几种典型氧化物热电材料结构与物性的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热电材料是一种能够将电能与热能直接相互转化的功能材料,可以广泛的用于发电和制冷,并且具有固态运行、可精确控制、无辐射无污染、不需维护、使用寿命长等众多优点,因而这些年来得到了广泛的研究。目前技术上较为成熟、性能较好的热电材料多为金属半导体合金,但这些热电合金在高温下不稳定,容易氧化,造价高,并大多含有对人体有害的重金属,并不是理想的热电材料。相比之下,氧化物具有优良的结构稳定性和化学稳定性,安全无毒,不易氧化,成本低,易于大规模生产,被认为是一种潜在的热电材料。然而早期所研究的一些氧化物因其热电性能太低以至于无法应用,因而氧化物热电材料的研究一直没有得到足够的重视。但是,随着近年来在层状Co氧化物、钙钛矿型Co氧化物、电子掺杂的Mn氧化物,以及电子掺杂的Ti氧化物中陆续发现反常大的热电响应后,热电氧化物重新吸引了广泛的研究兴趣。
     在本论文中,我们详细地研究了Ca3Co4O9体系,CaMnO3体系,与LaCoO3体系这三种典型的高性能热电氧化物体系的结构、形貌、电输运、磁输运、热输运、磁性质、及热电性质等各方面的物理性质,对这三个体系的晶体结构和热电响应及电、磁、热多方面物理性质的关联有了深入的理解。通过离子掺杂、复合、改进制备手段等方法成功地提高了体系的热电性能。
     对于Ca3Co4O9体系,研究发现通过对Ca位Ag、Y等离子的掺杂,Co位Fe、Mn、Cu等离子的掺杂,体系的热电性能得到很大的改进。掺杂的离子改变了体系的载流子浓度,引入了化学压力,影响了迁移率与电子关联,并能够有效地抑制热导。这些掺杂离子对体系的输运机制、比热、磁性质等也有重要影响。同时研究了Ag复合的Ca3Co4O9的输运与热电性质,发现Ag复合有效的降低了晶界散射,从而提高了热电性能。此外研究表明,冷高压处理可以显著的提高这种层状氧化物陶瓷材料的织构,增大材料密度,降低孔隙、减少晶界并使晶粒长大,对热电性能起到了进一步的促进作用。结合离子掺杂与冷压技术改进,得到的Ca3Co4O9体系的最大ZT在1000K下可超过0.5,这在陶瓷氧化物中是一个非常高的值。
     对于电子掺杂的CaMnO3体系,研究揭示了决定该体系热电响应的主导因素。进行掺杂优化后,得到最高的ZT值在1000K下为0.2。尽管这个值在n型氧化物中很高,但与应用标准还是相距很远。深入地研究证明在电子掺杂的CaMnO3中难于实现超过1的ZT。由此探索了高性能热电氧化物应具有的特点,提出了寻找新的高性能热电氧化物的一系列切实可行的途径与策略。随后深入详细地研究了体系的电磁输运、热、磁等方面的性质,包括晶体结构与物性的关联、电磁输运机制、金属-绝缘体转变、磁性相分离、渗渝输运行为、磁电阻效应、电荷有序现象、热输运性质、反常的热导率行为、点缺陷散射机制、自旋/轨道简并及电子组态与热电势的关系、反常的磁致热电势效应、临界现象、相变与涨落等丰富的物理现象。
     对于LaCoO3体系,研究表明空穴掺杂的La1-xCaxCoO3与La1-xSrxCoO3具有不同的整体畸变和局域畸变,由此造成了两个系列表现出不同的电输运、磁输运、热输运性质与磁性质。空穴掺杂有效地改进了体系的热电性能。随后详细研究了体系的电磁输运行为与磁性演变,发现了玻璃铁磁性与再入自旋玻璃现象,并利用Arrott图做出了磁性相图。研究了体系的磁电阻效应,发现了磁阻的标度行为。同时分析了结构与物性的关联。此外,还研究了电子掺杂的La1-xCexCoO3,成功地得到了一种新的高性能的n型热电氧化物,发现其反常大的室温热电响应来源于Co3+离子的自旋态转变,由此分析了自旋组态与热电性质之间的关联,并发现了电子、空穴掺杂的不对称性。
     通过这些研究,对层状的Ca3Co4O9体系,钙钛矿CaMnO3体系,与钙钛矿LaCoO3体系的结构、物性、热电等方面有了全面深入的理解;这些研究对于进一步深入探索氧化物热电材料本征的物理机制与寻找新的高性能热电氧化物具有重要的意义。
Thermoelectric materials and thermoelectric effects, which are responsible for the direct conversion of heat into electrical energy and vice versa, have attracted much attention recently driven by their application as clean energy sources and device cooler. The many advantages of thermoelectric devices include solid-state operation, vast scalability, zero-emissions, no maintenance, and long operating lifetime.To date only a few intermetallic compound semiconductors exhibit good thermoelectric performance, and these thermoelectric alloys remain the state-of-the-art high ZT materials even today. However, these thermoelectric alloys are not stable in high temperature, easy oxidation, high-cost, and including heavy metal, so they are not ideal thermoelectric materials. Compared with the conventional thermoelectric alloys, metal oxides are more suitable for high temperature applications because of their structural and chemical stabilities, oxidation resistance, easy manufacture and low-cost. But the thermoelectric performance of earlier oxides is far away from application so that they did not receive enough attention. However, since the discovery large thermoelectric response in some layered cobaltites, perovskite cobaltites, electron-doped manganites, and electron-doped titanates recent years, thermoelectric oxides have received a renewed interesting.
     In this thesis, we detailedly investigate the structure, morphology, electric transport, magnetic transport, thermal transport, magnetic properties, and thermoelectric properties etc of three typical high-performance thermoelectric oxide systems: Ca3Co4O9 system, CaMnO3 system, and LaCoO3 system. From the study, we have an in-depth understanding of crystalline structure, thermoelectric response, electrical, magnetic, and thermal properties of these three systems, and successfully improve their thermoelectric performance by combining doping, composing, and developing preparation method.
     In Ca3Co4O9 system, the substitutions of Ag, Y for Ca and Fe, Mn, Cu for Co efficiently improve the thermoelectric properties. Ions doping alters the carrier concentration, induces chemical pressure, influences mobility and electronic correlation, and suppress thermal conductivity of the system. The dopings also have important effects on the transport mechanism, specific heat, and magnetic properties. We also investigate the transport and thermoelectric properties of Ag-added Ca3Co4O9, and find the addition of Ag can efficiently reduce the boundary scattering and thus enhance thermoelectric performance. Moreover, the study indicates that cold high-pressure can obviously improve the texture of such layered materials, increase density, decrease porosity and grain boundary, and thus further facilitate the thermoelectric response. Combining ion doping and cold high-pressure, the largest ZT of Ca3Co4O9 system reaches 0.5 at 1000K, which is a quite high value among ceramic oxides.
