苯胺与其衍生物共聚的原位紫外—可见光谱电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚苯胺因其具有高导电性、良好的氧化还原可逆性和稳定性好等特点,引起了人们广泛的研究热情。与聚苯胺相比,苯胺的衍生物以能提供更多的修饰基团也倍受关注。
     近年来,有关苯胺及其衍生物电化学聚合的研究已经有很多,因此对于其聚合机理的研究也有了相应的发展。但是常规的电化学研究方法是以电信号为检测手段,得到的是电化学体系的各种微观信息的总合,难以直观、准确的反映出电极/溶液界面的性质变化,这对于正确地解释电化学反应机理带来很大的问题。
     紫外-可见光谱电化学技术把紫外-可见光谱技术和电化学方法结合起来,可以同时获得多种信息,在鉴别反应产物,特别是反应的瞬间态和中间体方面具有独到的优越性,是检测苯胺及其衍生物聚合过程中生成的中间体,研究聚合机理、电极上聚合物膜的电化学性质的强有力手段。
     本文主要研究了以下几个方面的工作:
     1.采用原位紫外-可见吸收光谱法研究了苯胺(AN)和邻-氨基酚(OAP)在0.5 mol/L H2SO4溶液中的电化学共聚过程。结果表明,在AN和OAP的共聚过程中,OAP首先被氧化生成其阳离子自由基,对应于λ=460 nm处的吸收峰,然后OAP阳离子自由基与继而生成的AN阳离子自由基和溶液中的AN和OAP单体发生交互反应,生成混合二聚物中间体,对应于λ=490 nm处的吸收峰,此混合二聚物中间体再继续反应生成中性低聚物,对应于λ<460 nm处的吸收峰。在研究不同浓度比的AN和OAP进行电化学共聚时发现,当溶液中OAP浓度增大时,对AN的聚合会产生抑制作用。
     2.采用原位紫外-可见吸收光谱法研究了邻苯二胺(OPD)和苯胺(AN)在恒电位下的共聚过程。实验以氧化铟锡(ITO)导电玻璃作为工作电极,AN和OPD的单独聚合以及共聚均在0.1 mol/L H2SO4+0.1 mol/L Na2SO4溶液中进行。光谱研究发现,在OPD单独聚合以及与AN的共聚过程中,都产生中间体。在共聚过程中,中间体是由AN和OPD的阳离子自由基发生交互反应产生的,在紫外-可见吸收光谱中对应于λ=480 nm处的吸收峰。实验还采用电子顺磁共振波谱证实了共聚过程中确实产生自由基中间体。结果说明AN和OPD共聚过程中,OPD分子掺杂进入AN聚合物骨架。
     3.通过电化学氧化法在对氨基苯磺酸功能化的玻碳电极表面制备了纳米网状结构的聚苯胺(PAN),得到复合膜修饰的玻碳电极(PAN-ABSA/GCE),并将其用于对抗坏血酸(AA)和尿酸(UA)的催化氧化及同时测定。实验通过X-射线光电子能谱(XPS)和电化学技术对玻碳电极表面修饰的ABSA单分子层进行了表征。并分别采用原子力学显微镜(AFM)、电化学交流阻抗(EIS)、紫外-可见吸收光谱(UV-Vis)和循环伏安法研究了PAN-ABSA复合膜,结果表明该复合膜确实修饰在电极表面,而且该修饰电极在中性甚至碱性溶液中仍然能够保持电化学活性。由循环伏安图和示差脉冲伏安图可知,该修饰电极可以将UA和AA重叠的氧化峰分离成两个完全独立的氧化峰,因此,可以用于在混合溶液中对二者进行同时或选择性测定。UA和AA的催化峰电流与其浓度分别在50-250μmol/L和35-175μmol/L范围内成良好的线性关系,相关系数分别是0.997和0.998,检测限分别为12μmol/L和7.5μmol/L。该电极具有良好的稳定性,重现性和选择性。
Polyaniline (PAN) has been attracting significant interest due to its high conductivity, good redox reversibility and environmental stability. Aniline derivatives also receive greater attention because they can provide more functional groups.
