超磁仿生机器鱼力学机理及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业、国防、石油化工和医学等领域中,由于环境和其它因素的限制,迫切需要各种能在液体介质中平稳灵活移动的新型微小型机器人。特别是无线驱动并具有很高的机动性和灵活性的机器人更受人青睐。比如在医学中利用微小型机器人做精密手术,能避免对患者手术开刀和缝补伤口,将使患者的伤害达到最小。再比如,在工业上,微小型机器人常常被用来维护工业管道以及探伤等。随着智能材料的研制和应用,微小型机器人得到了较快的发展。超磁致伸缩材料是一种特殊的智能材料,通过外磁场可以达到无线控制的目的。因此研究和设计特殊的仿生超磁机器鱼,成为一个较好的选择。然而这类机器鱼驱动的关键技术和机理有待于进一步研究。
     本文采用合金薄板模拟鱼尾骨架,贴在该薄板上的超磁致伸缩材料模拟鱼体肌肉,用外磁场来模拟鱼的神经控制系统,建立了一种利用外磁场驱动仿生机器鱼的力学模型。通过研究机器鱼的游动机理,设计了一种驱动机器鱼游动的超磁动力驱动器。超磁仿生机器鱼的设计避免了携带动力系统,易于实现机器鱼的小型化和微型化,并在管道作业等有着重要的意义。
     论文分析了外磁场频率、鱼尾材料参数和几何参数等因素对鱼尾摆动所产生的平均驱动力的影响。发现了外磁场频率接近鱼尾系统的固有频率时,鱼尾摆动所产生的驱动力达到一个较大的峰值。这样通过调节外部磁场频率可实现了控制超磁机器鱼游动。通过对鱼尾的不同摆动模式进行了数值模拟,得到了鱼尾的各种摆动模态、鱼体游动轨迹以及鱼尾摆动流场尾迹。模拟自然界鱼类特征,揭示了自然界金枪鱼类,梭鱼类和蝴蝶鱼类等的游动机理。
     计算和分析结果表明,在外磁场作用下,机器鱼鱼尾被激励和摆动,其摆动模态可以通过调节外磁场强度和频率来控制。在一般情况下当外磁场以系统的二阶固有频率工作时其工作效率最佳。在此情况下鱼尾摆动产生了推力型反卡门涡街形态的尾迹涡流。针对不同的液体媒介或不同的鱼尾材料和几何形状,最优的鱼尾摆动所对应的最佳外磁场频率是不同的。应该指出鱼尾长度对机器鱼的游动也有较大的影响。各阶摆动模态都存在一个最佳鱼尾长度,这样通过改变鱼尾的长度,也可以调整机器鱼游动的姿态,以适应具体环境。借助于此研究和发现,以及优化鱼尾长度和外磁场频率等参数,提出了机器鱼的一种新的设计思想,设计出前后两鱼尾的新型水下双尾机器鱼。该仿生机器鱼在外磁场一特定的频率下向前游动,而在另一特定的频率下向后游动。这样实现了通过调整外部磁场频率控制机器鱼前后游动。在此基础上考虑非线性阻尼和几何大变形情况,研究和讨论了问题的稳态解和非稳态解。结合金枪鱼和梭子鱼的形态特征,以三种形状的鱼尾为例,它们分别对应矩形参照鱼尾、金枪鱼月牙形鱼尾和梭子鱼形态特征鱼尾。分别以问题的稳态解和非稳态解研究了机器鱼巡游和加速游动以及沿鱼尾长度的驱动力分布。揭示了鱼尾形状对机器鱼性能的影响,同时也解释了鱼类游动的物理现象。研究结果对仿生机器鱼性能方面的设计有特殊的应用价值。
Many new type micro robots that can swim smoothly in liquids medium have urgently been demanded in industrial,national defensive,petrochemical and medical fields due to constraints of the environment or other special conditions.Especially the wireless driven robot with high flexibility has being more popular with people.For instance,by using micro robots,a delicate surgical operation can avoid dismantling and reassembling,which minimizes the patient's hurt.On the other hand,micro robots are often proposed to maintain factory pipelines or fault detection.The study on micro robot has enormously been developed with the coming forth and application of giant magnetostrictive materials,which can be controlled in wireless utilizing external magnetic field as a special intelligent material.Therefore,studying and designing advanced magnetic bionic robot fish has become a significative research choice. However,the key technologies and mechanism of this type of machine-driven fish should be further explored.