     In electron-doped CaMnO3 system, we study the dominant factors determining the thermoelectric response of this system. After optimizing doping, we get the highest ZT is ~0.2 at 1000K. Although this ZT is large among n-type oxides, it is still far away from application criterion. We demonstrate that a ZT value larger than one in electron-doped CaMnO3 systems seems rather unlikely. Then we analyze the characteristic of high-performance thermoelectric oxides; some strategies for searching new thermoelectric materials with high performance in transition metal oxides are proposed. Subsequently, we systematically investigate the electric, magnetic, thermal, and transport properties etc, and detailedly discuss many rich physical phenomena in this system, such as the correlation between crystalline structure and physical properties, electric and magnetic transport mechanism, metal-insulator transition, magnetic phase separation, percolative transport behavior, magnetoresistance effect, charger ordering phenomenon, thermal transport properties, anomalous thermal conductivity behavior, point-defect scattering mechanism, relationship between spin/orbital degeneracy and electronic configuration and thermopower, unusual magneto-thermopower effect, critical phenomenon, phase transition and fluctuation.
     In LaCoO3 system, we find hole-doped La1-xCaxCoO3 and La1-xSrxCoO3 have different global distortion and local distortion, which results in their different electric transport, magnetic transport, thermal transport, and magnetic properties. Hole-doping efficiently improve the thermoelectric properties of the system. Then we study the electric and magnetic transport behaviors and magnetic evolution. The glassy ferromagnetism and reentrant spin glass phenomenon are found. Using Arrott plot, we show the magnetic phase diagram of the system. We also investigate the magnetoresistance effect, and find the scaling behavior of magnetoresistance in this system. Similar with manganites, we analyze the correlation between crystalline structure and physical properties. Furthermore, we investigate electron-doped La1-xCexCoO3, and successfully obtain a new promising n-type thermoelectric oxide. The unusual large room-temperature thermoelectric response results from the spin state transition of Co3+. We discuss the relationship between spin blockade effect and thermoelectric properties in this system, and find the asymmetry of electron-doping and hole-doping.
     On the basis of these studies, we widely and deeply understand the structure, properties, and thermoelectrics of Ca3Co4O9, CaMnO3, and LaCoO3 systems. These results are highly significant for the further study of intrinsic physical mechanism of thermoelectric oxides and the search of new high-performance thermoelectric oxides.
引文
1 G. D. Mahan. Solid State Phys. Vol. 51 (edited by H. Ehrenreich and F. Spaepen, Academic Press, New York, 1998)
    2 L. E. Bell. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science. 2008, 321: 1457~1461
    3 G. J. Snyder, E. S. Toberer, Complex Thermoelectric Materials. Nat. Mater. 2008, 7: 105~114
    4 A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen. Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects. Energy Environ. Sci. 2009, 2: 466~479
    5 F . A. Trumbore, A. Tartaglia. Resistivities and Hole Mobilities in Very Heavility Doped Germanium. J. Appl. Phys. 1958, 29: 1511~1514
    6 S. C. Tae. Formation of PbTe Intermetallic Compound by Mechanical Alloying of Elemental Pb and Te Powder. Scrita Metallurgica at Mater. 1995, 32: 407~408
    7 A. L. Jain. Temperature Dependence of the Electrical Properities of Bismuth-Antimony Alloys. Phys. Rev. Lett. 1958, 114: 1518~1528
    8 T. M. Tritt. Thermoelectric Materials: Holey and Unholey Semiconductors. Science. 1999, 283: 804~805
    9 W. M. Yim, F. D. Rosi. Compound Tellurides and Their Alloys for Peltier Cooling Review. Solid State Electron. 1972, 15: 1121~1140
    10 A. L. Jain. Temperature Dependence of the Electrical Properties of Bismuth-Antimor Alloys. Phys. Rev. Lett. 1958, 114: 1518~1528
    11 G. E. Smith, R. Wolfe. Thermoelectric Properties of Bismuth-Antimony Alloys. J. Appl. Phys. 1962, 33: 841
    12 P. N. Adams, P. J. Laughlin, A. P. Monkman, Synthesis of High Molecular Weight Polyaniline at Low Temperatures. Synthetic Metals. 1996, 76:157~160
    13 A. P. Monkman, P. N. Adams, P. J. Laughlin, E. R. Holland. Polyaniline, Air Stable Organic Metal: Fact, No longer Fiction. Synthetic Metals. 1995, 69: 183~186
    14 N. Mateeva, H. Niculescu, J. Schlenoff. Correlation of seeback Coefficient and Electric Conductivity in Polyaniline and Polypyrrole. J. Appl. Phys. 1998, 83: 3111
    15 C. Uher, J. Yang, S. Hu. Melsuer, Transport Properties of Pure and Doped MNiSn (M=Zr, Hf). Phys. Rev. Lett. 1999, 59: 8615~8621
    16 G. D. Mahan, Figure of Merit for Thermoelectric. J. Appl. Phys. 1989, 65:1578~1583
    17 Y. Xia, S Bhattacharya, V Ponnambalam. Thermoelectric Properties of Semimetallic (Zr,Hf)CoSb Half-Heusler Phases. J. Appl. Phys. 2000, 88: 1952~1955
    18 D. G. Cahill, Ph. Avouris. Si Ejection and Regrouth During the Initial Stages of Si(001) Oxidation. Appl. Phys. Lett. 1992, 60: 326~328
    19 M. M. J. Treacy, T. W. Ebbesen, J. W. Gibson. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature. 1996, 381: 678~680
    20 J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin. B. C. Sales. Thermoelectric Properties of CoSb3 and Related Alloys. J. Appl. Phys. 1995, 78: 1013~1018
    21 D. T. Morelli, G. P. Meisner, P. M. Gregory. Low Temperature Properties of the Filled Skutterudite CeFe4 Sb12. J. Appl. Phys. 1995, 77: 3777~3781