     In recent years, several studies have been reported on the electropolymerization of aniline and its derivatives. So research on the copolymerization mechanism and electrochemical properties of the electrode developed accordingly. However, the traditional analysis of electrochemistry depends on the electricity signals, and only the total microcosmic information can be acquired, which can not reflect the changes of electrode/solution interface clearly and accurately. So it is difficult for people to interpret the electrochemical reaction mechanism correctly. In situ UV-Vis spectroelectrochemistry technique combine the UV-Vis spectra and electrochemical method together, as a result, two kinds of information can be reported simultaneously. It becomes an effective method to detect the intermediates during the polymerization of aniline and its derivatives.
     The paper includes the following three sections:
     1. The electrochemical copolymerization of o-aminophenol (OAP) with aniline (AN) in 0.5 mol/L H2SO4 has been investigated using in situ UV-Vis spectroelectrochemistry. The results reveal that OAP can be firstly oxidized to its cation radical,which shows a peak atλ=460 nm in the UV-Vis spectra. Then a mixed dimer intermediate is formed through the cross-reaction of OAP and AN cation radicals with their monomers in solution. The absorption peak atλ=490 nm in the UV-Vis spectra is assigned to this intermediate. The intermediates then react each other to form the oligomer which shows an absorption peak atλ<460 nm. On the other hand, the spectroelectrochemical results reveal that OAP can inhibit the polymerization of AN with the increase of the amount of OAP in the mixed solutions.
     2. In situ UV-Vis spectroelectrochemical study of the electrochemical copolymerization of o-phenylenediamine (OPD) with aniline (AN) at a constant potential using the indium tin oxide (ITO)-coated glass electrodes as the working electrode has been carried out. The electrochemical copolymerization is performed in 0.1 mol/L H2SO4 aqueous solution containing 0.1 mol/L Na2SO4. The homopolymerizations of OPD and AN are also done independently in the same medium. The intermediate species for the homopolymerization of OPD and the copolymerization of OPD with AN have been identified by spectroelectrochemical studies. The spectroelectrochemical results reveal the formation of an intermediate in the initial stage of copolymerization through the cross-reaction of OPD cation radicals and AN cation radicals. An absorption peak atλ=480 nm in the UV-Vis spectra is assigned to this intermediate. Electron paramagnetic resonance (EPR) has been used to verify the existence of intermediates such as radicals in the initial stage of copolymerization.
     3. A composite film of polyaniline (PAN) nano-networks/p-aminobenzene sulfonic acid (ABSA) modified glassy carbon electrode (GCE) has been fabricated via an electrochemical oxidation procedure and applied to the electrocatalytic oxidation of uric acid (UA) and ascorbic acid (AA). The ABSA monolayer at GCE surface has been characterized by X-ray photo-electron spectroscopy (XPS) and electrochemical techniques. Atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS), UV-Visible absorption spectra (UV-Vis) and cyclic voltammetry (CV) have been used to investigate the PAN-ABSA composite film, which demonstrates the formation of the composite film and the maintenance of the electro-activity of PAN in neutral and even in alkaline media. Due to its different catalytic effects towards the electro-oxidation of UA and AA, the modified GCE can resolve the overlapped voltammetric response of UA and AA into two well-defined voltammetric peaks with both CV and differential pulse voltammetry (DPV), which can be used for the simultaneous and selective determination of these species in a mixture. The catalytic peak currents are linearly dependent on the concentrations of UA and AA in the range of 50-250 and 35-175μmol/L with correlation coefficients of 0.997 and 0.998, respectively. The detection limits for UA and AA are 12 and 7.5μmol/L, respectively. The modified electrode exhibits good stability, reproducibility, sensitivity and selectivity.
引文
[1] A.G. MacDiarmid, J.C. Chiang, M. Halpern, W.S. Huang, J.R. Krawczyk, R.J. Mammone, S.L. Mu, N.L.D. Somasiri, W. Wu. Aqueous chemistry and electrochemistry of polyacetylene and polyaniline: application to rechargeable batteries. [J]. Polym Prepr. 1984,25(2):248-249.
    [2] A.G. MacDiarmid, S.L. Mu, N.L.D. Somasiri, W. Wu. Electrochemical Characteristics of "Polyaniline" Cathodes and Anodes in Aqueous Electrolytes. [J]. Mol Cryst Liq Cryst. 1985,121(1):187-190.
