铟、锡、锑多元金属氧化物的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用化学共沉淀法和溶液燃烧合成法制备铟、锡、锑多元金属氧化物。通过X-射线衍射分析(XRD)、扫描电镜(SEM)、透射电镜(TEM)对产物进行表征,分析其晶型结构、粒径以及形貌。
     研究表明:共沉淀法和溶液燃烧合成法都能制备出铟、锡、锑多元金属氧化物,原子都有相应的掺杂,而且掺杂并没有引入新的相,并且借鉴ATO/ITO的制备方法成功制备出了铟、锑二元金属氧化物和铟、锡、锑三元金属氧化物。
     以SnCl4、SbCl3、In(NO3)3和氨水为原料,利用共沉淀法制备了多元金属氧化物。并以ATO为例,系统地研究了不同反应条件如反应体系pH值、前驱体洗涤次数、前驱体煅烧温度对产物的晶型结构、粒径的影响。随着反应体系的pH值升高,ATO粉体的衍射峰变弱,pH=2时,其衍射峰强度最强;增加前驱体洗涤次数和降低煅烧温度都会使ATO粒径变小。
     而在溶液燃烧法中,以SnCl4、SbCl3、In(NO3)3、硝酸钠和尿素为原料,燃烧合成了铟、锡、锑多元金属氧化物。并以ATO为例,系统地研究了不同反应条件如Sb/Sn掺量比、煅烧温度、煅烧时间对产物的晶型结构、粒径、形貌的影响。随着Sb/Sn掺量比增大,ATO特征衍射峰变弱,但晶粒尺寸没有太大变化,由SEM和TEM可以看出粉体有团聚,并且颗粒呈不规则球形。但是原子比例和投入比例不一致,有偏析。随着锻烧温度的升高,粉体晶化完全,粒径变大,粉体颜色也变蓝。而煅烧时间和晶粒尺寸呈线性关系,并不改变其晶型结构。
In this paper, The multi-metal oxide of indium、tin and antimony were prepared by the method of chemical co-precipitation and solution combustion synthesis. And the products were characterized by XRD、SEM and TEM, were analyzed the crystal structure, particle size and morphology.
     The results showed that:both of the co-precipitation and solution combustion synthesis can prepare he multi-metal oxide of indium、tin and antimony. The atoms had a corresponding doping, and the doping did not produce a new phase. Using the preparation of ATO/ITO for reference, the binary oxides of indium、antimony and the ternary metal oxide of indium、tin and antimony were successfully prepared.
     Using SnCl4, SbCl3, In (NO3) 3 and ammonia as raw materials, the multi-metal oxide of indium、tin and antimony were prepared by the method of co-precipitation.Taking ATO as an example, the influence of different reaction conditions such as reaction pH, the frequency of washing precursor, reaction temperature on the crystal structure, particle size were investigated. In the co-precipitation, the diffraction peaks of the ATO powders became weaker when the pH of reaction system increased. When the pH was 2, the intensity of diffraction peak was the strongest. The particle size of ATO powders became small when increasing the frequency of washing precursor and decreasing the temperature of calclination.
     Using SnCl4, SbCl3, In (NO3) 3、sodium nitrate and urea as raw materials, the multi-metal oxide of indium、tin and antimony were prepared by the method of solution combustion synthesis. Taking ATO as an example, the influence of different reaction conditions such as Sb/Sn ratio, temperature and time of calcination on the crystal structure, particle size and morphology were systemly studied. In the combustion synthesis solution, when the Sb/Sn ratio increased, the characteristic diffraction peaks became weaker but the grain size didn't change much. The SEM and TEM showed that the ATO powders agglomerated and the particles were irregular spherical. However, the atomic ratio had segregation with the proportion of investment. As the calcination temperature increasing, the powder fully crystallized, the particle size became bigger and the powders became blue. While there existed linear relationship between the time of the calcination and the grain size, and the time did not change the crystalline structure.