    22 B. C. Sales, D. Mandrus. R. K. Williams. Filled Skutterudite Antimonides: A New Class of Thermoeletric Materials. Science. 1996, 272: 1325~1328
    23 G. S. Nolas, G. A. Slack, T. M. Tritt. The effect of Rare-Earth Filling on the Lattice Thermal Conductivity of Skutterudites. J. Appl. Phys. 1996, 79: 4002~4008
    24 G. S. Nolas, J. L. Coha, G. A. Slack. Effect of Partial Void filling on the Lattice Thermal Conductivity of Skutterudites. Phys. Rev. B. 1998, 58: 164~170
    25 L. D. Hicks, M. S. Dresselhaus. Effect of Quantum-Well Structure on the Thermoelectric Figure of Merit. Phys. Rev. B. 1993, 47: 12727~12731
    26 T. Koga, X. Sun, S. B. Cronin. Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Suerlattices. Appl. Phys. Lett. 1998: 2950~2952
    27 L. D. Hicks, T. C. Harman, M. S. Dreddelhaus. Use of Quantum-Well Superlattices to Obtain a High Figure of Merit from non Conventional Thermoelectric Materials. Appl. Phys. Lett. 1993, 63: 3230~3232
    28 D. A. Broido, T. L. Reinecke. Thermoelectric Transport in Quantum-Well Superlattices. Appl. Phys. Lett. 1997, 70: 2834~2836
    29 J. W. Sharp, E. C. Jones, R. K. Williams. Thermoelectric Properties of CoSb3 and Related Alloys. J. Appl. Phys. 1995, 78: 1013~1018
    30 R. Venkatasubramanian. Thin Film Superlattic and Quantum-Well Structure-a New Approach to High-Performance Thermoelectric Materials. Naval. Res. Rev. 1996, 58: 31~40
    31 H. A. Durand, K. Nishimoto, K. Ito. Hyperthermal Beams for the Fabrication ofThermoelectric Thin Films. Appl. Surf. Sci. 2000, 154: 387~392
    32 K. Kirihara, K. Kimura. Covalency Semiconductor-like and Thermoelectric Properties of Al-Based Quasicrystal. Icosahedral Cluster Solid Sci. Tec. Adv. Mater. 2000, 1: 227
    33 M. Enrigue. May Quasicrystals Be Good Thermoelectric Materials. Appl. Phys. Lett. 2000, 77: 3045~3047
    34 I. R. Fisher, K. O. Cheon, A. F. Panchula. Magnetic and Transport Properties of Sing-Grain R-Mg-Zn Icosahedral Quasicrystals [R=Y, (Y1-xGdx ), (Y1-x Tbx ), Tb, Dy, and Er. Phys. Rev. B. 1999, 59: 308~321
    35 K. Okano, Y Takagi. Application of SiC-Si Functionally Gradient Material to Thermoelectric Energy Conversation Device. Electric. Engineer. Japan. 1996, 117: 9~17
    36 V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin. High Performance Functionally Graded and Segmented Bi2Te3-Based Materials for Thermoelectric Power Generation. J. Mater. Sci. 2002, 37: 2893~2897
    37 Y. G. Curevich, G. N. Logvinov. Theory of Thermoelectric Cooling in Semiconductor Structures. Revista Mexicana De Fisica. 2007, 53: 337~349
    38 Y. G. Gurevich, G. N. Logvinov. Physics of Thermoelectric Cooling. Semi. Sci. Techn. 2005, 20: 57~64
    39 M. S. Dresselhaus, G Chen, M. Y. Tang, et al. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19: 1043~1053
    40 M. Shikano, R. Funahashi, Electrical and Thermal Properties of Single-Crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 Structure. Appl. Phys. Lett. 2003, 82: 1851~1853
    41 C. G. Fonstad, R. H. Rediker. Electrical Properties of High-Quality Stannic Oxide Crystals. J. Appl. Phys. 1971, 42: 2911
    42 T. P. Pearsall, C. A. Lee. Electronic Transport in ReO3 - dc Conductivity and Hall-Effect. Phys. Rev. B. 1974, 10: 2190~2194
    43 M. Ohtaki, D. Ogura, K. Eguchi, H. Arai, High-Temperature Thermoelectric Properties of In2O3-based Mixed Oxides and Their Applicability to Thermoelectric-Power Generation. J. Mater. Chem. 1994, 4: 653~656
    44 I. Terasaki, Y. Sasago, K. Uchinokura. Large Thermoelectric Power in NaCo2O4 Single Crystals. Phys. Rev. B. 1997, 56: R12685~12687
    45 A. C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Reveau, J. Hejtmanek. Misfit-Layered Cobaltite with an Anisotropic Giant Magnetoresistance: Ca3Co4O9. Phys. Rev. B. 2000, 62: 166~175
    46 R. Funahashi, I. Matsubara. Thermoelectric Properties of Pb- and Ca-doped(Bi2Sr2O4)xCoO2 Whiskers. Appl. Phys. Lett. 2001, 79: 362~364
    47 R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, An Oxide Single Crystal with High Thermoelectric Performance in Air. Jpn. J. Appl. Phys. 2000, Part 2 39: L1127~L1129
    48 P. Limelette, V. Hardy, P. Auban-Senzier, D. Jérome, D. Flahaut, S. Hébert, R. Frésard, C. Simon, J. Noudem, A. Maignan. Strongly Correlated Properties of the Thermoelectric Cobalt Oxide Ca3Co4O9. Phys. Rev. B. 2005, 71: 233108
    49 P. Limelette, P. Wzietek, S. Florens, A. Georges, T. A. Costi, C. Pasquier, D. Jérome, C. Mézière, P. Batail. Mott Transition and Transport Crossovers in the Organic Compound Kappa-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. Lett. 2003, 91: 016401
    50 Y. Y. Wang, N. S. Rogado, R. J. Cava, N. P. Ong, Spin Entropy as the Likely Source of Enhanced Thermopower in NaxCo2O4. Nature. 2003, 423: 425~428
    51 G. J. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Q. Zhou. Thermoelectric Properties of the Bi- and Na- substituted Ca3Co4O9 System. Appl. Phys. Lett. 2002, 80: 3760~3762
    52 G. J. Xu, R. Funahashi, M. Shikano, Q. R. Pu, B. Liu. High Temperature Transport Properties of Ca3-xNaxCo4O9 system. Solid State Commun. 2002, 124: 73~76
    53 D. L.Wang, L. D. Chen, Q. Yao, J. G. Li. High-Temperature Thermoelectric Properties of Ca3Co4O9+δwith Eu Substitution. Solid State Commun. 2004, 129: 615~618
    54 S. R. English, J. Wu. Thermally Excited Spin-Disorder Contribution to the Resistivity of LaCoO3. Phys. Rev. B. 2002, 65: 220407
    55 D. N. H. Nam, R. Mathieu, P. Nordblad, Spin-Glass Dynamics of La0.95Sr0.05CoO3. Phys. Rev. B. 2000, 62: 8989~8995