    [3] N. Oyama, T. Tatsuma, T. Sato, T. Sotomura. Dimercaptan-polyaniline composite electrodes for lithium batteries with high energy density. [J]. Nature. 1995,373(16):598-600.
    [4] T. Kobayashi, H. Yoneyama, H. Tamura. Electrochemical reactions concerned with electrochr- omism of polyaniline film-coated electrodes. [J]. J Electroanal Chem. 1984,177 (1-2):281-291.
    [5] C.D. Batich, H.A. Laitinen, H.C. Zhou. Chromatic Changes in Polyaniline Films. [J]. J Electrochem Soc.1990,137(3):883-885.
    [6] H. Sangodkar, S. Sukeerthi, R.S. Srinivasa, R. Lal, A.Q. Contractor. Biosensor Array Based on Polyaniline. [J]. Anal Chem. 1996,68(5):779-783.
    [7] W. Huang, B.D. Humphrey, A.G. MacDiarmid, Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. [J]. J Chem Soc. 1986,82(8):2385-2400.
    [8] A.F. Diaz, J.A. Logan. Electroactive polyaniline films. [J]. J Electroanal Chem. 1980,111(1): 111-114.
    [9] P. Nunziante, G. Pistoia. Factors affecting the growth of thick polyaniline films by the cyclic voltammetry technique. [J]. Electrochim Acta. 1989,34(2):223-228.
    [10]张其锦,翟焱.聚苯胺的电化学合成实验. [J].大学化学. 1998,13(4):41-43.
    [11] T. Ohsaka, Y. Ohnuki, N. Oyama, G. Katagiri, K. Kamisako. IR absorption spectroscopic identification of electroactive and electroinactive polyaniline films prepared by the electrochemical polymerization of aniline. [J]. J Electroanal Chem. 1984,161(2):399-405.
    [12] L.V. Lukachova, E.A. Shkerin, E.A. Puganova, E.E. Karyakina, S.G.Kiseleva, A.V. Orlov, G.P. Karpacheva, A.A. Karyakin. Electroactivity of chemically synthesized polyaniline inneutral and alkaline aqueous solutions: Role of self-doping and external doping. [J]. J Electroanal Chem. 2003,544(SUPPL.):59-63.
    [13] K.R. Reddy, K.P. Lee, A.I. Gopalan, H.D. Kang. Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: Synthesis and characterization. [J]. React Funct Polym. 2007,67(10):943–954.
    [14] A.A. Karyakin, M. Vuki, L.V. Lukachove, E.E. Karyakina, A.V.Orlov, G.P. Karpachova, J. Wang. Processible polyaniline as an advanced potentiometric pH transducer. Application to biosensors. [J]. Anal Chem. 1999,71(13):2534-2540.
    [15] A.A. Karyakin, A.K. Strakhova, A.K. Yatsimirsdsky. Self-doped polyanilines electro- chemically active in neutral and basic aqueous solutions: Electropolymerization of substituted anilines. [J]. J Electroanal Chem. 1994,371(1-2):259-265.
    [16] A.A. Karyakin, I.A. Maltsev, L.V. Lukachova. The influence of defects in polyaniline structure on its electroactivity: optimization of‘self-doped’polyaniline synthesis. [J]. J Electroanal Chem. 1996,402(1-2):217-219.
    [17] J.J. Xu,D.M. Zhou,H.Y. Chen. Amperometric determination of ascorbic acid at a novel‘self-doped’polyaniline modified microelectrode. [J]. Fresenius’J Anal Chem. 1998,362(2): 234-238.
    [18] H. Tang, A. Kitani, T. Yamashita, S. Ito. Highly sulfonated polyaniline electrochemically synthesized by polymerizing aniline-2,5-disulfonic acid and copolymerizing it with aniline. [J]. Synth Met. 1998,96 (1):43-48.
    [19]王佛松,王利祥.聚苯胺的掺杂反应. [J].武汉大学学报-自然科学版. 1993,(6):65-73.
    [20] J.M. Ginder, A.F. Richter, A.G. MacDiarmid, A.J. Epstein,Insulator-to-metal transition in polyaniline. [J]. J Solid State Commun. 1987,63(2):97-101.
