(2):165-172,1994.
    [105]钟世云等编著.聚合物降解与稳定化[M].化学工业出版社,2002.
    [106]D.Briggs著,曹立礼,邓宗武译.聚合物表面分析[M].化学工业出版社,2001.
    [107]吴人洁等著.高聚物的表面与界面[M].科学出版社,1998.
    [108]周大纲,谢鸽成编著.塑料老化与防老化技术[M].中国轻工业出版社,1998.
    [109]董炎明编.高分子材料实用剖析技术[M].中国石化出版社,1997.
    [110]Cottin H, Gazeau MC, Doussin JF, Raulin F. An experimental study of the photodegradation ofpolyoxymethylene at 122,147 and 193 nm[J]. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY,135(1):53-64,2000.
    [111]Cottin H, Gazeau MC, Doussin JF. SEMAPh.Or.E COMETAIRE, a tool for the study of the photochemical decomposition of probable large organic molecules in comets. First application: Polyoxymethylene[J]. PHYSICS AND CHEMISTRY OF THE EARTH PART C-SOLAR-TERRESTIAL AND PLANETARY SCIENCE,24(5):597-602,1999.
    [112]DAINTON FS, IVIN KJ, WALMSLEY DAG. THE EQUILBRIUM BETWEEN GASEOUS FORMALDEHYDE AND SOLID POLYOXYMETHYLENE[J]. TRANSACTIONS OF THE FARADAY SOCIETY,55(1):61-64.1959.
    [113]KUHN HJ, BRASLAVSKY SE, SCHMIDT R. CHEMICAL ACTINOMETRY[J]. PURE AND APPLIED CHEMISTRY.61(2):187-210,1989.
    [1]4]彭杰.烧蚀模式激光推力器的实验研究[D],合肥:中国科学技术大学,2009:28.
    [115]彭杰.烧蚀模式激光推力器的实验研究[D],合肥:中国科学技术大学,2009:40-42.
    [116]高明亮.基于傅里叶变换红外光谱技术的多组分气体定量分析研究[D],合肥:中国科学技术大学,2010.
    [117]G.D.Christian, J.E.O'Reilly仪器分析[M_],北京大学出版社,1991.
    [118]黄君礼,鲍治宇.紫外吸收光谱法及应用[M],中国科学技术出版社,1992.
    [119]常建华,董绮功.波谱原理及解析[M].科学出版社,2001.
    [120]王彦吉,宋增福.光谱分析与色谱分析[M],北京大学出版社,1995.
    [121]北京大学化学系.仪器分析教程[M],北京大学出版社,1997.
    [122]刘建学.实用近红外光谱分析技术[M],科学出版社,2008.
    [123]Jerry Workman, Jr Lois Weyer. Practical Guide to Interpretive Near-Infrared Spectroscopy[M],化学工业出版社,2009.
    [124]冯玉红.现代仪器分析实用教程[M],北京大学出版社,2008.
    [125]陈海生.现代光谱分析[M],人民卫生出版社,2010.
    [126]J.I.斯坦菲尔德.分子与辐射[M],科学出版社,1983.
    [127]彭杰.烧蚀模式激光推力器的实验研究[D],合肥:中国科学技术大学,2009:45-55.
    [128]彭杰.烧蚀模式激光推力器的实验研究[D],合肥:中国科学技术大学,2009:57.
    [129]张庆红.激光推力器的设计及研究[D],合肥:中国科学技术大学,2007:22-29.
    [130]龚平.大气呼吸模式激光推进的研究[D],合肥:中国科学技术大学,2004:116-120.
    [131]林来兴.现代小卫星的微推进系统[J].航天器工程.19(6):13-20,2010.
    [132]林来兴.小卫星技术发展和应用前景[J].航天器工程.15(3):14-18,2006.
    [133]Janson S W. The future of small satellites [M]. Smal 1 Satellites Past, Present, and Future. The Aerospace Press,2009.
    [134]Juergen M. A survey of miero thrust propulsion options for micros spacecraft and formation flying missions[C].15 Annual CubeSat Developers Workshop, April9,2008.
    [135]Micci M M, Ketsdever A D. Micro-propulsion for smallspacecraft[M]. Progress in Astronautics and Aeronautics, V.187, VAAIAA, lne.2000.
    [136]Ross C. Design, fabrication and modeling of solid propellant microcket-app. to micro propulsion[J]. Sensor and Actuator, A.99:125-133,2003.