    56 J. Wu, C. Leighton. Glassy Ferromagnetism and Magnetic Phase Separation in La1-xSrxCoO3. Phys. Rev. B. 2003, 67: 174408
    57 J. Androulakis, P. Migiakis, J. Giapintzakis. La0.95Sr0.05CoO3: An Efficient Room-Temperature Thermoelectric Oxide. Appl. Phys. Lett. 2004, 84: 1099~1101
    58 K. Berggold, M. Kriener, C. Zobel et al, Thermal Conductivity, Thermopower, and Figure of Merit of La1-xSrxCoO3. Phys. Rev. B. 2005, 72: 155116
    59 M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, H. Arai. Electrical-Transport Properties and High-Temperature Thermoelectric Performance of (Ca0.9M0.1)MnO3 (M=Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi). J. Solid State Chem. 1995, 120: 105~111
    60 G. L. Liu, J. S. Zhou, J. B. Goodenough, Interplay Between Charge, Orbital, and Magnetic Ordering in La1-xSrxMnO3. Phys. Rev. B. 2001, 64: 144414
    61 J. M. D. Coey, M. Viret, S. von Molnar, Mixed-Valence Manganites. Adv. Phys. 1999, 48: 167~293
    62 M. Imada, A. Fujimori, Y. Tokura, Metal-Insulator Transitions. Rev. Mod. Phys. 1998, 70: 1039~1263
    63 Y. Tokura, N. Nagaosa, Orbital Physics in Transition-Metal Oxides. Science. 2000, 288: 462~468
    64 A. Moreo, S. Yonuki, E. Dagotto, Solid State Physics - Phase Separation Scenario for Manganese Oxides and Related Materials. Science. 1999, 283: 2034~2040
    65 T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Large Thermoelectric Response of Metallic Perovskites: Sr1-xLaxTiO3 (0 <= x <= 0.1). Phys. Rev. B. 2001, 63: 11
    66 S. Ohta, T. Nomura, H. Ohta, K. Koumoto, High-Temperature Carrier Transport and Thermoelectric Properties of Heavily La- or Nb-doped SrTiO3 Single Crystals. J. Appl. Phys. 2005, 97: 034106
    67 S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Large Thermoelectric Performance of Heavily Nb-doped SrTiO3 Epitaxial Film at High Temperature. Appl. Phys. Lett. 2005, 87: 092108
    68 R. Funahashi, M. Mikami, S. Urata, M. Kitawaki, T. Kouuchi, K. Mizuno, High-Throughput Screening of Thermoelectric Oxides and Power Generation Modules Consisting of Oxide Unicouples. Meas. Sci. Technol. 2005, 16: 70~80
    69 R. Funahashi, S. Urata, M. Kitawaki, Exploration of N-Type Oxides by High Throughput Screening. Appl. Surf. Sci. 2004, 223: 44~48
    70 I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu, K. Ueno, Fabrication of An All-Oxide Thermoelectric Power Generator. Appl. Phys. Lett. 2001, 78: 3627~3629
    71 R. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, M. Mikami, Ca2.7Bi0.3Co4O9/La0.9Bi0.1NiO3 Thermoelectric Devices with High Output Power Density. Appl. Phys. Lett. 2004, 85: 1036~1038
    72 E. S. Reddy, J. G. Noudem, S. Hebert, C. Goupil, Fabrication and Properties of Four-Leg Oxide Thermoelectric Modules. J. Phys. D: Appl. Phys. 2005, 38: 3751~3755
    73 T. Okamoto, S. Horii, T. Uchikoshi, T. S. Suzuki, Y. Sakka, R. Funahashi, N. Ando, Fabrication of Multilayered Oxide Thermoelectric Modules by Electrophoretic Deposition Under High Magnetic Fields. Appl. Phys. Lett. 2006, 89: 081912
    74 S. W. Li, R. Funahashi, I. Matsubara, K. Ueno, H. Yamada, High Temperature Thermoelectric Properties of Oxide Ca9Co12O28. J. Mater. Chem. 1999, 9: 1659~1660
    75 Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii, T. Kajitani, Modulated Structure of the Thermoelectric Compound [Ca2CoO3]0.62CoO2. J. Phys. Soc. Japn. 2002, 71: 491~497
    76 G. J. Xu, R. Funahashi, M. Shikano, Q. Pu, B. Liu. High temperature transport properties of Ca3-xNaxCo4O9 system. Solid State Commun. 2002, 124: 73~76
    77 G. J. Xu, R. Funahashi, M. Shikano, I. Matsubara, Y. Q. Zhou, Thermoelectric properties of the Bi- and Na- substituted Ca3Co4O9 system. Appl. Phys. Lett. 2002, 80: 3760~3762
    78 L. B. Wang, A. Maignan, D. Pelloquin, S. Hébert, B. Raveau. Transport and Magnetic Properties of Ca3-xSrxCo4O9. J. Appl. Phys. 2002, 92: 124~128
    79 D. L. Wang, L. D. Chen, Q. Yao, J. G. Li. High-Temperature Thermoelectric Properties of Ca3Co4O9 with Eu Substitution. Solid State Commun. 2004, 129: 615~618
    80 D. L. Wang, L. D. Chen, Q. Wang, J. G. Li, Fabrication and Thermoelectric Properties of Ca3-xDyxCo4O9 System. J. Alloys Compd. 2004, 376: 58~61
    81 C. J. Liu, L. C. Huang, J. S. Wang. Improvement of the Thermoelectric Characteristics of Fe-Doped Misfit-Layered Ca3Co4-xFexO9+δ(x=0, 0.05, 0.1, and 0.2). Appl. Phys. Lett. 2006, 89: 204102
    82 Q. Yao, D. L. Wang, L. D. Chen, X. Shi, M. Zhou, Effects of Partial Substitution of Transition Metals for Cobalt on the High-Temperature Thermoelectric Properties of Ca3Co4O9+δJ. Appl. Phys. 2005, 97: 103905
    83 S. Tajima, T. Tani, S. Isobe, K. Koumoto. Thermoelectric Properties of Highly Textured NaCo2O4 Ceramics Processed by the Reactive Templated Grain Growth (RTGG) Method. Materials Science and Engineering B. 2001, 86: 20~25
    84 E. Guilmeau, R. Funahashi, M. Mikami, K. Chong, D. Chateigner. Thermoelectric Properties-Texture Relationship in Highly Oriented Ca3Co4O9 Composites. Appl. Phys. Lett. 2004, 85, 1490~1492
    85 W. Shin, N. Izu, N. Murayama. Thermoelectric Properties of Highly Grain-Aligned and Densified Co-based Oxide Ceramics J. Appl. Phys. 2003, 93, 2653~2658
    86 J. Sugiyama, H. Itahara, T. Tani, J. H. Brewer, E. J. Ansaldo. Magnetism of Layered Cobalt Oxides Investigated by Muon Spin Rotation and Relaxation. Phys. Rev. B. 2002, 66: 134413
    87 J. Sugiyama, C. Xia, T. Tani. Anisotropic Magnetic Properties of Ca3Co4O9:Evidence for a Spin-Density-Wave Transition at 27 K. Phys. Rev. B. 2003, 67: 104410