    [21] F. Zuo, M. Angelopoulos, A.G. MacDiarmid, A.J. Epstein. Conductivity of emeraldine polymer. [J]. Phys Rev. 1989,B39(6):3570-3578.
    [22]董绍俊,宋发益.聚苯胺薄膜修饰电极对抗坏血酸的电化学氧化. [J].物理化学学报. 1992, 8(1):82-86.
    [23] L. Zhang. Electrochemical synthesis of self-doped polyaniline and its use to the electrooxidation of ascorbic acid. [J]. J Solid State Electrochem. 2007,11(3):365-371.
    [24] L. Zhang, S. Dong. The electrocatalytic oxidation of ascorbic acid on polyaniline filmsynthesized in the presence of camphorsulfonic acid [J]. J Electroanal Chem.2004,568(1): 189-194.
    [25] G. Bidan, E.M. Genies, M. Lapkowski. Modification of polyaniline films with heteropoly- anions: Electrocatalytic reduction of oxygen and protons. [J]. J Chem Soc. Chem. Commun. 1988,(8):533-535.
    [26] G. Mengoli, M.M. Musiani. Electrocatalytic reduction of HNO3 at polyaniline filmed electrodes. [J]. J Electroanal Chem.1989,269(1):99-111.
    [27] M. Fabrizio, F. Furlanetto, G. Mengoli, M.M. Musiani, F. Paolucc. Polyaniline-based membranes for gas electrodes. [J]. J.Elecrtoanal.Chem.1992,323(1-2):197-212.
    [28] T. Kuwana. Electrochemical studies using conducting glass indicator electrodes. [J]. Anal. Chem. 1964,36(10):2023-2025.
    [29]孙世刚,王津建.甲酸在Pt(100)单晶电极表面解离吸附过程的动力学. [J].物理化学学报. 1992,8(6):732-735.
    [30] N. Boucherit, G. Hugot-Le. Localized corrosion processes in iron and steels studied by in situ Raman spectroscopy. [J]. Frarday Discussion. 1992,94:137-147.
    [31] B.A. Lopez De mishima, T. Ohtsuka, N. Sato. A study of the discharge process of manganese oxide in borate solution using in situ techniques. [J]. Electrochim. Acta. 1993,38(2-3):341- 347.
    [32]贺廷莲,苏连永.聚苯胺电极的光电化学研究. [J].益阳师专学报. 2002,19(3):39-41.
    [33] K. Shimazu, M. Yanagida, K. Uosaki, Simultaneous UV-Vis spectroelectrochemical and quartz crystal microgravimetric measurements during the redox reaction of viologens. [J]. J Electroanal.Chem. 1993,350(1-2):321-327.
    [34] G. Zhang, A. Zhang, H. Wang, X. Liu, J. Lu. Study on electropolymerization of aniline with in situ UV-Vis spectroelectrochemistry. [J]. Acta Polymerica Sinica. 2008,(1):41-47.
    [35] A. Michaelis, J. W. Schultze, B. Bunsenges. In-situ UV-Visible reflectance spectroscopic investigation of the nickel electrode-alkaline solution interface. [J]. Phys Chem. 1993,(97): 431-443.
    [36] A.L. De Lacey, C. Gutiérrez-Sánchez, V.M. Fernández, I. Pacheco, I.A.C. Pereira, FTIR spectroelectrochemical characterization of the Ni-Fe-Se hydrogenase from Desulfovibrio vulgaris Hildenborough. [J]. J Biol Inorg Chem. 2008,13(8):1315-1320.
    [37] A. Kellenberger, E. J?hne, H.J. Adler, T. Khandelwal, L. Dunsch, In situ FTIR spectroelectro- chemistry of poly[2-(3-thienyl)ethyl acetate] and its hydrolyzed derivatives. [J]. Electrochim Acta 2008,53 (24):7054-7060.
    [38] R. Mazeikiene, G. Niaura, A. Malinauskas. In situ Raman spectroelectrochemical study of redox processes at poly(Toluidine blue) modified electrode. [J]. Electrochim Acta. 2008,53 (26):7736-7743.