     In this paper,the mechanics model of a bionic robot fish,which is composed of muscle, tail and neural control system and simulated respectively by giant magnetostrictive material (GMM),elastic sheet and external magnetic field,is built.With the aid of its swimming mechanism,a GMM actuator(GMMA) is devised.The new type bionic robot fish controlled by GMMA,abandons traditional power system,paves a way for achieving micromation and has an extremely significance for working in pipelines.
     The effects of external magnetic field frequency,material parameters and geometrical parameters of fishtail on the average propulsion produced by swing tail are analyzed.It is found that the average driving force can reach a peak value when the forced external magnetic field has a same frequency as the tail system.Thus the robot fish swimming can be controlled by adjusting the frequency of the external magnetic field.The fishtail wakes for several system frequency modals are obtained through numerical simulation.The characteristics of tuna,pike and butterflyfish are simulated and the kinematic mechanism of swimming,acceleration and turning are discussed in detail.
     The numerical and analytical results show that the magnetostrictive effect of GMM can drive the fishtail's swing,and the tail vibration modes can be controlled by frequency and magnetic density of the altemant external magnetic field.Generally,the best efficiency is obtained in second order vibration mode of the fishtail,and the reverse Karman Vortex Street wake is observed with corresponding frequency.The best frequency of external magnetic field corresponding to fish tail swing is changed with different liquid medium,fish tail material or geometrical shape.It should be pointed out that the influence of the tail length on robot swimming is also marked and each order vibration mode has a best tail length.Therefore,in order to adapt fish to specific environment,the swimming posture can be adjusted by changing the tail length.According to the above findings,the optimized fish length and external magnetic field frequency,a new type bionic robot fish with two tails is devised,which can move forward and backward by changing the magnetic field.Considering nonlinear damping and geometric large deformation,steady and nonsteady solutions of the main tail's vibrational problem is discussed.Three kinds of fish tails are supposed,which are corresponding to square,tuna's and pike's tail respectively.It is found that the steady and nonsteady solutions are in accord with the dynamic characteristics of tuna and pike.Thus the influence of tail shape on robot fish performance is revealed,and the physical phenomenon of fish swimming is explained in this paper.Obviously,these study results have special using value for performance design of bionic robot fish.
引文
[1]王硕,谭民.机器鱼[M].北京:北京邮电大学出版社,2006.
    [2]蒋玉杰,李景春,俞叶平等.泳动型水下机器人的研究进展探析[J].机器人,2006,28(2):229-234.
    [3]喻俊志,陈尔奎,王硕等.仿生机器鱼研究的进展与分析[J].控制理论与应用,2003,20(4):485-491.
    [4]Domenici P,Blake R.The kinematics and performance of fish fast-start swimming[J].The Journal of Experimental Biology,1997,200:1165-1178.
    [5]Triantafyllou M S,Barrett D S,Yue D K P,et al.A new paradigm of propulsion and maneuvering for marine vehicles[J].Society of Naval Architects and Marine Engineers,1996,104:81-100.
    [6]童秉纲.游动和飞行的仿生力学问题[J].科技文萃,2004,(7):39-41.
    [7]程健宇,庄礼贤,童秉纲.三维变幅波板的游动[J].水动力学研究与进展(A辑),1991,6(增刊):1-11.
    [8]Breder C M.The locomotion of fishes[J],Zoologica,1926,4:159-256.
    [9]Sfakiotakis M,Lane D M,Davies J B C.Review of fish swimming modes for aquatic locomotion[J].IEEE Journal of Oceanic Engineering,1999,24(2):237-252.