    88 J. Sugiyama, J. H. Brewer, E. J. Ansaldo, H. Itahara, K. Dohmae, Y. Seno, C. Xia, T. Tani. Hidden Magnetic Transitions in the Thermoelectric Layered Cobaltite [Ca2CoO3]0.62[CoO2]. Phys. Rev. B. 2003, 68: 134423
    89 T. Takeuchi et al. Contribution of Electronic Structure to the Large Thermoelectric Power in Layered Cobalt Oxides. Phys. Rev. B. 2004, 69: 125410
    90 L.B.Wang, A.Maignan, D. Pelloquin, S. Hěbert, B.Raveau. Transport and Magnetic Properties of Ca3-xSrxCo4O9. J. Appl. Phys. 2002, 92: 124~128
    91 B. C. Zhao, Y. P. Sun, W. J. Lu, X. B. Zhu, W. H. Song, Enhanced Spin Fluctuations in Ca3Co4-xTixO9 Single Crystals. Phys. Rev. B. 2006, 74: 144417
    92 D. Li, X. Y. Qin, Y. J. Gu, J. Zhang, Electrical Transport Behavior of Ca3MnxCo4-xO9 (0 <= x <= 1.28) at Low Temperatures. J. Appl. Phys. 2006, 99: 053709
    93 X. G. Luo, X. H. Chen, G. Y. Wang, C. H. Wang, Y. M. Xiong, H. B. Song, X. X. Lu. Effect of Oxygen Content on the Transport Properties and Magnetoresistance in [Ca2CoO3]0.62[CoO2] Single Crystals. Eur. Phys. Lett. 2006, 74:526~534
    94 M. Karppinen, H. Fjellv?g, T. Konno, Y. Morita, T. Motohashi, H. Yamauchi. Evidence for Oxygen Vacancies in Misfit-Layered Calcium Cobalt Oxide [CoCa2O3]qCoO2. Chem. Mater. 2004, 16:2790-2793
    95 V. M. Goldschmidt, The Laws of Crystal Chemistry. Naturwissenschaften 1926, 14: 477~485
    96 W. E. Pickett, D. J. Singh. Electronic Structure and Half-Metallic Transport in the La1-xCaxMnO3 System. Phys. Rev. B. 1996, 53: 1146-1160
    97 W. E. Pickett, D. J. Singh. Magnetoelectronic and Magnetostructural Coupling in the La1-xCaxMnO3 System. Europhys. Lett. 1995, 32: 759-764
    98 C. Zener. Interaction Between the D-Shells in the Transition Metals,Ⅱ.Ferromagnetic Compounds of Manganese with Perovskite Structure. Phys. Rev. 1951, 82: 403-405
    99 P. W. Anderson. Antiferromagnetism Theory of Superexchange Interaction. Phys. Rev. 1950, 79:350-356
    100 A. J. Millis,P .B. Littlewood, B. I. Shraiman. Double Exchange Alone Does not Explain the Resistivity of La1-xSrxMnO3. Phys. Rev. Lett. 1995, 74: 5144-5147
    101 C. Martin, A. Maignan, M. Hervieu, B. Raveau, Magnetic Phase Diagrams of L1-xAxMnO3 Manganites (L = Pr, Sm; A = Ca, Sr). Phys. Rev. B. 1999, 60: 12191
    102 J. J. Neumeier, D. H. Goodwin. Unusually Strong Ferromagnetic Correlations inLa-Doped CaMnO3. J. Appl. Phys. 1999, 85: 5591~5593
    103 J. J. Neumeier, J. L. Cohn. Possible Signatures of Magnetic Phase Segregation in Electron-Doped Antiferromagnetic CaMnO3. Phys. Rev. B. 2000, 61: 14319~14322
    104 O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, S. Short. Structural and Magnetic Phase Diagrams of La1-xSrxMnO3 and Pr1-ySryMnO3. Phys. Rev. B. 2003, 67: 094431
    105 H. Chiba, M. Kikuchi, K. Kusaba, Y. Muraoka, Y. Syono. Ferromagnetism and Large Negative Magnetoresistance in Bi1-xCaxMnO3 (x>=0.8) Perovskite. Solid State Commun. 1996, 99: 499~502
    106 A. Maignan, C. Martain, F. Damay, B. Raveau. Factors Governing the Magnetoresistance Properties of the Electron-Doped Manganites Ca1-xAxMnO3 (A = Ln, Th). Chem. Mater. 1998, 10: 950
    107 S. Hirano, J. Sugiyama, T. Noritake, T. Tani. Chemical Pressure Effect on Magnetic Properties in Electron-Doped Perovskite Manganites (Gd0.08CaySr0.92-y)MnO3 (0 < y < 1): Percolation Transition of Ferromagnetic Clusters. Phys. Rev. B. 2004, 70: 094419
    108 E. Granado, N. O. Moreno, H. Martinho, A. Garcia, J. A. Sanjurjo, I. Torriani, C. Rettori, J. J. Neumeier, S. B. Oseroff. Dramatic Changes in the Magnetic Coupling Mechanism for La-doped CaMnO3. Phys. Rev. Lett. 2001, 86: 5385~5388
    109 K. Kadowaki, S. B. Woods. Universal Relationship of the Resistivity and Specific Heat in Heavy-Fermion Compounds. Solid State Commun. 1986, 58: 507~509
    110 P. Schiffer, A. P. Ramirez, W. Bao, S, W. Cheong. Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La1-xCaxMnO3. Phys.Rev.Lett. 1995,75: 3336~3339
    111 M. F. Hundley, M. Hawley, R. H. Heffner, Q. X. Jia, J. J. Neumeier, J. Tesmer, J. D. Thompson, X. D. Wu. Transport-Magnetism Correlations in the Ferromagnetic Oxide La0.7Ca0.3MnO3. Appl. Phys. Lett. 1995, 67: 860~862
    112 N. C. Yeh, R. P. Vasquez, D. A. Beam, C. C. Fu, J. Huynh, G. Beach. Effects of Lattice Distortion and Jahn-Teller Coupling on the Magnetoresistance of La0.7Ca0.3MnO3 and La0.5Ca0.5MnO3 Epitaxial Films. J.Phys.:condens.Matter. 1996, 9: 3713~3721
    113 Y. X. Jia, L. Lu, K. Khazeni, V. H. Crespi, A. Zettl, M. L. Cohen. Magnetotransport Properties of La0.6Pb0.4MnO3-δand Nd0.6(Sr0.7Pb0.3)0.4MnO3-δSingle Crystals. Phys. Rev. B. 1995, 52: 9147~9150
    114 R. M. Kusters, J. Singleton, D. A. Keen, R. McGreevy, W. Hayes. Magnetoresistance Measurements on the Magnetic Semiconductor Nd0.5Pb0.5MnO3. Physica B. 1989, 155: 362~365
    115 A. Asamitsu, Y. Moritomo, Y. Tokura. Thermoelectric Effect in La1-xSrxMnO3. Phys. Rev. B. 1996, 53: R2952~2955
    116 R. Mahendiran, S. K. Tiwary, A. K. Raychaudhuri, T. V. Ramakrishnan, R. Mahesh, N. Rangavittal, C. N. R. Rao Structure, Electron-Transport Properties,and Giant Magnetoresistance of Hole-Doped LaMnO3 Systems. Phys. Rev. B. 1996, 53: 3348~3358
    117 J. Hejtmanek, Z. Jirak, D. Sedmidubsky, A. Maignan, Ch. Simon, V. Caignaert, C. Martin, B. Raveau. Correlation of the Size Effect with the Thermoelectric Power for the Pr-Based Manganites Pr0.7Ca0.3-xSrxMnO3. Phys. Rev. B. 1996, 54:11947~11950
    118 M. Jaime, M. B. Salamon, M. Rubinstein, R. E. Treece, J. S. Horwitz, D. B. Chrisey. High-Temperature Thermopower in La2/3Ca1/3MnO3 Films: Evidence for Polaronic Transport. Phys. Rev. B. 1997, 54: 11914~11917