    [39] L. Kavan, O. Frank, A.A. Green, M.C. Hersam, J. Koltai, V. Zólyomi, J. Kürti, L. Dunsch. In situ raman spectroelectrochemistry of single-walled carbon nanotubes: Investigation of materials enriched with (6,5) tubes. [J]. J Phys Chem C. 2008,112(36):14179-14187.
    [40] M. Zalibera, P. Rapta, L. Dunsch. The power of in situ ESR spectroelectrochemistry in the analysis of a C84 fullerene isomer. [J]. Electrochem Commun. 2008,10(6):943-946.
    [41]沈报恩,王华伟.阳离子艳蓝的薄层光谱电化学研究. [J].高等学校化学学报. 1994, 15 (3): 343-347
    [42] V.F. Ivanov, O.L. Gribkova, A.A. Nekrasov, A.V. Vannikov. Comparative spectroelectro- chemical investigation of vacuum evaporated and electrochemically synthesized electro- chromic polyaniline films ag. [J]. J Electroanal Chem. 1994,372(1-2):57-61.
    [43]朱世民,张天谊.双水杨醛缩乙二胺烷基钴(Ⅲ)配合物的电化学行为及光谱电化学表征. [J].高等化学学报. 1994,15(7):977-981.
    [44]董绍俊,谢远武,车广礼.用微电极上的光谱电化学法测定催化反应的速率常数. [J].物理化学学报. 1991,7(5):531-535.
    [45] F. Hahn, B. Beden, C.Lamy. In situ infrared reflectance spectroscopic study of the adsorption of formic acid at a rhodium electrode. [J]. J Electroanal Chem. 1986,204(1-2):315-327.
    [46] E.S. Decastro, D.A. Smith, J.E. Mark, W.R. Heineman. Electrodes coated with polymer networks cross-linked byγ-irradiation. [J]. J Electroanal Chem. 1982,138(1):197-200.
    [47] P.C. Lacaze, J.E. Dubois, A. Desbene-Monvernay, P.L. Desbene , J.J. Basselier, D. Rechard, [J]. J Electroanal Chem,1983,147(1-2):107-121.
    [48] A. Malinauskas, R. Holze. An in situ UV-Vis spectroelectrochemical investigation of then initial stages in the electro-oxidation of selected ring- and nitrogen-alkylsubtituted anilines. [J]. Electrochim Acta. 1999,44(15):2613-2623.
    [49] P. Santhosh, A. Gopalan, T. Vasudevan. In situ UV-visible spectroelectrochemical studies onthe copolymerization of diphenylamine with ortho-methoxy aniline. [J]. Spectrochimica Acta Part A. 2003,59(7):1427-1439.
    [50] M. Thanneermalai, T. Jeyaraman, C. Sivakumar, A. Gopalan, T. Vasudevan, T.C. Wen. In situ UV-Visible spectroelectrochemical evidences for conducting copolymer formation between diphenylamine and m-methoxyaniline. [J]. Spectrochimica Acta Part A. 2003,59(9): 1937-1950.
    [51] A. Zimmermann, U. Künzelmann, L. Dunsch. Initial states in the electropolymerization of aniline and p-aminodiphenylamine as studied by in situ FT-IR and UV-Vis spectroelectro- chemistry. [J]. Synth. Met. 1998,93(1):17~25.
    [52] P. Santhosh, A. Gopalan, T. Vasudevan, T.C. Wen. Studies on monitoring the composition of the copolymer by cyclic voltammetry and in situ spectroelectrochemical analysis. [J]. Eur Polym J. 2005,41(1):97~ 105.
    [53] H.J. Salavagione, P.J. Arias, P. Garcés, E. Morallón, C. Barbero, J.L. Vázquez. Spectroelectro chemical study of the oxidation of aminophenols on platinum electrode in acid medium. [J]. J Electroanal Chem. 2004,565(2):375~383.
    [54] H.J. Salavagione, P.J. Arias, J.M. Pérez, J.L. Vázquez, E. Morallón, M.C. Miras, C.J. Barbero. Study of redox mechanism of poly(o-aminophenol) using in situ techniques: Evidence of two redox processes. [J]. Electroanal Chem. 2005,576(1):139~145.
