石墨烯的低温制备及电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是2004年才被发现的一种新型二维碳质材料,具有优良的电学、力学、光学和热学性质,成为近几年材料研究领域的热点之一。现有石墨烯的制备方法在一定程度上都存在不足,限制了石墨烯材料的应用。本文致力于研究一种易于操作、简便易行的石墨烯制备方法,发明了低温制备石墨烯材料的新方法并发现通过这种方法制备的石墨烯材料具有很高的电化学容量。
     利用Hummer法制备氧化石墨,考察了两种不同结构的石墨以及不同氧化时间对最后得到氧化石墨的影响。结论表明,制备高氧化度的氧化石墨,氧化时间是影响因素之一,石墨原料的选择也相当关键。
     在200-400℃下实现了氧化石墨片层的剥离。通过XPS、SEM、TEM、AFM、N2吸附和电化学工作站等手段对制备的石墨烯进行表征,制备的石墨烯材料单片层在80%以上,比表面积达到370 m2/g,具有良好的电化学性质——电化学容量可以达到220 F/g,且循环性能良好。同时系统考察了氧化石墨制备工艺中不同氧化时间、石墨烯制备工艺中负压状态下的不同温度及常压高温等条件对制备的石墨烯材料的性质和性能的影响。结果表明,通过低温法制备的石墨烯材料的电化学性能要优于常压高温法制备的石墨烯材料。
     同时也进行了石墨烯的掺杂和基于石墨烯材料的纳米结构构筑。成功制备了B和N掺杂的石墨烯;利用气液界面成膜法成功制备了高度有序结构的氧化石墨烯薄膜,通过控制成膜时间可以调控薄膜的厚度。
Graphene is a kind of novel two-dimensional carbon material, which was successfully prepared in 2004. Due to excellent electronic, mechanics, opticical and thermal properties, graphene has been the“hot spot”of material science, but the available preparation methods of graphene restrict the wide-spread applications due to different shortcomings for different approaches. In this study, we propose a low-temperature chemical approach for producing high quality of powdered graphene materials that is easy to realized and manipulated; we found that the graphene perpared by this approach possesses high electrochemical capacitance.
     Graphite-oxide was prepared by using Hummer method. Influences of two types of graphite and different oxidation period on graphite-oxide were investigated. Both oxidation period and the structure of startig graphite are very important for producing high oxidation degree of graphite-oxide.
     Graphene was obtained by the fast exfoliation of graphite-oxide at 200-400℃. The obtained graphene material was characterized by XPS, SEM, TEM, AFM, N2 absorption and electrochemistry workstation. The oxygen content of graphene material obtained by this approach is as lower as 10% and the monolayer structure is promintent and fraction is over 80%. The BET specific surface area of graphene powder can reach 370 m2/g and the powders possess excellent electrochemistry properties, which is characterized by the capacitance of 220 F/g and good cycle performance. Different conditions, such as the different oxidation period, different exfoliation temperature and different pressure, have been studied. The results reveal that the graphene obtained by low temperature approach possesses higher electrochemical capacitance.
     We also studied the graphene-doping and constructing of new nano-structure graphene-based material. B- and N-doped graphene was perpared successfully; Using liquid-air method, the graphene-oxide membrane which prossess highly ordered structure was prepared and the membrane thickness can be precisely controled by the membrane growth period.
引文
[1] Kroto H W,Heath J R,O’Brien S C,et al.C60 :Buckm insterfullerence [J].Nature,1985,318:162-163.
    [2] Ishigami S.Helical microtubules of graphite carbon [J].Nature,1991,354:56-58.
    [3] Novoselov K S,Geim A K,Morozov S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
    [4] Geim A K, Novoselov K S.The rise of graphene [J].Nature Materials,2007,6:183-191.
    [5] Kang F,Inagaki M.Carbon materials science and engineering-from fundamentals to applications [M].Beijing:Tsinghua University Press,2006:7-14.
    [6]成会明.纳米碳管制备、结构、物性及应用[M].北京,化学工业出版社,2002:10215.
    [7]杨全红.纳米孔“炭”与纳米孔“碳”[J].新型炭材料,2007,22:289-295.
    [8] Kyotani T,Sonobe N,Tomita A.Formation of highly orientated graphite from polyacrylonitrile by using a two-dimensional space between montnorillonite lamellae [J].Nature,1988,331:331-333.
    [9] Novoselov K S,Jiang D,Schedin F.Two-dimensional atomic crystals [J].PNAS,2005,102:10451-10453.