    119 M. Jaime, M. B. Salamon, K. Pettit, M. Rubinstein, R. E. Treece, J. S .Horwitz, D. B. Chrisey. Magnetothermopower in La0.67Ca0.33MnO3 Thin Films. Appl. Phys. Lett. 1996, 68: 1576~1578
    120 D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, K. Koumoto. Thermoelectrical Properties of A-Site Substituted Ca1-xRexMnO3 System. J. Appl. Phys. 2006, 100: 084911
    121 L. Bocher, M. H. Aguirre, D. Logvinovich, A, Shkabko, R, Robert, M. Trottmann, A. Weidenkaff. CaMn1-xNbxO3 (x<=0.08) Perovskite-Type Phases As Promising New High-Temperature N-Type Thermoelectric Materials. Inorg. Chem. 2008, 47(18): 8077~8085
    122 G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, T. T. M. Palstra. Evidence for Orbital Ordering in LaCoO3. Phys. Rev. B. 2003, 67: 224423
    123 T. Takami, J. S. Zhou, J. B. Goodenough, H. Ikuta. Correlation between the Structure and the Spin State in R1?xSrxCoO3 (R=La, Pr, and Nd). Phys. Rev. B 2007, 76: 144116
    124 J. Wu, C. Leighton. Glassy Ferromagnetic and Magnetic Phase Separation in La1?xSrxCoO3. Phys. Rev. B. 2003, 67: 174408-1~15
    125 V. Golovanov, L. Mihaly. Magnetoresistence in La1?xSrxCoO3 for 0.05≤x≤0.25. Phys. Rev.B .1996, 53: 8207~8210
    126 M. A. Senaris-Rodriguez, J. B. Goodenough. Magnetic and Transport Properties of the System La1-xSrxCoO3 (0    127 S. Tsubouchi, T. kyomen, M. Itoh, et al.Simultaneous Metal-Insulator and Spin-state Transition in Pr0.5Ca0.5CoO3. Phys. Rev. B. 2002, 66: 052418
    128 Z. C. Xia, S. L. Yuan, F. Tul. Grain Boundaries and Low-Field Transport Properties in Colossal Magnetoresistance Materials. Appl. Phys. Lett. 2002, 35: 177~180
    129 F. Fauth, E.Suard, V. Caignaert. Intermediate Spin State of Co3+ and Co4+ions in La0.5Ba0.5CoO3 Evidenced by Jahn-Teller Distortions. Phys. Rev. B. 2002,65: 060401R
    130 A. N. Petrov, O. F. Kononchuk, A. V. Andreev. Crystal Structure, Electrical and Magnetic Properties of La1-xSrxCoO3. Solid State Ionic. 1995,80: 189~199
    131 M. A. Senarfs-Rodriguez, J. B. Goodenough. LaCoO3 Revisited. J. Solid State Chem. 1995, 116: 224~231
    132 J. R. Sun, R. W. Li, B. G. Shen. Spin-State Transition in La1-xSmxCoO3 Perovskites. J. Appl. Phys. 2001, 89: 1331~1335
    133 H. Arai, S. Muller, O. Haas. AC Impedance Analysis of Bifunctional Air Electrodes for Metal-Air Batteries. J. Electrochem. Soc. 2000,14: 3584~3591
    134 S. R. English, J. Wu, C. Leighton. Thermal Excited Spin-Disorder Contribution to the Resistivity of LaCoO3. Phys. Rev. B. 2002, 65: 220407~220412
    135 M. Kriener, C. Zobel, A. Reichl, J. Baier, M. Cwik, K. Berggold, H. Kierspel, O. Zabara, A. Freimuth, T. Lorenz. Structure, Magnetization, and Resistivity of La1-xMxCoO3 (M=Ca, Sr, and Ba) Phys. Rev. B. 2004, 69: 094417
    136 S. Yamaguchi, Y. Okimoto, Y. Tokura. Local Lattice Distortion during the Spin-State Transition in LaCoO3 .Phys. Rev. B.1997, 55: R8666~8669
    137 R. Caciuffo, D. Rinaldi, G. Barucca et al. Structural Details and Magnetic Order of La1-xSrxCoO3 ( x≤0.3). Phys. Rev. B. 1999, 59: 1068~1078
    138 K. Iwasaki, T. Ito, T. Nagasaki, Y. Arita, M. Yoshino, T. Matsui. Thermoelectric Properties of Polycrystalline La1-xSrxCoO3. J. Solid State Chem. 2008, 181: 3145~3150
    139 R. Moos, A. Gnudi, K. H. Hardtl. Thermopower of Sr1-xLaxTiO3 Ceramics. J. Appl. Phys. 1995, 78: 5042~5047
    140 C. Yu, M. L. Scullin, M. Huijben, R. Ramesh, A. Majumdar. Thermal Conductivity Reduction in Oxygen-Deficient Strontium Titanates. Appl. Phys. Lett. 2008, 92: 191911
    141 H. Ohta,im, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. hirano, H. Hosono, K. Koumoto. GiantThermoelectrici Seebeck Coefficient of a Two-Dimensional Electron Gas in SrTiO3. Nat. Mater. 2007, 6: 129~134
    142 L. D. Hicks, M. S. Dresselhaus. The effect of Quantum Well Structures on the Thermoelectric Figure of Merit. Phy. Rev. B. 1993, 47: 12727~12732
    143 G. C. McIntosh, A. B. Kaiser. Van Hove Scenario and Thermopower Behavior of the High-TC Cuprates. Phys. Rev. B. 1996, 54: 12569~12575
    144 B. Fisher, L. Patlagan, G. M. Reisner, A. Knizhnik, Systematics in the Thermopower of Electron-Doped Layered Manganites. Phys. Rev. B. 2000, 61: 470~475
    145 T. Kondo, T. Takami, H. Takahashi, H. Ikuta, U. Mizutani, K. Soda. Contribution of Electronic Structure to the Large Thermoelectric Power in Layered Cobalt Oxides. Phys. Rev. B. 2004, 69: 125410
    146 D. J. Singh. Electronic Structure of NaCo2O4. Phys. Rev. B. 2000, 61: 13397~13402
    147 R. Asahi, J. Sugiyama, T. Tani. Electronic Structure of Misfit-Layered Calcium Cobaltite. Phys. Rev. B. 2002, 66: 155103
    148 J. Callaway. Model for Lattice Thermal Conductivity at Low Temperatures. Phys. Rev. 1959, 113: 1046~1051
    149 J. Callaway, H. C. von Baeyer. Effect of Point Imperfections on Lattice Thermal Conductivity. Phys. Rev. 1960, 120: 1149~1154
    150 G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, C. Uher. Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members. Phys. Rev. Lett.1998, 80: 3551~3554
    151 J. G. Cheng, Y. Sui, Y. Wang, X. J. Wang, W. H. Su. First-Order Phase Transition Characteristic of the High Temperature Metal-Semiconductor Transition in [Ca2CoO3] 0.62[CoO2]. Appl. Phys. A. 2009, 94: 911~916
    152 F. Rivadulla, J. S. Zhou, J. B. Goodenough. Chemical, Structural, and Transport Properties of Na1-xCoO2. Phys. Rev. B. 2003, 68: 075108
    153 N. F. Mott, E. A. Davis, Electronic Processes in Non-Crystalline Materials. (Clarendon, Oxford, 1979); N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990)
    154 W. F. Brinkman, T. M. Rice. Application of Gutzwiller's Variational Method to the Metal-Insulator Transition. Phys. Rev. 1970, 2: 4302~4304