    [55] S. Mu. Electrochemical copolymerization of aniline and o-aminophenol. [J]. Synth Met. 2004,143(3):259~268.
    [56] A.A. Shah, R. Holze. Spectroelectrochemistry of aniline-o-aminophenol copolymers. [J]. Electrochim Acta. 2006, 52 (3): 1374~1382.
    [57] A.A. Shah, R. Holze. In situ UV-Vis spectroelectrochemical studies of the copolymerization of o-aminophenol and aniline. [J]. Synth Met. 2006,156(7-8):566~575.
    [58] A.A. Shah, R. Holze. Poly(o-aminophenol) with two redox processes: A spectroelectro- chemical study . [J]. J Electroanal Chem. 2006,597(2):95-102.
    [59] A.Q. Zhang, C.Q. Cui, Y.Z. Chen, J.Y. Lee. Synthesis and electrochromic properties of poly- o-aminophenol. [J]. J Electroanal Chem. 1994,373(1-2):115~121.
    [60] T.C. Wen, C. Sivakumar, A. Gopalan, In situ UV-Vis spectroelectrochemical studies on the initial stages of copolymerization of aniline with diphenylamine-4-sulphonic acid. [J].Electrochim. Acta. 2001,46(7):1071-1065.
    [61] L.T. Cai, H.Y. Chen. Electrocatalytic reduction of hydrogen peroxide at platinum micro- particles dispersed in a poly(o-phenylenediamine) film. [J]. Sens Actuat B. 1999, 55 (1): 14-18.
    [62] S.M. Golabi, A. Nozad. Electrocatalytic oxidation of methanol on electrodes modified by platinum microparticles dispersed into poly(o-phenylenediamine) film. [J]. J Electroanal Chem. 2002,521(1-2):161-167.
    [63] C. Malitesta, I. Losito, P.G. Zambonin. Molecularly imprinted electrosynthesized polymers: New materials for biomimetic sensors. [J]. Anal Chem. 1999,71(7):1366-1370.
    [64] I.D. Karalemas, C.A. Georgiou, D.S. Papastathopoulos. Construction of a L-lysine biosensor by immobilizing lysine oxidase on a gold-poly(o-phenylenediamine) electrode. [J]. Talanra. 2000,53(2):391-402.
    [65] T. Tonosaki, T. Oho, K. Isomura, K. Ogura. Effect of the protonation level of poly(o- phenylenediamine) (PoPD) on the ac impedance of humidity-sensitive PoPD/poly(vinyl alcohol) composite film . [J]. J Electroanal Chem. 2002,520(1-2):89-93.
    [66] J. Yano, K. Terayama, S. Yamasaki. Electrochemically prepared poly(o-phenylenediamine) Prussian Blue composite film for a three-colour expressible ECD material. [J]. J. Mater Sci. 1996,31(18)4785-4792.
    [67] J. Yano, S. Yamasaki, Three-color electrochromism of an aramid film containing polyaniline and poly(o-phenylenediamine). [J]. Synth Met. 1999,102(1-3):1157.
    [68] X. Tu, Q. Xie, C. Xiang, Y. Zhang, S. Yao. Scanning electrochemical microscopy in combination with piezoelectric quartz crystal impedance analysis for studying the growth and electrochemistry as well as microetching of poly(o-phenylenediamine) thin films. [J]. J Phys Chem B. 2005,109(9):4053-4063.
    [69] A. Malinauskas, M. Bron, R. Holze. Electrochemical and Raman spectroscopic studies of electrosynthesized copolymers and bilayer structures of polyaniline and poly(o- phenylenediamine). [J]. Synth Met. 1998,92(2):127-137.
    [70] C.H. Xiang, Q.J. Xie, J.M. Hua, S.Z. Yao. Studies on electrochemical copolymerization of aniline with o-phenylenediamine and degradation of the resultant copolymers via electrochemical quartz crystal microbalance and scanning electrochemical microscope. [J].Synth. Met. 2006,156 (5-6) 444-453.
    [71] J.M. Leger, B. Beden, C. Lamy, P. Ocon, C. Sieiro. Investigation of the early stages of the electropolymerization of o-toluidine by UV-Vis reflectance spectroscopy. [J]. Synth Met. 1994,62(1)9-15.
