气体工质激光推力器工作过程数值模拟和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用激光代替传统火箭的化学能,激光推进飞行器能够以高载荷比、低成本、安全的方式将有效载荷送入近地轨道。相对于激光的分子吸收和粒子吸收机制,在气态工质环境中产生等离子体进行逆轫致吸收的方式工质温度更高,可望达到更高的比冲。本文针对吸气式脉冲爆震和火箭式连续激光加热两种气体工质激光推力器的工作模式,采用理论分析、数值模拟和实验验证的方法对其工作机理与性能进行了研究。
     建立了强激光作用下气体流动的控制方程组,针对不同推进模式的特点进行分析并给出了方程组相应的形式。详细给出了化学反应组元计算、高温非平衡与平衡热力学性质、输运性质、以及由于激光吸收、各内能模式弛豫、化学反应、热辐射产生的各种能量源项模型。
     针对吸气式脉冲爆震和连续激光加热这两种推进模式着重关注的问题进行了建模和分析。对一维激光爆震推力器,考虑激光束、推力器构型以及大气环境三方面参数的影响,采用特征线方法推导了冲量耦合系数的解析表达形式。针对抛物形爆震推力器,采用点爆炸理论和等效锥形约束空间获得了推力器工作性能的直接计算方法,计算结果与实验数据一致性较好。针对连续激光推力器中的等离子体稳定维持问题,通过简化分析给出了解析计算模型,该模型能够正确反映实验中稳定质量流量随压力、激光功率的变化趋势,并初步解释了推力器中存在稳定质量流量区间的原因。
     对推力器内部工作过程进行了数值仿真。对脉冲爆震推力器的非定常流场采用热化学非平衡模型,以隐式双时间步进格式计算了不同光强下的激光支持吸收波。计算结果表明,随入射光强增加,等离子体电子数密度达到临界值,吸收能量趋于饱和,有效吸收效率随之下降。这一结果合理解释了Mori实验中高脉冲能量条件下短脉宽对应冲量耦合系数低于长脉宽的现象,以及Schall实验中冲量耦合系数与光束质量提高相悖的现象。进一步研究了抛物形爆震激光推力器的工作过程,结果表明推力主峰后的压力振荡恢复过程对冲量有明显影响;由于更高的推力峰值和较长作用时间,平顶和较长推力室的结构可以明显提高获得的冲量。针对连续激光推力器重点研究了推进剂物性、激光功率和构型相对尺寸对推力器性能的影响。计算表明,给定喉部面积和室压时增大入射激光功率将使有效吸收效率降低;在10kW级激光作用下氢等离子体相对于氩具有更小的辐射损失,更适合应用于连续激光推力器;确定适当的内部流道尺寸可以提高工质比焓,显著提高推力器比冲。
     设计和加工了推力器原型并建立了相应实验系统。连续推力器的10kW级1s点火特性实验表明,在激光入射时间内,由于其击穿并加热气体,造成推力器室压和推力均持续上升,获得的推力峰值为1.075N,净推力为0.095N。空气爆震推力器实验表明,在340~480J强激光脉冲作用下,随脉冲能量上升冲量和冲量耦合系数均有所上升;同数值结果对比表明,二者在数值及发展趋势上均表现一致;440J以上点聚焦推力器出现冲量饱和效应,支持激光吸收波的计算结果。进行了空气爆震和烧蚀爆震两种飞行器多脉冲垂直飞行实验,前者运动轨迹与利用理论计算的结果基本吻合,验证了机理研究的结果;后者在多脉冲作用下由于吸收性烧蚀产物滞留,其冲量特性显著有别于单脉冲性能。
     初步探讨了组合吸气式脉冲爆震和连续激光加热这两种推进模式发射近地轨道微小卫星的问题,通过将控制律离散化,计算了利用单站地基激光器发射的弹道。结果表明,提高推进模式的切换高度,可以明显提高飞行器的入轨能力;采用高海拔发射点有利于降低发射过程中的总能量损耗;对于某一初始发射点海拔,激光器功率的选择应与之相匹配。
Using laser instead of chemical energy in conventional rockets, a laser propulsion vehicle can get into low earth orbit with higher payload ratio, less cost and more safety. Compared with molecular and particulate absorption mechanisms, higher temperature and specific impulse could be acquired by inverse bremsstrahlung absorption, with plasma generated by gas propellant. For two modes of gas propellant laser thruster, including air-breathing pulse detonation and continuous-wave(CW) thermal rocket, the operating mechanism and performance were investigated in this dissertation, by means of theoretical analysis, numerical simulation and experiments.