    [10] Meyer J C,Geim A K,Katsnelson M I,et al.The structure of suspended graphene sheets [J].Nature,2007,446:60-63.
    [11] Fasolino A,Los J H,Katsnelson M I.Intrinsic ripples in graphene [J].Nature Materials,2007,6:858-861.
    [12] Ishigami M,Chen J H,Cullen W G,et al.Atomic structure of graphene on SiO2[J].Nano Letters,2007,7:1643-1648.
    [13]杨全红,吕伟,杨永岗,等.自由态二维碳原子晶体–单层石墨烯[J].新型炭材料,2008,23:97-103.
    [14] Avouris P,Chen Z,Perebeinos V.Carbon-based electronics [J].Nature Nanotechnology,2007,2:605-615.
    [15] Kane C L.Erasing electron mass [J].Nature,2005,438:168-169.
    [16] Pisana S,Lazzeri M,Casiraghi C,et al.Break down of the adiabatic bom3/ oppenheimer approximation in graphene [J].Nature Materials,2007,6:198-201.
    [17] Novoselov K S,Jiang Z,Zhang Y,et al.Room-temperature quantum hall effect in graphene [J].Science,2007,315:1379.
    [18] Katsnelson M I.Zitterbewegung,chirality,and minimal conductivity in graphene[J].The European Physical Journal B,2006,51:157-160.
    [19] Tombros N,Jozsa C,Popinciuc M,et al.Electronic spin transport and spin precession in single graphene layers at room temperature [J].Nature,2007,448:571-575.
    [20] Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional gas of massless Dirac fermions in graphene [J].Nature,2005,438:197-200.
    [21] Bunch J S,Yaish Y,Brink M,et al.Coulomb oscillations and hall effect in quasi-2D graphite quantum dots [J].Nano Letters,2005,5:287-290.
    [22] Zhang Y B,Small J P,Pontius W V,et al.Fabrication and electric-field- dependent transport measurements of mesoscopic graphite devices [J].Applied Physics Letters,2005,86:073104.
    [23] Berger C,Song Z,Li T,et al.Ultrathin ep itaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics [J].Journal of Physical Chemistry B,2004,108:19912-19916.
    [24] Berger C,Song Z M,Li X B,et al.Electron confinement and coherence in patterned epitaxial graphene [J].Science,2006,312:1191-1196.
    [25] Editorial.Graphene calling [J].Nature Materials,2007,6:169.
    [26] Mcallister M J,Lio J L,Adamson D H,et al.Single sheet functionalized graphene by oxidation and thermal expansion of graphite [J].Chemistry of Materials,2007,19(18):4396-4404.
    [27] Si Y,Samulski E T.Synthesis of water soluble graphene [J].Nano Letters,2008,8(6):1679-1682.
    [28] Pan Y,Zhang H,Shi D,et al.Highly ordered,millimeter-scale,continuous,single-crystalline graphene monolayer formed on Ru (0001) [J].Advanced Materials,2008,20:1-4.
    [29] Cai W,Piner R D,Stadermann F J,et al.Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide [J].Science,2008,321:1815-1817.
    [30] Dato A,Radmilovic V,Lee Z,et al.Substrate-free gas-phase synthesis of graphene sheets [J].Nano Letters,2008,8(7):2012-2016.
    [31] Sidorov A N,Yazadanpanah M M,Jalilian R,et al.Electrostatic deposition of graphene [J].Nanotechnology,2007,18(13):135301.
    [32] Parvizi F,Teweldebrhan D,Ghosh S,et al.Porperties of grapheme produced by the high pressure-high temperature growth process [J].Micro&nano Letters, 2008,3(1):29-34.
    [33] Sutter P W,Flege J I,Sutter E A.Epitaxial graphene on ruthenium [J].Nature Materials,2008,7:406-411.
    [34] Zhou S Y,Gweon G H,Fedorov A V.Substrate induced band gap opening in epitaxial graphene [J].Nature Materials,2007,6:770-775.
    [35] Oostinga J B,Heersche H B,Liu X L,et al.Gate-induced insulating state in bilayer graphene devices [J].Nature Materials,2007,7:151-157.
    [36] McCann E,Kechedzhi K,Fal’ko V I,et al.Weak localization magnetoresistance and valley symmetry in graphene [J].Physical Review Letters,2006,97:146805.
    [37] Dikin D A,Stankovich S,Zimney E J,et al.Preparation and characterization of graphene oxide paper [J].Nature,2007,448:457-460.