    [72] A. Malinauskas, R. Holze, B. Bunsenges. In situ UV-vis spectroelectrochemical evidence of an EC mechanism in the electrooxidation of N-methylaniline. [J]. Phys Chem. 1997,101(12): 1859-1864.
    [73] A. Malinauskas, R. Holze. UV-VIS spectroelectrochemical detection of intermediate species in the electropolymerization of an aniline derivative. [J]. Electrochim. Acta. 1998,43(16-17): 2413-2422.
    [74] J.J. Langer, R. Krzyminiewski, Z. Kruczyński, T. Gibiński, I. Czajkowski, G. Framski. EPR and electrical conductivity in microporous polyaniline. [J]. Synth Met. 2001,122(2):359-362.
    [75] A. Neudeck, A. Petr, L. Dunsch. Redox mechanism of polyaniline studied by simultaneous ESR-UV-vis spectroelectrochemistry. [J]. Synth Met. 1999,107(3):143-158.
    [76] J. Tarábek, L. Kavan, M. Kalbá?, P. Rapta, M. Zukalová, L. Dunsch. In situ EPR spectro- electrochemistry of single-walled carbon nanotubes and C60 fullerene peapods. [J]. Carbon 2006,44(11):2147-2154.
    [77] Q. Zhou, L. Zhuang, J.T. Lu. In situ ESR studies over wide temperature range for conducting polymers. [J]. Electrochem Commun. 2002,4(10):733-736.
    [78] M. Kanungo, A. Kumar, A.Q. Contractor. Microtubule Sensors and Sensor Array Based on Polyaniline Synthesized in the Presence of Poly(styrene sulfonate). [J]. Anal Chem. 2003,75 (21):5673-5679.
    [79] P.N. Bartlett, E.N.K. Wallace. The oxidation of ascorbate at poly(aniline)- poly(vinylsulfonate) composite coated electrodes. [J]. Phys Chem. Chem Phys. 2001,3(8):1491-1496.
    [80] X. Wei, A.J. Epstein. Synthesis of highly sulfonated polyaniline. [J]. Synth Met. 1995,74(2): 123-125.
    [81] R. Ma?eikien?, G. Niaura, A. Malinauskas. Voltammetric study of the redox processes of self-doped sulfonated polyaniline. [J]. Synth Met. 2003,139(1):89-94.
    [82] S. Mu, J. Kan. The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of ferrocenesulfonic acid. [J]. Synth Met. 2002,132(1):29-33.
    [83] S. Tian, J. Liu, T. Zhu, W. Knoll. Polyaniline doped with modified gold nanoparticles and its electrochemical properties in neutral aqueous solution. [J]. Chem Commun. 2003,9(21):2738-2739.
    [84] Y. Xiao, A.B. Kharitonov, F.Patolsky, Y. Weizmann, I. Willner. Electrocatalytic intercalator- induced winding of double-stranded DNA with polyaniline. [J]. Chem Commun. 2003,9(13): 1540-1541.
    [85] R.N. Adams. Probing brain chemistry with electroanalytical techniques. [J]. Anal Chem. 1976, 48(14):1126A-1138A.
    [86] J.M. Zen, C.T. Hsu. A selective voltammetric method for uric acid detection at Nafion-coated carbon paste electrodes. [J]. Talanta. 1998,46(6):1363-1369.
    [87] J.M. Zen, J.J. Jou, G. Ilangovan. Selective voltammetric method for uric acid detection using pre-anodized Nation-coated glassy carbon electrodes. [J]. Analyst. 1998, 123(6):1345-1350.
    [88] J.M. Zen, J.S. Tang. Square-wave voltammetric determination of uric acid by catalytic oxidation at a perfluorosulfonated ionomer/ruthenium oxide pyrochlore chemically modified electrode. [J]. Anal Chem. 1995,67(11):1892-1895.
    [89] H.R. Zare, F. Memarzadeh, M.M. Ardakani, M. Namazian, S.M. Golabi, Norepinephrine- modified glassy carbon electrode for the simultaneous determination of ascorbic acid and uric acid. [J]. Electrochim Acta. 2005,50(16-17):3495–3502.