     The governing equations of flow-field under high power laser were established. For different propulsion mode, the characteristics were discussed and the corresponding equation forms were obtained. The physical models, including composition calculation, nonequilibrium and equilibrium thermodynamics properties, transport properties, and energy sources because of laser absorption, relaxation between internal energy modes, chemical reactions and radiation, were given to make the equations closed.
     Some key issues for the two propulsion modes were modeled and analyzed firstly. For one-dimension detonation thrusters, analytic expression of impulse coupling coefficient was obtained by characteristic method, considering effects of laser, thruster configuration and atmosphere condition. For parabolic detonation thrusters, a performance model was developed by using point explosion theory and an effective conical space. Correlative calculations coincide well with experimental data. And for stable plasma maintenance in CW thrusters, an energy equilibrium model was established by some simplification. Calculations show that the trend of stable mass rate for different pressures and laser powers is consistent with the experiment. And the existence of stable mass rate zone can be primarily explained.
     Then the operating processes of two thrusters were simulated numerically. For the unsteady flow of pulse detonation thruster, an implicit dual-time method was adopted to simulate the absorptive wave under different laser intensities, with thermo-chemical nonequilibrium model. As laser intensity increases, the critical electron number density would be attained, resulting in saturation of absorbed energy and descent of absorption efficiency. This result could properly explain the phenomena in Mori’s experiment, that impulse coupling coefficient of short pulse duration is lower than the long one under high pulse energy. And the phenomena in Schall’s experiment, that impulse coupling coefficient is opposite to the beam quality as pulse energy increasing, could also be explained. Subsequently, the operating process for parabolic thrusters was computed. Results imply the pressure recovery history has an important influence on total impulse received. And due to higher thrust peak and longer positive thrust time, the flat top and longer configuration would significantly enhance the performance. For CW thruster, the effects of propellant, laser power and thruster size were calculated by pressure-based SIMPLEC algorithm. The results indicate that given chamber pressure and nozzle throat, effective absorption efficiency would decrease with higher laser powers, and for laser power of 10kW level, thrusters with hydrogen has a better performance than argon due to its intrinsic properties. Furthermore, properly reducing internal space of thruster would increase the specific enthalpy and heat uniformity of the propellant, thus the specific impulse.
     Thruster prototypes were designed and manufactured, and corresponding experimental systems were set up. In the 10kW level and 1s ignition experiment for CW thruster, laser breakdown and heating led chamber pressure and thrust to continuously rise during irradiating. As a result, peak thrust of 1.075N and net thrust of 0.095N were obtained. The detonation thruster experiments between 340J and 480J show that both impulse and impulse coupling coefficient increases with pulse energy, and the simulation results are consistent well with experimental data. For point-focusing thruster, impulse saturation effect emerges above 440J, and this phenomenon supports the former absorptive wave calculation. Then multi-pulse vertical flight experiments were carried out with air-breathing pulse detonation and ablation detonation thrusters. Results show that for air-breathing thruster the experimental trace approximately accords with the calculation, and for ablation thruster the impulse characteristics are quite different from that of single pulse, possibly because of the stagnation of absorptive product.
     Combined the two propulsion modes, micro-satellite launch conception to low earth orbit was studied, and the trajectories with a single laser site were calculated by discretizing the control law. Results show that better capacity can be gained by increasing the height of mode switch, total energy can be reduced at higher launch altitude, and laser power should be selected to match a certain laser site altitude.
引文
[1] Kantrowitz A. The World, the Flesh and the Devil [C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 3-8.
    [2] Jones L W. A Brief History of Laser Propulsion at the Marshall Space Flight Center[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 61-70.
    [3] Kantrowitz A. Propulsion to Orbit by Ground-Based Lasers[J]. Astronautics and Aeronautics, 1972, 10(5): 74-76.
    [4] Myrabo L N. Brief History of the Lightcraft Technology Demonstrator(LTD) Project[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 49-60.
    [5] Schall W O, Bohn W L, Eckel H A, et al. Lightcraft Experiments in Germany[C]//Proc. of SPIE Vol. 4065, 2000: 472-481.
    [6] Black J W, Krier H, Zerkle D, et al. Characterization of Laser-Sustained Plasma Behavior During 10kW Laser Thruster Tests[R]. AIAA 1992-3022, 1992.
    [7] Toyoda K, Komurasaki K, Arakawa Y. Thrust performance of a CW laser thruster in vacuum[J].Vacuum, 2002, 65(3-4): 383-388.
    [8] Yabe T, Nakagawa R, Yamaguchi M, et al. Simulation and Experiments on Laser Propulsion by Water Cannon Target[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 185-193.
    [9] Ohkubo T, Yabe T, Miyazaki S, et al. Laser Propulsion Using Metal-Free Water Cannon Target[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2005: 394-405.