    [38] Stankovich S,Dikin D A,Dommett G H B,et al.Graphene-based composite materials [J].Nature,2006,442:282-286.
    [39] Schedin F,Geim A K,Morozov S V,et al.Detection of individual gas molecules adsorbed on graphene [J].Nature Materials,2007,6:652-655.
    [40] Robinson J T,Perkins F K,Snow E S,et al.Reduced graphene oxide molecular sensors [J].Nano Letters,2008,8(10):3137-3140.
    [41] Neto A H C.Graphene: Phonons behaving badly [J].Nature Materials,2007,6:176-177.
    [42] Heersche H B,Jarillo-Herrero P,Oostinga J B.Bipolar supercurrent in graphene [J].Nature,2007,446:56-59.
    [43] Simon P,Gogotsi Y.Materials for electrochemical capacitors [J].Nature Materials,2008,7:845-854.
    [44] Stoller M D,Park S,Zhu Y,et al.Graphene-based ultracapacitors[J].Nano Letters,2008,8:3498-3502.
    [45] Vivekchand S R C,Rout C S,Subrahmanyam K S,et al.Graphene-based electrochemical supercapacitors [J].Journal of Chemical Sciences,2008,120(1): 9-13.
    [46] Yoo E,Kim J,Hosono E,et al.Large reversible Li storage of graphene nanosheet families for use in rechargeable Lithium ion batteries [J].Nano Letters,2008,8(8):2277-2282.
    [47] Khantha M,Cordero N A,Molina L M,et al.Interaction of lithium with graphene:An ab initio study [J].Physical Review B,2004,70:125422.
    [48] Wang X,Zhi L,Mullen K.Transparent,conductive graphene electrodes for dye-sensitized solar cells [J].Nano Letters,2008,8(1):323-327.
    [49] Wu J,Becerril H A,Bao Z,et al.Organic solar cells with solution-processed graphene transparent electrodes [J].Applied Physics Letters,2008,92:263-302.
    [50] Liu Q,Liu Z,Zhang X,et al.Organic photovoltaic cells based on an acceptor of soluble graphene [J].Applied Physics Letters,2008,92:223-303.
    [51] Li X,Zhang G,Bai X,et al.Highly conducting graphene sheets and langmuir–blodgett films [J].Nature Nanotechnology,2008,3:538-542.
    [52] Dimitrakakis G K,Tylianakis E,Froudakis G E.Pillared graphene:A new 3-D network nanostructure for enhanced hydrogen storage [J].Nano Letters,2008,8(10):3166-3170.
    [53] Matsuda Y.Materials and electrochemical performance of electric double layers capacitors [J].Function and Materials,1999(19):43-49.
    [54] Wu N.Nanocrystalline oxide supercapacitors [J].Materials Chemistry and Physics,2002,75:6-11.
    [55] Frackowiak E,BeguinF.Carbon materials for the electrochemical storage of energy in capacitors [J].Carbon,2001,39:937-950.
    [56] Yoon S,Lee J,Hyeon T.Electric double-layer capacitor performance of a newmesoporous carbon [J].Electrochemical Society,2000,147(7):2507-2512.
    [57]苏岳锋,吴锋,包丽颖.乙炔黑掺杂NiOx电极及其应用[J].新型炭材料,2004,19(3):192-196.
    [58] Park B,Lokhande C D,Park H,et a1.Performance of supercapacitor with electrodeposited ruthenium oxide film electrodes effect of film thickness [J].Power Sources,2004,134:148-152.
    [59] Ryu K S,Lee Y,Hong Y,et a1.Poly(ethylencdioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor [J].Electrochemical Acta,2004,50:838-842.
    [60] Mastragostino M,Arbizzani C,Soavi F.Conducting polymers as electrode materials in supercapacitors[J].Solid State Ionics,2002,l48:493-498.
    [61] Ryu K S,Wu X,Lee Y G,et al.Electrochemical capacitor composed of doped polyaniline and polymer electrolyte membrane [J].Applied Polymer Science,2003,89:1300-1304.
    [62] Facchini L,Beguin F,Setton R.Formation and structure of the potassium- benzene graphitides [J].Synthetic Metals,1983,7:263-269.
    [63] Martin-Rodriguez A,Lopez-Gonzalez J D D,Domiguez-Vega F.Organic chemistry of some intercalation compounds of graphite [J].Carbon,1969,7:589-595.