    [137]刘建惟.以MEMS技术为基础之太空微推力器发展现况[J].奈米通信.12(3),2006.
    [138]Zhang K L. Development of a solid propellant microthruster with chamber and nozzle etched no a wafersurface[J]. J. Micro mechanism. Micro engineering,14:785-792,2004.
    [139]张广科,山世华,樊超.卫星推进剂发展趋势概述[J].化学推进剂与高分子材料.10(1):71-74.2012.
    [140]高思秘,张起源,刘墅,等.液体推进剂[M].北京:宇航出版社,1989.
    [141]禹天福.胶体推进剂的研究与应用[J].导弹和航天运载技术,5:36-43,2002.
    [142]吴汉基,蒋远大,张志远.电推进技术的应用与发展趋势[J].推进技术,5:385-392,2003.
    [143]尤政,张高飞,任大海MEMS微推进技术的研究[J].纳米技术与精密工程,2:98- 105,2004.
    [144]赵杰,唐德礼,汪礼胜.霍尔推力器放电等离子体的数值模拟研究与发展[J].上海航天,2008(2):36-41.
    [145]禹天福.空间化学推进技术的发展[J].火箭技术,31(6):23-29,2005.
    [146]Youngner Daniel W, Lu Son Thai, Choueriri Edgar.et al. MEMS mega-pixel microthruster arrays for small satellite stationkeeping[C].4thAnnual AIAA/USU Conference on Small Satellites. 2001.
    [147]Pranajaya F, Cappelli M. Progress on colloid microthruster research and flight testing[R]. Stanford-.Stanford University,2000.
    [148]J. Mueller, "Thruster options for microspacecraft: a review and evaluation of state-of-the-art and emerging technologies," in Progress in Astronautics and Aeronautics 187, M. Micci and A. Ketsdever, eds., American Institute of Aeronautics and Astronautics, Reston VA (2000) p.80
    [149]M. Andrenucci, F. Ceccanti, M. Saverdi and M. Saviozzi, Qualification status of the FEEP-5 electric micropropulsion subsystem[C],41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2005.
    [150]H. Horisawa and K. Sasaki, Proc.29th International Electric Propulsion Conference[C], 2005.
    [151]D. Simon, B. Land, A. Nedungadi and B. Cybyk, Instrumentation development for microO pulsed plasma thruster experiments[C],41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2005.
    [152]C. Phipps, J. Luke and W. Helgeson,3ks specific impulse with a ns-pulse laser microthruster, 29th International Electric Propulsion Conference[C],2005.
    [153]C. Phipps, J. Luke and W. Helgeson, Giant momentum coupling coefficients from nanoscale laser-initiated exothermic compounds,41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference[C],2005.
    [154]R. Leach, Development of a μ Newton Thruster for use with a Drag Free Control system and Formation Flying Satellites[C],1st International Symposium on Formation Flying Satellites, 2003.
    [155]C. Phipps, Will your children ride a laser beam into orbit? Would you want them to?[C], Proc. Third International Symposium on Beamed Energy Propulsion, AIPConference Proceedings 766:11-22,2005.
    [156]Cai Jian, Li Long, Du Yu, ZhiPing Tang, XiaoJun Hu. Experimental and numerical Investigation of Propellant of Different Thickness for Laser Micro Propulsion[C],6th International Symposium on Beamed Energy Propulsion, AIP Conference Proceedings 1230:186-192,2009.
    [157]L. Urech et al. Polymer ablation:From fundamentals of polymerdesign to laser plasma thruster[J], Applied Surface Science,253 (15):6409-6415,2007.
    [158]C. R. Phipps et al. Performance Test Results for the Laser-Powered Microthruster, AIP Conference Proceedings[C].830:224-34,2006.
    [159]蔡建.激光微推进的原理和应用研究[D],合肥:中国科学技术大学,2007:61-76.
    [160]蔡建.激光微推进的原理和应用研究[D],合肥:中国科学技术大学,2007:30-31.
    [161]王文强.离散元方法及其在材料和结构力学响应分析中的应用[D].合肥:中国科学技术大学,2000.
    [162]唐志平.激光辐照下充压柱壳失效的三维离散元模拟[J].爆炸与冲击,21(2):1-7,2001.
    [163]唐志平.三维离散元方法及其在冲击力学中的应用,中国科学(E辑).33(11):989-998,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700