    [10] Onda M, Ootani T. Experimental Study on Continuous Liquid Propellant Supply Mechanisms for Water Cannon Laser Thruster[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 297-307.
    [11] Urabe N, Kim S, Sasoh A, et al. Vertical Launch Performance of Laser-driven In-Tube Accelerator[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 105-112.
    [12] Choi J Y, Sasoh A, Jeung I S, et al. Numerical and Experimental Studies of Laser-Driven Ram Accelerator[R]. AIAA 2001-3924, 2001.
    [13] Pang J S, Jeung I S, Choi J Y. A Numerical Study on Laser-Driven Ram Accelerator[R]. AIAA 2000-3491, 2000.
    [14] Choi J Y, Sasoh A, Jeung I S, et al. Numerical Study of Laser-Induced Pulsed Air-Breathing Propulsion[R]. AIAA 2002-2202, 2002.
    [15] Kim S, Cho H, Choi J Y, et al. Flow Characteristics of Two-Dimensional Supersonic Laser Propulsion Vehicle[R]. AIAA 2002-2204, 2002.
    [16] Kim S D, Pang J S, Jeung I S, et al. Numerical Simulation of Flow Characteristics of Supersonic Airbreathing Laser Propulsion Vehicle[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003.
    [17] Kim S, Jeung I S, Choi J Y. Numerical Simulation of Laser-driven In-Tube Accelerator on Supersonic Condition[C]//Second International Symposium on Beamed Energy Propulsion, CP702, 2004.
    [18] Kim S, Jeung I N, Choi J Y. Numerical Study on Thrust Performance Evaluation of Laser Propulsion during Supersonic-Hypersonic Flight[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2005.
    [19] Pakhomov A V, Thompson M S, Gregory D A. Ablative Laser Propulsion: A Study of Specific Impulse , Thrust and Efficiency[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 194-205.
    [20] Thompson M S, Herren K A, Lin J, et al. Effects of time Separeation on Double-Pulsed Laser Ablation of Graphite[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 206-213.
    [21] Pakhomov A V, Cohen T, Lin J, et al. Ablative Laser Propulsion: An Update, Part I[C]//Second International Symposium on Beamed Energy Propulsion, CP702, 2004: 166-177.
    [22] Pakhomov A V, Lin J, Thompson M S. Ablative Laser Propulsion: An Update, Part II[C]//Second International Symposium on Beamed Energy Propulsion, CP702, 2004: 178-189.
    [23] Myrabo L N, Borkowski C A, Kaminski D A. Analytical Investigation of an Airbreathing Repetitively Pulsed LSC-Wave Thruster: Part 1[C]//Fourth International Symposium, 2006: 58-71.
    [24] Myrabo L N, Messitt D G, Mead F B Jr. Ground and Flight Tests of a Laser Propelled Vehicle[R]. AIAA 1998-1001, 1998.
    [25] Bohn W L, Schall W O. Laser Propulsion Activities in Germany[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 79-91.
    [26]王楚,汤俊雄.光学[M].北京:北京大学出版社,2001.
    [27] Mori K, Komurasaki K, Arakawa Y. Laser Plasma Production and Expansion In A Supersonic Flow[R]. AlAA 2002-0634, 2002.
    [28] Katsurayama H, Ushio M, Komurasaki K, et al. Analytical Study on Flight Performance of a RP Laser Launcher[C]//Third International Symposium on Beamed Energy Propulsion, American Institute of Physics, CP766, 2005: 117-127.
    [29] Apollonov V V, Tishchenko V N. Stable Generation and Merging of Shock Waves for“Lightcraft”Applications: Part 1[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2004: 205-215.
    [30] Apollonov V V, Tishchenko V N. Stable Generation and Merging of Shock Waves for“Lightcraft”Applications: Part 2[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2004: 216-229.
    [31] Kare J T. Laser Launch: The Second Wave[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 22-36.
    [32] Schall W O, Tegel J, Eckel H A. Ablation Performance Experiments with Metal Seeded Polymers[C]//Third International Symposium on Beamed Energy Propulsion, NY CP766, 2005: 423-432.
    [33] Li L, Peng J, Hu X J, et al. Experimental Study of Polyformaldehyde Propellants Seeded With Micronicron-Scale Aluminum Powder for Laser Propulsion[C]//6th International Symposium on Beamed Energy Propulsion, American Institute of Physics, 2010: 176-185.
    [34] Phipps C R, Luke J R, McDuff G G, et al. A laser-ablation-based micro-rocket[R]. AIAA 2002-2152, 2002.
    [35] Phipps C R, Luke J R, Helgeson W, et al. Performance Test Results for the Laser-Powered Microthruster[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 224-234.