    155 A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg. Dynamical Mean-Field Theory of Strongly Correlated Fermion Systems and the Limit of Infinite Dimensions. Rev. Mod. Phys. 1996, 68: 13~125
    156 M. Ito, T. Nagira, Y. Oda, S. Katsuyama, K. Majima, H. Nagai, Effect of PartialSubstitution of 3d Transition Metals for Co on the Thermoelectric Properties of NaxCo2O4. Mater. Trans. 2002, 43: 601~607
    157 I. Terasaki, Y. Ishii, D. Tanaka, Y. Iguchi. Thermoelectric Properties of NaCo2-xCuxO4 Improved by the Substitution of Cu for Co. Jpn. J. Appl. Phys. 2001, Part 2, 40: L65~L67
    158 T. Takeuchi, T. Kondo, T. Takami, H. Takahashi, H. Ikuta, U. Mizutani, K. Soda, R. Funahashi, M. Shikano, M. Mikami, S. Tsuda, T. Yokoya, S. Shin, T. Muro. Contribution of Electronic Structure to the Large Thermoelectric Power in Layered Cobalt Oxides. Phys. Rev. B. 2004, 69: 125410
    159 A. Maignan, V. Caignaert, B. Raveau, D. Khomshii, G. Sawatzky. Thermoelectric Power of HoBaCo2O5.5: Possible Evidence of the Spin Blockade in Cobaltites. Phys. Rev. Lett. 2004, 93: 026401
    160 F. K. Lotgering Topotactical Reactions with Ferrimagnetic Oxides Having Hexagonal Crystal Structures. J. Inorg. Nucl. Chem. 1959, 9: 113
    161 I. D. Fawcett, J. E. Sunstrom, M. Greenblatt, M. Croft, K. V. Ramanujachary. Structure, Magnetism, and Properties of Ruddlesden-Popper Calcium Manganates Prepared from Citrate Gels. Chem. Mater. 1998, 10: 3643~3651
    162 M. E. M. Jorge, M. R. Nunes, R. S. Maria, D. Sousa. Metal-Insulator Transition Induced by Ce Doping in CaMnO3. Chem. Mater. 2005, 17: 2069~2075
    163 E. N. Caspi, M. Avdeev, S. Short, J. D. Jorgensen, M. V. Lobanov, Z. Zeng, M. Greenblatt, P. Thiyagarajan, C. E. Botez, P. W. Stephens. Structural and Magnetic Phase Diagram of the Two-Electron-Doped Ca1-xCexMnO3 System: Effects of Competition among Charge, Orbital, and Spin Ordering. Phys. Rev. B. 2004, 69: 104402
    164 B. T. Cong, T. Tsuji, P. X. Thao,P. Q. Thanh,Y. Yamamura. High-Temperature Thermoelectric Properties of Ca1-xPrxMnO3-δ(0 <= x < 1). Physica B. 2004, 352: 18~23
    165 G. J. Xu, R. Funahashi, Q. R. Pu, B. Liu, R. H. Tao, G. S. Wang, Z. J. Ding, High-Temperature Transport Properties of Nb and Ta Substituted CaMnO3 System. Solid State Ionics. 2004, 171: 147~151
    166 G. J. Xu, R. Funahashi, I. Matsubara, M. Shikano, Y. Q. Zhou. High-Temperature Thermoelectric Properties of the Ca1-xBixMnO3 System. J. Mater, Res. 2002, 17: 1092~1095
    167 B. Raveau, A. Maignan, C. Martin, M. Hervieu. Colossal Magnetoresistance Manganite Perovskites: Relations between Crystal Chemistry and Properties. Chem. Mater. 1998, 10: 2641~2652
    168 L. Sudheendra, A. R. Raju, C. N. R. Rao. A Systematic Study of Four Series ofElectron-Doped Rare Earth Manganates, LnxCa1-xMnO3 (Ln = La, Nd, Gd and Y) over the x=0.02-0.25 Composition Range. J. Phys: Condens. Matter. 2003, 15: 895~905
    169 E. N. Caspi, M. Avdeev, S. Short, J. D. Jorgensen, M. V. Lobanov, Z. Zeng, M. Greenblatt, P. Thiyagarajan, C. E. Botez, P. W. Stephens. Structural and Magnetic Phase Diagram of the Two-Electron-Doped (Ca1-xCex)MnO3 System: Effects of Competition among Charge, Orbital, and Spin Ordering. Phys. Rev. B. 2004, 69: 104402
    170 R. P. Heikes. Transition Metal Compounds; edited by Schatz E R: Gordon and Breach, New York, 1963
    171 W. Metzner, D. Vollhardt. Correlated Lattice Fermions in D-Infinity Dimensions. Phys. Rev. Lett. 1989, 62: 324~327
    172 M. Jarrell. Hubbard-Model in Infinite Dimensions - an Auantum Monte-Carlo Study. Phys. Rev. Lett. 1992, 69: 168~171
    173 Pruschke, T.; Jarrell, M.; Freericks, J. K. Anomalous Normal-State Properties of High-Tc Superconductors: Intrinsic Properties of Strongly Correlated Electron Systems? Adv. Phys. 1995, 44: 187~210
    174 A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg. Dynamical Mean-Field Theory of Strongly Correlated Fermion Systems and the Limit of Infinite Dimensions. Rev. Mod. Phys. 1996, 68: 13~125
    175 G. Pálsson, G. Kotliar. Thermoelectric Response Near the Density Driven Mott Transition. Phys. Rev. Lett. 1998, 80: 4775~4778
    176 J. S. Zhou, J. B. Goodenough. Intrinsic Structural Distortion in Orthorhombic Perovskite Oxides. Phys. Rev. B. 2008, 77; 132104
    177 J. S. Zhou, J. B. Goodenough. Dynamic Jahn-Teller Distortions and Thermal Conductivity in La1-xSrxMnO3 Crystals. Phys. Rev. B. 2001, 64: 024421
    178 J. G. Cheng, Y. Sui, J. S. Zhou, J. B. Goodenough, W. H. Su. Transition from Orbital Liquid to Jahn-Teller Insulator in Orthorhombic Perovskites RTiO3. Phys. Rev. Lett. 2008, 101: 087205
    179 K. Ghosh, S. B. Ogale, R. Ramesh, R. L. Greene, T. Venkatesan, K. M. Gapchup, R. Bathe, S. I. Patil. Transition-Element Doping Effects in La0.7Ca0.3MnO3. Phys. Rev. B. 1999, 59: 533~537
    180 D. Sousa, M. R. Nunes, C. Silveira, I. Matos, A. B. Lopes, M. E. Melo Jorge. Ca-Site Substitution Induced a Metal-Insulator Transition in Manganite CaMnO3. Mater. Chem. Phys. 2008, 109: 311~319
    181 Y. Tomioka, A. Asamitsu, Y. Moritomo, H. Kuwahara, Y. Tokura. Collapse of a Charge-Ordered State under a Magnetic-Field in Pr1/2Sr1/2MnO3. Phys. Rev. Lett.1995, 74: 5108~5111
    182 H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, Y. Tokura. A First-Order Phase-Transition Induced by a Magnetic-Field. Science. 1995, 270: 961~963
    183 M. Tokunaga, N. Miura, Y. Tomioka, Y. Tokura. High-Magnetic-Field Study of the Phase Transitions of R1-xCaxMnO3 (R = Pr, Nd). Phys. Rev. B. 1998, 57: 5259~5264