    [10]Webb P M.Form and function in fish swimming[J].Scientific American,1984,251(1):58-68.
    [11]Videler J J.Fish swimming[M],London,U.K.:Chapman&Hall,1993.
    [12]Lindsey C C.Form function and locomotory habits in fish[M].Fish Physiology,Hoar W S and Randall D J,Eds,New York:Academic Press,1978,Ⅶ Locomotion:1-100.
    [13]Gray J.Studies in animal locomotion:Ⅵ.The propulsive powers of the dolphin[J].The Journal of Experimental Biology,1936,13:192-199.
    [14]Fein J.Dolphin drag reduction:Myth or magic.Proceeding of the International Symposium on Seawater Drag Reduction[C],Office of Naval Research,1998:429-432.
    [15]Fish F E,Hui C A.Dolphin swimming-a review[J].Mammal Review,1991,21(4):181-195.
    [16]Hoyt J W.Hydrodynamic drag reduction due to fish slimes.Wu T V T,Brokaw C J,Brennan C(eds),Swimming and Flying in Nature[M],New York:Plenum Press,1975,2:653-672.
    [17]Kramer M O.Boundary layer stabilization by distributed damping[J].Journal of the Aeronautical Sciences,1957,24(6):459-460.
    [18]Taylor G I.Analysis of the swimming of microscopic organisms.Proceedings of the Royal Society of London[J],1951,A209:447-461.
    [19]Lighthill J.Note on the swimming of slender fish[J].Journal of Fluid Mechanics,1960,9:305-317.
    [20]Lighthill J.Aquatic animal propulsion of high hydromechanical efficiency[J].Journal of Fluid Mechanics,1970,44:265-301.
    [21]Lighthill J.Large amplitude elongated-body theory of fish locomotion[J].Proceedings of the Royal Society of London,Series B,Biological Sciences,1971,179(1055):125-138.
    [22]Wu T Y.Swimming of a waving plate[J].Journal of Fluid Mechanics,1961,10:321-344.
    [23]Wu T Y.Hydromechanics of swimming propulsion[J].Journal of Fluid Mechanics,1971,46:337-355,521-544,545-568.
    [24]俞经虎,竺长安,陈宏等.多关节鱼形机器人的动态特性的建模与仿真研究[J].水动力学研究与进展,2005,20(3):381-385.
    [25]俞经虎,竺长安,朱家祥等.仿生机器鱼尾鳍的动力学研究[J].系统仿真学报,2005,17(4):947-953.
    [26]俞经虎,竺长安,程刚等.弹性装置提高机器鱼推进效率的研究[J].机器人,2004,26(5):416-438.
    [27]Cheng J Y,Zhuang L X,Tong B G.Analysis of swimming 3-D waving plate[J].Journal of Fluid Mechanics,1991,232:341-355.
    [28]童秉纲,王安平.三维波动板加速运动的推进性能研究[J].水动力学研究与进展,1991,9(3):285-293.
    [29]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用[J].自然杂志,1998,20:1-7.
    [30]童秉纲.鱼类波状游动的推进机制[J].力学与实践,2000,22(3):69-74.
    [31]梁建宏,王田苗,魏洪兴等.水下仿生机器鱼的研究进展Ⅰ—鱼类推进机理[J].机器人,2002,24(2):107-111.
    [32]梁建宏,王田苗,魏洪兴等.水下仿生机器鱼的研究进展Ⅱ—小型实验机器鱼的研制[J].机器人,2002,24(3):234-238.
    [33]梁建宏,王田苗,魏洪兴等.水下仿生机器鱼的研究进展Ⅲ—水动力学实验研究[J].机器人,2002,24(4):304-308.
    [34]梁建宏,王田苗,魏洪兴等.水下仿生机器鱼的研究进展Ⅳ—多仿生机器鱼协调控制研究[J].机器人,2002,24(5):413-417.
    [35]王田苗,梁建宏.基于理想推进器理论的尾鳍推力与效率估算[J].机械工程学报,2005,41(8):18-23.