    [36] Phipps C R, Luke J R, Helgeson W. 3ks Specific Impulse with a ns-pulse Laser Microthruster[C]//International Electric Propulsion Conference, 2005.
    [37] Phipps C R, Luke J R, Helgeson W. Liquid-fueled, Laser-powed, N-class thrust Space Engine with Variable Specific Impulse[C]//Fifth International Symposium on Beamed Energy Propulsion, CP997, 2008: 222-231.
    [38] Kare J T. Near-Term Laser Launch Capability: the Heat Exchanger Thruster[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 442-453.
    [39] Kare J T. Development Programs for the Heat Exchanger Thruster and HX Laser Launch System[C]//Second International Symposium on Beamed Energy Propulsion, CP702, 2004: 251-262.
    [40] Kare J T. Modular Laser Options for HX Laser Launch[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2005: 128-139.
    [41] Horisawa H, Kawakami M, Lin W W, et al. Fundamental Study of a Laser-Assisted Plasma Thruster[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 423-432.
    [42] Igari A, Horisawa H, Kimura I. Ion Acceleration Characteristics of a Laser-Electrostatic Hybrid Microthruster[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2005: 442-451.
    [43] Shinohara T, Horisawa H, Baba M, et al. A Pulsed Laser-Electromagnetic Hybrid Accelerator for Space Propulsion Application[C]//6th International Symposium on Beamed Energy Propulsion, CP1230, 2010: 338-347.
    [44] Ushio M, Kawamura K, Komurasaki K, et.al. Blast Wave Energy Conversion Process in a Line-Focusing Laser Supported Detonation Waves[R]. AIAA 2006-1356, 2006.
    [45] Ushio M, Kawamura K, Komurasaki K, et.al. Energy Conversion Process in Laser Supported Detonation Waves Induced by a Line-Focusing Laser[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 133-141.
    [46] Fujiwara T, Miyasaka T. Laser-Supported Detonation Concept as a Space Thruster[C]//Second International Symposium on Beamed Energy Propulsion, CP702, 2004: 80-91.
    [47] Shiraishi H. Fundamental Properties of Non-equilibrium Laser-Supported Detonation Wave[C]//Second International Symposium on Beamed Energy Propulsion, CP702, 2004: 68-79.
    [48] Shiraishi H. Numerical Analysis on Non-Equilibrium Mechanism of Laser-Supported Detonation Wave Using Multiply-Charged Ionization[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 142-150.
    [49]李倩,洪延姬,曹正蕊,等.吸气式激光推进中激光能量沉积过程的数值模拟[J].强激光与粒子束, 2009, 21(12): 1781-1785.
    [50] Wang T S, Chen Y S, Liu J, et al. Performance Modeling of an Experimental Laser Propelled Lightcraft[R]. AIAA 2000-2347, 2000.
    [51] Liu J, Chen Y S, Wang T S. Accurate Prediction of Radiative Heat Transfer in Laser Induced Air Plasmas[R]. AIAA 2000-2370, 2000.
    [52] Wang T S, Chen Y S, Liu J, Myrabo L N, et al. Advanced Performance Modeling of Experimental Lightcrafts[R]. AIAA 2001-0648, 2001.
    [53] Wang T S, Mead F B, Larson C W. Analysis of the Effect of Pulse Width on Laser Lightcraft Performance[R]. AIAA 2001-3664, 2001.
    [54] Chen Y S, Liu J, Wang T S. Numerical Modeling of Laser Supported Propulsion with an Aluminum Surface Breakdown Model[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 138-148.
    [55]孙承纬.激光辐照效应[M].北京:国防工业出版社, 2002.
    [56]张家泰.激光等离子体相互作用物理与模拟[M].郑州:河南科学技术出版社, 1999.
    [57]常铁强,张钧,张家泰等.激光等离子体相互作用与激光聚变[M].长沙:湖南科学技术出版社, 1991.
    [58]鄢昌渝,吴建军,刘洪刚,等.激光参数对光船性能影响分析[J].航空学报, 2009, 30(2): 193-199.
    [59]鄢昌渝.激光等离子体相互作用机理与大气吸气式激光推进数值计算研究[D].长沙:国防科学技术大学,2008.
    [60] Schall W O, Eckel H A, Mayerhofer W, et al. Comparative lightcraft impulse measurements[C]//Proc. of SPIE Vol. 4760, 2002: 908-917.
    [61] Mori K, Sasoh A, Myrabo L N. Experimental Investigation of Airbreathing Laser Propulsion Engines: CO2 TEA vs. EDL[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2005: 155-165.