    [64] Boehm H P,Setton R,Stumpp E.Nomenclature and terminology of graphite intercalation compounds [J].Pure&Applied Chemistry,1994,66:1893-1901.
    [65] Hadzi D,Novak A.Determination by IR of the oxidation state of graphite [J].Transactions of the Faraday Society,1955,51:1614-1621.
    [66] Hamwi A,Marchand V.Some chemical and electrochemical properties of graphite oxide [J].Journal of Physical Chemistry society,1996,57:867-872.
    [67] Mermoux M,Chabre Y,Rousseau A.FTIR and 13C NMR study of graphite oxide [J].Carbon,1991,29:469-474.
    [68] Arangon F,Cowley J M.Chemistry and structure of graphite oxide [J].Nature,1962,196:468.
    [69] Nakajima T,Matsuo Y.Formation process and structure of graphite oxide [J].Carbon,1994,32:469-475.
    [70] He H,Klinowski J,Forster M,et al.Structure of graphite oxide [J].Chemistry Physical Letters,1998,287:53-56.
    [71] Yazami R,Touzain P.Lithium-graphite oxide cells part iii:effect of origin and oxidation of graphite on batteries performances [J].Synthetic Metals,1985,12:499-503.
    [72] Abrham F F,Goulian M.Fluctuation-induced interactions between rods on membranes and interfaces [J].Europhysical Letters,1992,19:241-245.
    [73] Wen X,Garland C W,Hwa T,et al.Crumpled and collapsed conformations in graphite oxide in membranes [J].Nature,1992,355:426-428.
    [74] Kovtyukhova N,Buzaneva E,Senkevich A Ultrathin supported graphite oxide and carbon films [J].Carbon,1998,36:549-554.
    [75] Lotov N A,Dekany I,Fendler J H.Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly:transition between conductive and nonconductive states [J].Advanced Materials,1996,8:637-641.
    [76] Mermoux M,Chabre Y.Formation of graphite oxide [J].Synthetic Metals,1989,34:157-162.
    [77] Hudson M J,Hunter-Fujita F R,Pecket J W,et al.Electrochemically prepared colloid,oxided graphite [J].Journal of Materials Chemistry,1997,7:301-305.
    [78] Hummers W S,Ofeman R E.Preparation of graphite oxide [J].Journal of Ameriacan Chemistry Society,1958,80:1339.
    [79] Nakajima T,Mabuchi A,Hagiwara R.A new structure model of graphite oxide[J].Carbon,1988,26:357-361.
    [80]傅玲,刘洪波,邹艳红,等.Hummer法制备氧化石墨时影响氧化程度的工艺因素研究[J].炭素,2005,124(4):10-14.
    [81] Wu Z S,Ren W,Gao L,et al.Synthesis of high-quality graphene with a pre-determinded number of layers [J].Carbon,2009,47:493-499.
    [82] Dikin D A,Stankovich S,Zimney E J,et al.Preparation and characterization of graphene oxide paper [J].Nature,2007,488:457-460.
    [83] Wei Z Q,Barlow D E,Sheehan P E.The assembly of single-Layer graphene Oxide and graphene using molecular templates [J].Nano Letters,2008,8(10):3141-3145.
    [84] Reina A,Jia X,Ho J,et al.Large area,few-Layer graphene films on arbitrary substrates by chemical vapor deposition [J].Nano Letters,2009,9(1):30-35.
    [85] Chen C M,Yang Q H,Yang Y G,et al.Self-assembled free-standing graphite oxide membrane[J].Advanced Materials,2009,DOI: 10.1002/adma.200803726.
    [86] Yang Q H,Hou P X,Unno M,et al.Dual raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls [J].Nano Letters,2005,5:2465-2469.
    [87] Zanella I,Fagan S B,Mota R,et al.Electronic and magnetic properties of Ti and Fe on graphene [J].Journal of Physical Chemistry C,2008,112:9163-9167.
    [88] Zhou S Y,Siegel D A,Fedorov A V,et al.Metal to insulator transition in epitaxial graphene induced by molecular doping [J].Physical Review Letters,2008,101:086402.
    [89] Li Y,Tang L,Li J.Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites [J].Electrochemical Communation,2009,Accepted.
    [90] Hod O,Barone V,Peralta J E,et al.Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons [J].Nano Letters,2007,7:2295.
    [91] Zheng H,Duley W.First-principles study of edge chemical modifications in graphene nanodots [J].Phyical Review B,2008,78:045421.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700