    184 G. J. Snyder, R. Hiskes, S. DiCarolis, M. R. Beasley, T. H. Geballe. Intrinsic Electrical Transport and Magnetic Properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD Thin Films and Bulk Material. Phys. Rev. B. 1996, 53: 14434~14444
    185 X. D. Wang, X. G. Zhang. Low-Temperature Resistivity in a Nearly Half-Metallic Ferromagnet. Phys. Rev. Lett. 1999, 82: 4276~4279
    186 M. Jaime, P. Lin, M. B. Salamon, P. D. Han. Low-Temperature Electrical Transport and Double Exchange in La0.67(Pb,Ca)0.33MnO3. Phys. Rev. B. 1998, 58: R5901~R5904
    187 M. J. Calderón, L. Brey. Low-Temperature Resistivity in Double-Exchange Systems. Phys. Rev. B. 2001, 64: 140403
    188 A. S. Alexandrov, A. M. Bratkovsky. Carrier Density Collapse and Colossal Magnetoresistance in Doped Manganites. Phys. Rev. Lett. 1999, 82: 141~144
    189 C. H. Booth, F. Bridges, G. H. Kwei, J. M. Lawrence, A. L. Cornelius, J. J. Neumeier. Direct Relationship between Magnetism and MnO6 Distortions in La1-xCaxMnO3. Phys. Rev. Lett. 1998, 80: 853~856
    190 S. J. L. Billinge, R. G. DiFrancesco, G. H. Kwei, J. J. Neumeier, J. D. Thompson. Direct Observation of Lattice Polaron Formation in the Local Structure of La1-xCaxMnO3. Phys. Rev. Lett. 1996, 77: 715~718
    191 M. Jaime, P. Lin, S. H. Chun, M. B. Salamon, P. Dorsey, M. Rubinstein. Coexistence of Localized and Itinerant Carriers near TC in Calcium-Doped Manganites. Phys. Rev. B. 1999, 60: 1028~1032
    192 C. Renner, G. Aeppli, B. G. Kim, Y. A. Soh, S. W. Cheong. Atomic-Scale Images of Charge Ordering in a Mixed-Valence Manganite. Nature. 2002, 416: 518~521
    193 A. Moreo, M. Mayr, A. Feiguin, S. Yunoki, E. Dagotto. Giant Cluster Coexistence in Doped Manganites and Other Compounds. Phys. Rev. Lett. 2000, 84: 5568~5571
    194 I. Balberg. Tunneling and Nonuniversal Conductivity in Composite-Materials. Phys. Rev. Lett. 1987, 59: 1305~1308
    195 D. W. Visser, A. P. Ramirez, M. A. Subramanian. Thermal Conductivity of Manganite Perovskites: Colossal Magnetoresistance as a Lattice-DynamicsTransition. Phys. Rev. Lett. 1997, 78: 3947~3950
    196 J. S. Zhou, J. B. Goodenough. Probing Structural Inhomogeneities Induced by Exchange Striction above TN in Antiferromagnetic Perovskites. Phys. Rev. B. 2002, 66: 052401
    197 D. G. Cahill, S. K. Watson, R. O. Pohl. Lower Limit to the Thermal-Conductivity of Disordered Crystals. Phys. Rev. B. 1992, 46: 6131~6140
    198 J. L. Cohn, J. J. Neumeier. Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca1-xLaxMnO3 (0 <= x <= 0.2). Phys. Rev. B. 2002, 66: 100404
    199 C. Hess, B. Büchner. Thermal Conductivity of Doped La2CuO4 as an Example for Heat Transport by Optical Phonons in Complex Materials. Eur. Phys. J. B. 2004, 38: 37~41
    200 L. Jiang, M. Zhang, Q. Jiang, Thermal Transport by Lattice Excitations in Hexagonal Rare-Earth Manganites. J. Appl. Phys. 2008, 104: 083718
    201 I. Terasaki, H. Tanaka, A. Satake, S. Okada, T. Fujii. Out-of-Plane Thermal Conductivity of the Layered Thermoelectric Oxide Bi2?xPbxSr2Co2Oy. Phys. Rev. B 2004, 70: 214106
    202 D. B. Marsh, P. E. Parris, Theory of the Seebeck Coefficient in LaCrO3 and Related Perovskite Systems. Phys. Rev. B. 1996, 54: 7720~7728
    203 N. W. Aschcroft, N. D. Mermin, Solid State Physics (PA: HoltSaunders, Philadelphia, 1976)
    204 T. Bauer, C. Falter. Impact of Dynamical Screening on the Phonon Dynamics of Metallic La2CuO4. Phys. Rev. B. 2009, 80: 094525
    205 S. K. Vijaya, P. V. Vanitha, R. Seshadri, A. K. Cheetham, C. N. R. Rao. Electron-Hole Asymmetry in the Rare-Earth Manganates: A Comparative Study of the Hole- and the Electron-Doped Materials. Chem. Mater. 2001, 13: 787~795
    206 J. S. Zhou, J. B. Goodenough. Unusual Evolution of the Magnetic Interactions Versus Structural Distortions in RMnO3 Perovskites. Phys. Rev. Lett. 2006, 96: 247202
    207 A. C. Komarek, H. Roth, M. Cwik, W. D. Stein, J. Baier, M. Kriener, F. Bouree, T. Lorenz, M. Braden. Magnetoelastic Coupling in RTiO3 (R=La,Nd,Sm,Gd,Y) Investigated with Diffraction Techniques and Thermal Expansion Measurements. Phys. Rev. B. 2007, 75: 224402
    208 J. S. Zhou, J. B. Goodenough. Intrinsic Structural Distortion in Orthorhombic Perovskite Oxides. Phys. Rev. B. 2008, 77: 132104
    209 O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, D. E. Brown, R. Kruk, P. Prior, B. Pyles, J. D. Jorgensen. Relationship between Structural Parameters and the Neel Temperature in Sr1-xCaxMnO3 (0 <= x <= 1) and Sr1-yBayMnO3 (y <=0.2). Phys. Rev. B. 2001, 64: 134412
    210 S. Sergeenkov. Estimation of the Charge Carrier Localization Length from Gaussian Fluctuations in the Magneto-Thermopower of La0.6Y0.1Ca0.3MnO3 Phys. Rev. B. 1999, 60: 12322~12328
    211 W. Koshibae, K. Tsutsui, S. Maekawa. Thermopower in Cobalt Oxides. Phys. Rev. B. 2000, 62: 6869~6872
    212 R. Robert, L. Bocher, M. Trottmann, A. Reller, A. Weidenkaff. Synthesis and High-Temperature Thermoelectric Properties of Ni and Ti Substituted LaCoO3. J. Solid State Chem. 2006, 179: 3893~3899
    213 D. J. Singh. Electronic Structure of NaCo2O4. Phys. Rev. B. 2000, 61: 13397~13402
    214 K. Durczewski, M. Ausloos. Nontrivial Behavior of the Thermoelectric Power: Electron-Electron versus Electron-Phonon Scattering. Phys. Rev. B. 2000, 61: 5303~5310
    215 J. Souletie, J. L. Tholence. Critical Slowing Down in Spin-Glasses and Other Glasses-Fulcher Versus Power Law. Phys. Rev. B. 1985, 32: 516~519
    216 P. Limelette, J. C. Soret, H. Muguerra, D. Grebille, Magnetoresistance Scaling in the Layered Cobaltate Ca3Co4O9. Phys. Rev. B. 2008, 77: 245123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700