    [62] Mori K, Sasoh A, Myrabo L N. Pulsed Laser Propulsion Performance of 11-cm Parabolic `Bell' Engines: CO2 TEA vs. EDL[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 38-47.
    [63]文明,洪延姬,崔村燕,等.吸气式激光推进单脉冲性能实验研究[J].推进技术, 2007, 28(5): 522-525.
    [64] Wen Ming, Hong Yanji, Cao Zhengrui, et al. Experimental and Numerical Investigation of Effects of Laser Pulse Waveform on Lightcraft Performance[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 628-636.
    [65] Tan R Q, Zheng Y J, Ke C J, et al. Experimental Study on Laser Propulsion of Air-breathing Mode[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 114-120.
    [66] Zhiping Tang, Jian Cai, Ping Gong, et al. Experimental Study of the Momentum Coupling Coefficient with the Pulse Frequency[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006; 104-113.
    [67]龚平.大气呼吸模式激光推进的研究[D].合肥:中国科学技术大学(博士), 2004.
    [68] Gong P, Tang Z P. Numerical Simulation for Laser Propulsion of Air Breathing Mode Considering Moving Boundaries and Multi-Pulses[C]// Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006.
    [69] Simons G A, Pirri A N. The fluid mechanics of pulsed laser propulsion. AIAA Journal, 1977, 15(6): 835-842.
    [70] Ageev V P, Barchukov A I, Bunkin F V, et al. Experimental and theoretical modeling of laser propulsion. Acta Astronautica, 1980, 7(1): 79-90.
    [71] Mori K, Katsurayama H, Hirooka Y, et al. An experimental study on the energy balance in the repetitively pulsed laser propulsion[R]. AIAA 2003-496, 2003.
    [72] Mori K, Katsurayama H, Hirooka Y, et.al. Conversion of Blast Wave to Impulse in a Pulsed-laser Thruster[C]// First International Symposium on Beamed Energy Propulsion, CP664, 2003: 95-104.
    [73] Mori K, Hirooka Y, Katsurayama H, et.al. Effect of the Refilling Processes on the Thrust Generation of a Laser Pulsejet[C]// Second International Symposium on Beamed Energy Propulsion, CP702, 2004: 40-48.
    [74] Hong Yanji, Cao Zhengrui, Li Qian. Study on energy law of similitude for laserpropulsion in repetitively-pulsed mode[J]. Chinese Journal of Aeronautics, 2009, 22(6):583-589.
    [75] Myrabo L N, Libeau M A, Meloney E D, et al. Pulsed laser propulsion performance of 11-cm parabolic‘Bell’engines within the atmosphere[R]. AIAA 2002-2732, 2002.
    [76]唐志平,龚平,胡小军等.大气吸气模式激光推进的实验研究[J].航空学报, 2005, 26(1): 13-17.
    [77] Borkowski C A, Kaminski D A, Myrabo L N. Analytical Investigation of an Airbreathing Repetitively Pulsed LSC-Wave Thruster: Part 2[C]//Fourth International Symposium, 2006: 72-80.
    [78] Pirri A N, Root R G, Wu P K S. Plasma Energy Transfer To Metal Surfaces Irradiated By Pulsed Lasers. AIAA Journal, 1978, 16(12): 1296-1304.
    [79] Schall W O, Eckel H A, Riede W. Laser Propulsion Experiments with a High-Power Pulsed CO2 Laser [C]//Proc. of SPIE Vol. 5120, 2003: 618-622.
    [80] Salvador I I, Myraboa L N, Minucci M A S, et al. Experimental Analysis of a 2-D Lightcraft in Static and Hypersonic Conditions[C]//ISBEP 6, 2010: 61-76.
    [81] Katsurayama H, Komurasaki K, Arakawa Y. Numerical analyses on pressure wave propagation in repetitive pulse laser propulsion[R]. AIAA 2001-3665, 2001.
    [82] Katsurayama H, Komurasaki K, Arakawa Y. Computational Performance Estimation of Laser Ramjet Vehicle[R]. AIAA 2002-3778, 2002.
    [83]曹正蕊,洪延姬,文明,等.来流情况下入口状态对吸气式激光推力器冲量耦合系数的影响[J].航空学报,2009,30(1): 21-29.
    [84]徐珊姝,吴子牛,李倩,等.激光光船周围连续/稀薄混合流场的数值模拟[J].推进技术,2007,28(5): 495-500.
    [85] Richard J C, Myrabo L N. Analysis of Laser-Generated Impulse In An Airbreathing Pulsed Detonation Engine: Part 1[C].//Third International Symposium on Beamed Energy Propulsion, 2005: 265-278.