引文
[1]李青山,张金朝,宋郦.三防纳米级ATO透明导电薄膜材料的研究和应用[J].材料导报,2002,16(2):34~36
    [2]Liu J, Coleman JP. Nanostructured Metal Oxides for Printed Electro-chromic Displays [J]. Phys, Chem.B.,1999,103(8):944~950
    [3]吴越,迟艳波,聂佳相等.纳米抗静电织物整理剂的制备和应用[J].功能高分子报,2002,15(1):43~47
    [4]Z.M.Jarzebski, J.P.Matorn. Physical Properties of SnO2 Materials[J]. Electrochemical Soc,1976,123,199C~205C
    [5]范志新.ITO薄膜载流子浓度的理论上限[J].现代显示,2000,25(3):18~21
    [6]刘恩科,朱秉升,罗晋生等.半导体物理学[M],国防工业出版社,1996,34-39
    [7]Loch LD, The Semiconducting Nature of Stannic Oxide[J]. Journal of the Electrochemical Society,1984(19):1~23
    [8]Mar RW. Anomalous Behavior of Antimony Doped SnO2[J]. J.Phys.Chem.Solids,1972, 33:220~223
    [9]Szczuko D, Werner J, Rehr G, et al. XPS Investigations of Surface Segregation of Doping Elements in SnO2[J]. Applied Surface,2001,179:301~306
    [10]Holamby PC, Aldridge PS, Moretti G, et al. The Influence of Oxygen Deficiency and Sb Doping on Inverse Photoemission Spectra of SnO2[J]. Surface Science,1993,280:393~397
    [11]Chatelon JP, Terrier C, Blanchin MG. Specific Properties of Undoped and Sb Doped Sol-Gel Deposited SnO2 Layers[J]. Materials Science Forum,1997,239:81~86
    [12]孟扬,林剑,刘键等.复合效应对掺杂氧化物透明导电薄膜的影响[J].光电子技术,2001,21(2):89~99
    [13]A.Salehi. The Effect of Deposition Rate and Substrate Temperature of ITO Thin Film on Electrical and Optical Properties[J]. Thin Solid Films,1998, (334):30~34
    [14]李玲,向航.功能材料与纳米科技[M].北京:化学工业出版社,2002,47-51
    [15]Douglas M Mattox. Sol-gel Derived, Air-baked Indium and Tin oxide films[J]. Thin Soild Flim,1991,204:25~32
    [16]杨南如,余桂郁.溶胶~凝胶法的基本原理与过程[J].硅酸盐通报,1992(2),56~63
    [17]朱归胜,徐华蕊,廖春图.单分散纳米氧化铟锡粉末的水热合成[J].无机材料学报,2005,20(2):479~482
    [18]P.Sujatha Devi, M.Chatterjee, D.Ganguli. Indium Tin Oxide Nano-particles through an Emulsion Technique[J]. Mater Lett.2002,55:205~210
    [19]RAJ PURE K Y, KUSUMADE M N, NEUMANN S, et al. Effect of Sb Doping on Properties of Conductive Spray Deposited SnO2 Thin Films[J]. Material Chemistry and Physics,2000,64 (3):184~188
    [20]HARTNAGEL H L, DAWAR A L, JAIN A K, et al. Semiconducting Transparent Tin films [M]. Bristol and Philadelphia:Insititute of Physics Publishing,1995
    [21]VAN BOMMEL M J, GROEN W A, VAN HAL H A M, et al. The Electrical and Optical Properties of Tin Layers of Nano-sized Antimony Doped Tin Oxide Particles[J]. Journal of Materials Science,1999,34 (19):4803~4809
    [22]PARIA M K, MAITI H S. Electrical Conductivity and Defect Structure of Polycrytall Tin Dioxide Doped with Antimony Oxide [J]. Journal of Materials Science,1982,17 (10): 3275~3280
    [23]钟伯强,俞大畏,潘惠英.用于液晶显示的透明导电膜[J].无机材料学报,1995,10(1):125~128
    [24]徐美君.ITO透明导电薄膜玻璃生产及应用[J].玻璃与搪瓷,2001,29(2):53~59
    [25]Yoshishig Endo, T.M.O, Ibarkai-ken, Hiromitsu Kawamura, Katsmui Kobaar. Poreess for Formation of an Ultra Fine Particle Film. United States Patent, SPe.9,1997