    [90] W. Ren, H.Q. Luo, N.B. Li. Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. [J]. Biosens Bioelectron. 2006,21(7):1086-1092.
    [91] X. Lin, Y. Li. Monolayer covalent modification of 5-hydroxytryptophan on glassy carbon electrodes for simultaneous determination of uric acid and ascorbic acid. [J]. Electrochim Acta. 2006,51(26):5794–5801.
    [92] Z. Gao, H. Huang. Simultaneous determination of dopamine, uric acid and ascorbic acid at an ultrathin film modified gold electrode. [J]. Chem Commun. 1998,(19):2107-2108.
    [93] L. Zhang, X Lin. Covalent modification of glassy carbon electrode with glutamic acid for simultaneous determination of uric acid and ascorbic acid. [J]. Analyst. 2001,126(3): 367- 370.
    [94] S. Shahrokhian, M. Ghalkhani. Simultaneous voltammetric detection of ascorbic acid and uric acid at a carbon-paste modified electrode incorporating thionine-nafion ion-pair as an electron mediator. [J]. Electrochim Acta. 2006,51(13):2599–2606.
    [95] X.H. Cai, K. Kalcher, C. Neuhold, B. Ogorevc. An improved voltammetric method for the determination of trace amounts of uric acid with electrochemically pretreated carbon paste electrodes. [J]. Talanta. 1994,41(3):407-413
    [96] T. Nagaoka, T. Yoshino. Surface properties of electrochemically pretreated glassy carbon. [J]. Anal Chem. 1986,58(6):1037-1042.
    [97] B. Barbier, J. Pinson, G. Desarmot, M. Sanchez. Electrochemical bonding of amines to carbon fiber surfaces toward improved carbon-epoxy composites. [J]. J Electrochem Soc. 1996,137(6):1757-1764.
    [98] R.S. Deinhammar, M. Ho. J.W. Anderegg, M.D. Porter. Electrochemical oxidation of amine-containing compounds: A route to the surface modification of glassy carbon electrodes. [J]. Langmuir. 1994,10(4):1306 -1313.
    [99] A.J. Downard, A.B. Mohamed. Suppression of protein adsorption at glassy carbon electrodes covalently modified with tetraethylene glycol diamine. [J]. Electroanal. 1999,11(6): 418- 423.
    [100] R.E Dickerson, T. Takano, D. Eisenberg, O.B. Kallai, L. Samson, A. Cooper, E. Margoliash, Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. [J]. J Biol Chem. 1971, 246(5): 1511-1535.
    [101] E. Sabatani, I. Rubinstein, R. Maoz, J. Sagiv. Organized self-assembling monolayers on electrodes. Part I. Octadecyl derivatives on gold. [J]. J Electroanal Chem. 1987,219(1-2): 365-371.
    [102] H.O. Finklea, D.A. Snider, J. Fedyk, E. Sabatani, Y. Gafni, I. Rubinstein. Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy. [J]. Langmuir. 1993,9(12):3660–3667.
    [103] Y. Yin, P. Wu, Y. Lu, P. Du, Y. Shi, C. Cai. Immobilization and direct electrochemistry of cytochrome c at a single-walled carbon nanotube-modified electrode. [J]. J Solid State Electrochem. 2007,11(3):390-397.
    [104] C. Godet, M. Boujtita, N.E. Murr. Direct electron transfer involving a large protein: Glucose oxidase. [J]. New J Chem. 1999,23(8):795-797.
    [105] J.J. Gooding, R. Wibowo, J.Q. Liu, W.R. Yang, D. Losic, S. Orbons, F.J. Mearns, J.G. Shapter, D.B. Hibbert. Protein electrochemistry using aligned carbon nanotube arrays. [J]. J. ACS. 2003,125(30):9006-9007.
    [106] M. Wang, F. Zhao, Y. Liu, S. Dong. Direct electrochemistry of microperoxidase at Ptmicroelectrodes modified with carbon nanotubes. [J]. Biosens Bioelectron. 2005, 21(1):159-166.
    [107] M. Lapkowski. Electrochemical synthesis of linear polyaniline in aqueous solutions. [J]. Synth Met.1990,35(1-2):169-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700