    [86] Richard J C, Myrabo L N. Analysis of Laser-Generated Impulse In An Airbreathing Pulsed Detonation Engine: Part 2[C].//Third International Symposium on Beamed Energy Propulsion, 2005: 279-291.
    [87] Raizer Y P, Tybulewicz A. Laser-induced discharge phenomena[M]. New York: Plenum Publishing Corporation, 1977.
    [88] Kemp N H, Root R G. Analytical study of laser-supported combustion waves in hydrogen[R]. AIAA-1978-1219, 1978.
    [89] Guskov K G, Raizer Y P, Surzhikov S T. Observed velocity of slow motion of an optical discharge[J]. Sov. Journal of Quantum Electron. 1990, 20(7): 860-864.
    [90] Welle R, Keefer D, Peters C. Laser-Sustained Plasmas in Forced ArgonConvective Flow, Part I: Experimental Studies[J]. AIAA Journal, 1987, 25(8): 1093-1099.
    [91] Jeng S M, Keefer D. Influence of Laser Beam Geometry and Wavelength on Laser-Sustained Plasma[R]. AIAA 1987-1409, 1987.
    [92] Zerkle D K, Schwartz S, Mertogul A, et al. Laser-sustained argon plasmas for thermal rocket propulsion[R]. AIAA 1988-2773, 1988.
    [93] Zerkle D K, Schwartz S, Mertogul A E, et al. Laser-Sustained Argon Plasmas for Thermal Rocket Propulsion[J]. Journal of Propulsion and Power, 1990, 6(1): 38-45.
    [94] Schwartz S, Mertogul A, Eguiguren J, et al. Laser-Sustained Gas Plasmas for Application to Rocket Propulsion[R]. AIAA 89-2631, 1989.
    [95] Mertogul A, Zerkle D, Krier H, et al. Continuous Wave Laser Sustained Hydrogen Plasma for Thermal Rocket Propulsion[R]. AIAA 1990-2637, 1990.
    [96] Jeng S M, Keefer D R, Welle R, et al. Numerical study of laser-sustained argon plasmas in a forced convective flow[R]. AIAA 1986-1078, 1986.
    [97] Jeng S M, Keefer D, Welle R, et al. Laser-Sustained Plasmas in Forced Argon Convective Flow, Part II: Comparison of Numerical Model with Experiment[J]. AIAA Journal, 1987, 25(9): 1224-1230.
    [98] Jeng S M, Keefer D R. Numerical study of laser-sustained hydrogen plasmas in a forced convective flow[J]. Journal of Propulsion and Power, 1987, 3(3): 255-262.
    [99] Conrad R, Raizer Y P, Surzhikov S T. Continuous Optical Discharges Stabilized by Gas Flow in Weakly Focused Laser Beam. AIAA Journal, 1996, 34(8): 1584-1588.
    [100] Raizer Y P, Surzhikov S T. Continuous Laser-Sustained Plasma and Laser Sustained Combustion, State of the Art[R]. AIAA 95-1999, 1995.
    [101] Surzhikov S T. Laser Plasma Generator with Non-Stationary Vortex Gas Stream[R]. AIAA 2000-2630, 2000.
    [102] Surzhikov S T. Instabilities of Subsonic Laser Supported Waves[R]. AIAA 2006-3562, 2006.
    [103] Nebolsine P E, Pirri A N. Laser Propulsion: The Early Years[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 11-21.
    [104] Black J, Krier H, Glumb R J . Laser Propulsion 10kW Thruster Test Program Results[J]. Journal of Propulsion and Power, 1995, 11(6): 1307-1316.
    [105] Black J, Krier H. Laser Propulsion 10kW Thruster Test Program Results[R]. AIAA 1992-3218, 1992.
    [106] Niino M. Activities of Laser Propulsion in Japan[C]//First International Symposium on Beamed Energy Propulsion, CP664, 2003: 71-78.
    [107] Toyoda K, Komurasaki K, Arakawa Y. Continuous-wave laser thruster experiment[J]. Vacuum, 2000, 59(1): 63-72.
    [108] Uehara S, Inoue T, Komurasaki K, et al. An Experimental Study on Energy Conversion Process of an in-Space CW Laser Thruster[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2005: 254-264.
    [109] Komurasaki K, Arakawa Y, Hosoda S, et al. Fundamental Researches on Laser Powered Propulsion[R]. AIAA 2002-2200, 2002.
    [110] Inoue T, Ijiri T, Hosoda S, et al. Oscillation phenomenon of laser-sustained plasma in a CW laser propulsion[J]. Vacuum, 2004, 73(3-4): 433-438.