    [26]徐美君.太阳能玻璃的开发与应用[J].建筑玻璃与工业玻璃,2001,(5):7-13
    [27]Coleman J P, Freeman, Madhukar P. Electrochromism of Nanoparticulate-doped Metal Oxides:Optical and Material Properties [J]. Displays,1999,20:145~154
    [28]Marcel C, Hegde M S, Electrochromic Properties of Antimony Tin Oxide(ATO) thin Films Synthesize by Pulsed Laser Deposition[J]. Electrochimica Acta,2001,46:2097~2104
    [29]Sun K, Browning N D. Correlated Atomic Resolution Microscopy and Spectroscopy Studies of Sn (Sb) O2 Nanophase Catalysts[J]. J Catalysis,2002,205:266~270
    [30]Burgard D, Goebbert C, Nass R. Synthesis of Nanocrystalline Redispersable Antimony-doped SnO2 Particles for the Preparation of Conductive, transparent coatings[J]. Sol-Gel Science and Technology,1998,13:789~792
    [31]张正勇,张耀华.ITO薄膜的气敏特性[J].传感技术学报,1999,(2):52~56
    [32]常天海,江豪成,李育红等.ITO透明导电玻璃的除霜试验研究[J].真空与低温,1999,19,5(2):100~102
    [33]常天海,江豪成,彭博等.ITO透明导电玻璃的隔热实验研究[J].真空科学与技术,1999,19:139~142
    [34]常天海.除霜、隔热镀膜玻璃的性能设及评价试验规范.真空与低温,2003,9(3):157~159
    [35]常天海,江豪成.汽车挡风玻璃用除霜、隔热薄膜的试验研究[J].真空与低温,1997, 3(3):132~136
    [36]邹正光.Ti/Fe复合材料的自蔓延高温合成工艺及应用[M].冶金工业出版社,2002
    [37]Patil K.C.Aruna S T. Tanu Mimani Combustion Synthesis[J]. Current Opinion in Solid State & Materials Science,1997(2):158~165
    [38]Mimani T. Patil K C. Solution Combustion Synthesis of Oxides and their Composites[J]. Mater Phys Mech,2001(4):134~137
    [39]Floz D C. Clark D. E. Microwave Synthesis of Alumina Powder[J]. The American Ceramic Society Bulletin,2000(3):63~67
    [40]杨于兴.X射线分析[M].上海交通大学出版社,1994
    [41]李主堂主编.金属X射线衍射与电子显微分析技术[M].冶金工业出版社,1980
    [42]周玉,武高辉.材料分析测试技术[M].哈尔滨工业大学出版社,1997
    [43]陈敬中主编.现代晶体化学理论与方法[M].高等教育出版社,2001
    [44]尾崎义治.超微颗粒导论[M].武汉工业大学出版社
    [45]徐彬士.纳米表面工程[M].化学工业出版社,2004,25-27
    [46]朱履冰.表面与界面物理[M].天津大学出版社,1992,167~175
    [47]钟志勇.固态材料形成过程中的晶体生长机理[J].人工晶体学报,2004,33(5):850
    [48]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985
    [49]郑忠.胶体科学导论[M].北京:高等教育出版史,1989
    [50]张克从,张乐潓.晶体生长[M].北京:科学出版社,1981,41
    [51]曹茂盛.超细颗粒制备科学与技术[M].哈尔滨工业大学出版社,1995
    [52]冯拉俊,刘毅辉,雷阿力.纳米颗粒团聚的控制[J].微纳电子技术,2003,(7,8):536~539
    [53]崔洪梅,刘宏,王继杨等.纳米粉体的团聚与分散[J].机械工程材料,2004,28(8):38~40
    [54]杨春光,乔爱平,侯金飚等.纳米粉体团聚的原因及解决方法[J].山西化工,2003,23(1):56~58
    [55]周学永,李彩文,王玲香.纳米粉体的团聚特性和提高分散性的措施[J].硫磷设计与粉体工程,2006,(1):17~19
    [56]傅正义,袁润章.自蔓延高温合成材料新技术[J].武汉工业大学学报,1991,13(3):26~33
    [57]Z.A Munir, J.B.Holt. The Combustion Synthesis of Refractory Nitrides Powder Part Theoretical Analyses. Journal of Materials Science[J].1987,22:710~714
    [58]严有为,魏伯康,林汉同.SHS基础研究的现状及展望[J].汽车工艺与材料.1996,12: 5-9
    [59]Patil K C et al. Mater. Lett.,1988,6:427
    [60]Fumo A et al. Mater. Res. Bull.,1996,3:269
    [61]范志新.透明导电薄膜最佳掺杂含量的理论计算.半导体学报,2002,6:489-491
    [62]范志新,孙以材,陈玖琳.氧化物半导体透明导电薄膜的最佳掺杂含量理论计算.半导体学报,2001,11:1382~1386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700