    [36]涂晓媛.人工鱼-计算机动画的人工生命方法[M].北京:清华大学出版社,2001.
    [37]王亮.仿生鱼群自主游动及控制的研究[D].南京市:河海大学,2007.
    [38]Triantafyllou M S,Triantafyllou G S.An efficient swimming machine[J].Scientific American,1995,272:64-70.
    [39]张义明,战兴群,张炎华.仿生机器鱼的运动规律研究[J].中国造船,2006,47(3):90-94.
    [40]李明,史金飞,宋春峰等.一种摆动式柔性尾部的仿生机器鱼[J].东南大学学报(自然科学版),2008,38(1):32-36.
    [41]Kumph J M,Triantafyllou M S.A fast-starting and maneuvering vehicle,the Robopike[C].In Proceedings of the International Symposium on Seawater Drag Reduction,Meng J C S,ed.Newport,Rhode Island,1998:485-490.
    [42]Ayers J,Wilbur C,Olcott C.Lamprey robots[C].Proceedings of the International Symposium on Aqua Biomechanisms,Tokai University,2000:1-6.
    [43]王硕.仿生机器鱼[J].科学杂志,2006,6(数字版):33-35.
    [44]周超,曹志强,王硕等.仿鲹科机器鱼的倒退游动控制[J].自动化学报,2008,34(8):1024-1027.
    [45]周超,曹志强,王硕等.仿生机器鱼俯仰与深度控制方法[J].自动化学报,2008,34(9):1215-1218.
    [46]梁建宏,邹丹,王松等.SPC-Ⅱ机器鱼平台及其自主航行实验[J].北京航空航天大学学报,2005,31(7):709-713.
    [47]王松,王田苗,梁建宏.机器鱼辅助水下考古实验研究[J].机器人,2005,27(2):147-172.
    [48]王田苗,马文凯,梁建宏.仿生机器鱼尾鳍拍动的控制算法[J].北京航空航天大学学报,2006,32(10):1157-1162.
    [49]王田苗,孟刚,梁建宏等.SPC系列仿生机器鱼的高频拍动[J].吉林大学学报(工学版),2008,38(6):1412-1417.
    [50]Kato N.Control performance in horizontal plane of fish robot in mechanical pectoral fins[J].IEEE Journal of Oceanic Engineering,2000,25(1):121-129.
    [51]Hirata T.Welcome to fish robot home page[EB/OL].2000,Accessed on 18 December 2008,Available:http://www.nmri.go.jp/eng/khirata/fish/experiment/upf2001/index_e.html
    [52]李旻,章亚男,米智楠等.管道微机器人技术的现状与趋势[J].机械设计,2000,17(10):1-4.
    [53]许良.微医疗机器人旋转磁场驱动电源的研究[D].大连市:大连理工大学,2006.
    [54]Fukuda T,Hosokai H,Kikuchi I.Distributed type of actuators by shape memory alloy and its application to underwater mobile robotic mechanism[C].Proceedings IEEE International Conference on Robotics and Automation,Cincinnati,OH,USA,1990,2:1316-1321.
    [55]Fukuda T,Kawamoto A,Arai F,et al.Mechanism and swimming experiment of micro mobile robot in water[C].Proceedings IEEE Micro Electro Mechanical Systems.An Investigation of Micro Structures,Sensors,Actuators,Machines and Robotic Systems,Oiso,Japan,1994:273-278.
    [56]Guo S X,Fukuda T Asaka K.A new type of fish-like underwater microrobot[J].IEEE Transactions on Mechatronics,2003,8(1):136-141.
    [57]陈和恩,陈扬枝,姚华平.管道微机器人自润滑轮式驱动器行进速度试验研究[J].现代制造工程,2006,(6):7-9.
    [58]周银生,李立新,赵东福.一种新型的微型机器人[J].机械工程学报,2001,37(1):11-13.
    [59]张永顺.国外微型管内机器人的发展[J].机器人,2000,22(6):506-513.