    [111] Ageichik A A, Egorov M S, Rezunkov Y A, et.al. Experimental Study on Thrust Characteristics of Airspace Laser Propulsion Engine[C]//Second International Symposium on Beamed Energy Propulsion, CP702, 2004: 49-60.
    [112] Ageichik A A, Egorov M S, Ostapenko S V, et al. Model Test of the Aerospace Laser Propulsion Engine[C]//Third International Symposium on Beamed Energy Propulsion, CP766, 2005: 183-194.
    [113] Rezunkov Y A, Safronov A L, Ageichik A A, et al. Performance Characteristics of Laser Propulsion Engine Operating both in CW and in Repetitively-Pulsed Modes[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 3-13.
    [114] Rachuk V S, Guterman V Y, Ivanov A V. Experimental Investigations of Laser Propulsion by Using Gas-Dynamic Laser[C]//Fourth International Symposium on Beamed Energy Propulsion, CP830, 2006: 48-57.
    [115] Molvik G A, Choi D, Merkle C L. A Two-Dimension Analysis of Laser Heat Adition in a Constant Absorptivity Gas. AIAA Journal, 1985, 23(7): 1053-1060.
    [116] Surzhikov S T. Radiative Gasdynamics of Laser Propulsion Thruster Nozzles. AIAA 99-3550, 1999.
    [117] Jeng S M, Keefer D. A Theoretical Investigation of Laser-Sustained Plasma Thruster[R]. AIAA 1987-0383, 1987.
    [118] Jeng S M, Keefer D. A Theoretical Evaluation of Laser Sustained Plasma Thruster Performance[R]. AIAA 1987-2166, 1987.
    [119] Jeng S M, Litchford R, Keefer D. Computational Design of An Experimental Laser Powered Thrust[R]. NASA-CR 183578, 1988.
    [120] Morales P M, Toyoda K, Komurasaki K, et.al. CFD simulation of a 2-kW class laser thruster[R]. AIAA 2001-0650, 2001.
    [121]郑力铭,朱定强,徐旭,等.激光推进火箭发动机吸收室的数值模拟[J].推进技术, 2002, 23(5): 387-390.
    [122]王海兴,陈熙.激光推进的初步数值模拟研究[J].工程热物理学报, 2004, 25(Suppl.): 83-86.
    [123] Myrabo. Apollo lightcraft project[R]. NASA CR 182575, 1987.
    [124] Myrabo. Apollo lightcraft project[R]. NASA CR 184749, 1988.
    [125] Richard J C, Morales C, Smith W L, et al. Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator[C]//Fourth International Symposium on Beamed Energy Propulsion, American Institute of Physics, CP830, 2006: 564-575.
    [126] Eckel H A, Schall W O. Concept for a Laser Propulsion Based Nanosat Launch System[C]//Second International Symposium on Beamed Energy Propulsion, CP702, 2004: 263-273.
    [127]何振,吴建军.基于激光推进的光船发射任务设计与参数优化分析[J].国防科技大学学报, 2007, 29(3).
    [128]何振.激光推进光船构型与地基激光发射光船任务的分析与设计[D].长沙:国防科学技术大学,2008.
    [129] Katsurayama H, Komurasaki K, Arakawa Y. A preliminary study of pulse-laser powered orbital launcher[J]. ACTA Astronautica, 2009, 65(7-8): 1032-1041.
    [130] Humble W E, Pierson B L. Maximum-Payload Trajectories for a Laser-Propelled Launch Vehicle[J]. Journal of Guidance, Control and Dynamics, 1995, 18(6): 1259-1266.
    [131] Phipps C R, Reilly J P, Campbell J W. Laser Launching a 5-kg Object into Low Earth Orbit[R]. Proceedings of SPIE, 2000, 4065: 502-510.
    [132] Hong Z C, Liu J M. Overall Payload Ratio of a Combined Laser and Chemical Propulsion System for GEO Launch[J]. Acta Astronautica, 2002, 50(7): 417-426.
    [133] Kare J T. Laser-Powered Heat Exchanger Rocker for Ground-to-Orbit Launch[J]. Journal of Propulsion and Power, 1995, 11(3): 535-543.
    [134] Kare J T. Near-Term laser launch capability: the heat exchanger thruster[C]//First International Symposium on Beamed Energy Propulsion, American Institute of Physics, CP664, 2003: 442-453.
    [135] Gnoffo P A, Gupta R N, Shinn J L. Conservation Equations and Physical Models for Hypersonic Air Flows in Thermal and Chemical Nonequilibrium[R]. NASA TP 2867, N89-16115, 1989.
    [136]瞿章华,刘伟,曾明,等.高超声速空气动力学[M].长沙:国防科技大学出版社, 2001.
    [137] Kruger C H. Nonequilibrium Effects in Thermal Plasma Chemistry[J]. Plasma Chemistry and Plasma Processing , 1989, 9(4), 435-443.
    [138] Gupta R N, Lee K P, Thompson R A, et al. Calculations and Curve Fits of Thermodynamic and Transport Properties for Equilibrium Air to 30000K[R]. NASA RP-1260, 1991.
    [139] Lee J H. Electron Impact Vibrational Relaxation in High Temperature Nitrogen[R]. AIAA Paper 92-0807.
    [140] Park C, Lee S H. Validation of Multi-Temperature Nozzle Flow Code NOZNT[R].AIAA Paper 93-2862.
    [141]泽尔道维奇,莱依捷尔.力学名著译丛:激波和高温流体动力学现象物理学(上册)[M].北京:科学出版社, 1980.
    [142] Glumb R J, Krier H. Two-Dimensinal Model of Laser-Sustained Plasmas in Axisymmetric Flowfileds[J]. AIAA Journal, 1986, 24(8): 1331-1336.
    [143] Emmons H W. Arc Measurement of High-Temperature Gas Transport Properties[J]. The Physics of Fluids, 1967, 10(6): 1125-1136.
    [144] Kemp N H, Root R G. Analytical study of laser-supported combustion waves in hydrogen[R]. NASA CR 135349, 1977.
    [145] Olstad W B. Stagnation-point solutionos for inviscid radiating shock layers[R]. NASA TN D-5792, 1970.
    [146]欧阳水吾,谢中强.高温非平衡空气绕流[M].北京:国防工业出版社. 2001.
    [147] Gupta R N, Yos J M, Thompson R A. A Review of Reacting Rates and Thermodynamic and Transport Properties for The 11 Species Air Model For Chemical And Thermal Non-Equilibrium Calculation to 30000K[R]. NASA TM-101528, 1989.
    [148]陈熙.高温电离气体的传热与流动[M].北京:科学出版社,1993.
    [149]谢多夫.力学中的相似方法与量纲理论[M].北京:科学出版社,1982.
    [150] Reilly J P, Ballantyne A, Woodroffe J A. Modeling of Momentum Transfer to a Surface by Laser-Supported Absorption Waves[J]. AIAA Journal, 1979, 17(10): 1098-1105.
    [151]李维新.一维不定常流与冲击波[M].北京:国防工业出版社, 2003.
    [152]童秉纲,孔祥言,邓国华.气体动力学[M].北京:高等教育出版社,1990.
    [153]卞保民,杨玲,陈笑,等.激光等离子体及点爆炸空气冲击波波前运动方程的研究[J].物理学报, 2002, 51(4):809-811.
    [154]阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006.
    [155] Luo H, Baum J D, Lohner R. A Fast, Matrix-free Implicit Method for Compressible Flows on Unstructured Grids[J]. Journal of Computational Physics, 1998, 146(2): 664-690.
    [156] Chen R F, Wang Z J. Fast, Block Lower-Upper Symmetric Gauss-Seidel Scheme for Aribitray Grids[J]. AIAA Journal, 2000, 38(12): 2238-2245.
    [157]柳军.热化学非平衡流及其辐射现象的实验和数值计算研究[D].长沙:国防科学技术大学, 2004.
    [158]杨惠连,张涛.误差理论与数据处理[M].天津:天津大学出版社, 1992.
    [159]李静.激光推进测试仪器和“烧蚀模式”实验研究[D].合肥:中国科学技术大学, 2005.
    [160]文明,洪延姬,王军,等.冲击摆冲量测量的原理及精度分析[J].装备指挥技术学院学报, 2005, 16(6): 110-113.
    [161] Hoerner S F. Fluid-Dynamic Drag[M]. New Jersey: 1965.
    [162]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993.
    [163]徐明友.火箭外弹道学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [164]吕百达.强激光的传输与控制[M].北京:国防工业出版社, 1999.
    [165]苏毅,万敏.高能激光系统[M].北京:国防工业出版社, 2004.
    [166]饶瑞中.光在湍流大气中的传播[M].合肥:安徽科学技术出版社,2005.
    [167]程永强,谭荣清. CO2激光的大气传输特性[J].光电技术应用,2006, 21(2): 9-13.
    [168]杨洋,赵远,乔立杰,等. 1.06 ? m激光的大气传输特性[J].激光与红外工程, 1999, 28(1): 15-19.
    [169]宋正方.常用激光的大气衰减[J].激光杂志, 1988, 9(1): 1-7.
    [170]宋正方.应用大气光学[M].北京:气象出版社, 1990.
    [171]廉筱纯,吴虎.航空发动机原理[M].西安:西北工业大学出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700