    [60]Fukuda T,Hosokai H,Arai F.Giant magnetostrictive alloy(GMA) applications to micro mobile robot as a micro actuator without power supply cables[C].Proceedings IEEE Conference Micro Electro Mechanical Systems,Nara,Japan,1991:210-215.
    [61]Mei T,Chen Y,Kong D,et al.A microrobot driven by ferromagnetic polymer(FMP)actuators[C].1st Korea-China Joint Workshop on Robotics,Pohang,Korea,2001:19-21.
    [62]徐君书.管道探测无缆微机器人微波供能系统[J].无线电技术,2006,(0):62-69.
    [63]Hayashi I,Iwatsuki N,Iwashina S.The running characteristics of a screw-principle microrobot in a small bent pipe[C].Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995:225-228.
    [64]万海波,包至炎.螺旋轮式微型管道机器人设计[J].机械工程师,2008,(7):6-7.
    [65]孙麟治,孙萍,秦新捷等.细小管道内爬行的微机器人[J].光学精密工程,1998,6(5):57-63.
    [66]Carrozza M C,Lencioni L,Magnani,B,et al.A microrobot for colonoscopy[C].Seventh International Symposium on Micro Machine and Human Science,Nagoya,Japan,1996:223-228.
    [67]李孟春,武利生,郑利红等.电磁驱动的小型管道机器人研究[J].太原理工大学学报,2002,33(2):189-200.
    [68]王科俊,任思.泳动式微型管道机器人的设计及运动分析[J].黑龙江科技学院学报,2008,18(1):11-13.
    [69]梅涛,陈永,张培强等.铁磁橡胶执行器与微型游泳机器人的尺度效应[J].光学精密工程,2001,9(6):523-526.
    [70]Mei T,Chen Y,Fu G Q,et al.Wireless drive and control of a swimming microrobot[C].International Conference on Robotics & Automation,Washington D C,USA,2002:1131-1136.
    [71]Zhang Y,Wang Q M,Zhang P Q,et al.Dynamic analysis and experiment of a 3mm swimming microrobot[C].International Conference on Intelligent Robots and Systems,Sendai,Japan,2004:1746-1750.
    [72]Zhang Y,Wang X H,Mei T.Driving principle and dynamic analysis of a micro swimming robotiC].Proceeding of the 5th World Congress on Intelligent Control and Automation,Hang Zhou,P.R.China,2004:4582-4586.
    [73]Saotome H,Okubo T,Ikeda Y.A novel actuator with Nd-Fe-B magnets swimming in parallel to the magnetic field[J].IEEE Transactions on Magnetics,2002,38(5):3009-3011.
    [74]Yamazaki A,Sendoh M,Ishiyama K,et al.Wireless micro-machine with magnetic thin film[C].International Symposium on Micromechatronics and Human Science,Tokyo,Japan,2003:39-44.
    [75]Honda T,Sakashita T,Narahashi K,et al.Swimming properties of a bending-type magnetic micro-machine[J],Journal of the Magnetics Society of Japan,2001,25:1175-1178.
    [76]Sudo S,Orikasa R,Honda T.Locomotive characteristics of swimming mechanism propelled by alternating magnetic field[J].International Journal of Applied Electromagnetics and Mechanics,2004,19:263-267.
    [77]Guo S X,Sasaki Y,Fukuda T.A fin type of microrobot in pipe[C].International Symposium on Micromechatronics and Human Science,Nagoya,Japan,2002:93-98.
    [78]Guo S X,Sasaki Y,Fukuda T.Development of a new kind of microrobot in pipe[C].International Conference on Robotics,Intelligent Systems and Signal Processing,Changsha,China,2003:692-697.
    [79]Guo S X,Sawamoto J,Pan Q X.A novel type of microrobot for biomedical application[J].Intelligent Robots and Systems,Edmonton,Alberta,Canada,2005:1047-1052.
    [80]Tomie M,Takiguchi A,Honda T,et al.Turning performance of fish-like microrobot driven by external magnetic field[J].IEEE Transactions on Magnetics,2005,41(10):4015-4017.
    [81]于克龙.微型泳动机器人理论及实验研究[D].杭州市:浙江大学,2005.
    [82]李江雄,郭彤,柯映林.基于光学导航定位的钹形压电微型管道机器人[J].浙江大学学报(工学版),2006,40(6):927-941.
    [83]Mojarrad M,Shahinpoor M.Biomimetic robotic propulsion using polymeric artificial muscles[C],Proceedings of International Conference on Robotics and Automation Albuquerque,NM,USA,1997,3:2152-2157.
    [84]谭湘强,钟映春,杨宜民.游动微机器人推进机理研究[J].机械工程师,2002,10:3-6.
    [85]王化明,朱剑英,何均.菱形介电弹性体驱动器预载荷分析[J].机器人,2008,30(6):572-576.
    [86]孙章军.管道检测微型机器人技术研究[D].北京市:北京化工大学,2007.
    [87]章永华,马记,何建慧等.基于人工肌肉的仿生机器鱼关节机构设计与力学分析[J].机器人,2006,28(1):40-44.
    [88]王博文.超磁致伸缩材料制备与器件设计[J].冶金工业出版社,2003.
    [89]Clark A E.Ferromagnetic Material 1[M].Holland:Wohlfath E P,North-Holland Publishing Company,1980.
    [90]刘楚辉.超磁致伸缩材料的工程应用研究现状[J].机械制造,2005,42(492):25-27.
    [91]赵仑,任冲.稀土超磁致伸缩材料的应用研究现状[J].湛江海洋大学学报,2003,23(3):77-80.
    [92]张永顺,李海亮,刘巍等.超磁致伸缩薄膜尾鳍机器鱼的仿生游动机理[J].机械工程学报,2006,2(42):37-42.
    [93]张德欣,安伟光,张永顺.微机器鱼尾鳍形状的结构优化[J].哈尔滨工程大学学报,2008,29(9):912-917.
    [94]章永华,何建慧,吴月华等.基于功能材料的柔性多关节水下仿鱼形推进器设计及分析[J].机器人,2006,28(4):367-373.
    [95]章永华,何建慧,张世武等.NiTi形状记忆合金驱动的仿生鱼鳍的研究[J].机器人,2007,29(3):207-213.
    [96]章永华,何建慧,张世武等.仿生鱼鳍中形状记忆合金驱动器的水下变形精度分析[J].机器人,2007,29(4):320-325.
    [97]Dario P,Carrozza M C,Lencioni L,et al.A micro robotic system for colonoscopy[C].International Conference on Robotics and Automation,Albuquerque,New Mexico,USA,1997:1567-1672.
    [98]杭观荣,曹国辉,王振龙等.SMA驱动的仿生机器人研究现状及其展望[J].微特电机,2006,11:4-8.
    [99]Yan G Z,Lu Q H,Ding G Q,et al.The prototype of a piezoelectric medical microrobot[C].International Symposium on Micromechatronics and Human Science,Nagoya,Japan,2002:73-77.
    [100]Nishikawa H,Sasaya T,Shibata T,et al.In-pipe wireless micro locomotive system[C].International Symposium on Micromechatronics and Human Science,Nagoya,Japan,1999:141-147.
    [101]Tuncdemir S,Koc B,Erden A.Design of a swimming mini robot[C].The 9th Mechatronics Forum International Conference,Ankara,Turkey,2004:1-10.
    [102]Guo S X,Fukuda T,Oguro K.Development of an artificial fish microrobot[C].International Symposium on Micromechatronics and Human Science,Nagoya,Japan,1999:135-140.
    [103]Guo S X,Hasegaw Y,Fukuda T,et al.Fish-like underwater microrobot with multi DOF[C].International Symposium on Micromechatronics and Human Science,Nagoya,Japan,2001:63-68.
    [104]Guo S X,Fukuda T,Asaka K.Fish-like underwater microrobot with 3 DOF[C].International Conference on Robotics & Automation,Washington,DC,USA,2002:738-743.
    [105]Guo S X,Okuda Y,Asaka K.A novel type of underwater micro biped robot with multi DOF[C].International Conference on Robotics & Automation,New Orleans,USA,2004:4881-4886.
    [106]Guo S X,Kato N,Fukuda T,et al.A fish-microrobot using ICPF actuator[C].5th International Workshop on Advanced Motion Control,New Jersey,USA,1998:592-597.
    [107]Laurent G,Piat E.Efficiency of swimming microrobots using ionic polymer metal composite actuators[C].International Conference on Robotics & Automation,Seoul,Korea,2001:3914-3919.
    [108]Choi H R,Ryew S M,Jung K M,et al.Micro robot actuated by soft actuators based on dielectric elastomer[C].International Conference on Intelligent Robots and Systems EPFL,Lausanne,Switzerland,2002:1730-1735.
    [109]Fukuda T,Kawamoto A,Arai F,et al.Steering mechanism of underwater micro mobile robot[C].IEEE Conference on Robotics and Automation,Nagoya,Japan,1995,1:363-368.
    [110]Otsuka A.Development of an eating function support system[C],Proc.1st IARP Workshop Medical and Healthcare Robots,Ottawa,Canada,1988:789-792.
    [111]张毅,杨锐敏,王洲等.机器鱼的研究动态综述[J].重庆邮电大学学报,2007,19(5):598-601.
    [112]刘佳宇,蔡灏,谭湘强.仿生鱼型微机器人推进机理的研究[J].长沙交通学院学报,2004,20(3):73-76.
    [113]张向明,李玉江.水下柔性鱼形机构原理及单尾鳍板水动力试验研究[J].海洋工程,2002,20(1):84-90.
    [114]刘军考,陈在礼,陈维山等.水下机器人新型仿鱼鳍推进器[J].机器人,2000,22(5):427-432.
    [115]朱豪华,付庄,赵言正.柔性机器鱼的仿生运动拟合控制研究[J].机电一体化,2006,3:35-38.
    [116]陈宜保,王文翰,杨翔等.超磁致伸缩材料性能测量实验[J].物理实验,2008,28(12):13-20.
    [117]袁惠群,李成英.稀土超磁致伸缩材料应力与电磁耦合特性的实验研究[J].力学与实践,2000,22(1):27-30.
    [118]张亚辉,林家浩.结构动力学基础[M].大连:大连理工大学出版社,2007.
    [119]纪亨腾,范菊,黄祥鹿.垂荡板水动力的数值模拟[J].上海交通大学学报,2003,37(8):1266-1270
    [120]Gerhart P M,Gross R J,Hochstein J I.Fundamentals of Fluid Mechanics 2nd Edition[M].USA:Addison Wesley,1992.
    [121]齐朝晖.多体系统动力学[M].北京:科学出版社,2008.
    [122]Prislin I,Blevins R D,Halkyard J E.Viscous damping and added mass of solid square plates[C].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,ASME Fairfield NJ,USA,1998:5-9.
    [123]Yang H T.A new approach of time stepping for solving transfer problems[J].Communications in Numerical Methods in Engineering,1999,(15):325-334.
    [124]Yang H T,Gao Q,Guo X L,et al.A new algorithm of time stepping in the non-linear dynamic analysis[J].Communications in Numerical Methods in Engineering,2001,(17):597-611.
    [125]吴燕峰,贾来兵,尹协振.斑马鱼S型起动运动学研究[J].实验力学,2007,22(5):519-526.
    [126]陈宏,竺长安,尹协振等.仿生机器鱼的快速起动性能研究[J].船舶力学,2007,11(5):647-654.
    [127]敬军,李晟,陆夕云等.鲫鱼C形起动的运动学特征分析[J].实验力学,2004,19(3):276-282.
    [128]Spalart P,Allmaras S.A one-equation turbulence model for aerodynamic flows[J].Rech Aerosp,1994,(1):5-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700