基于酞菁的有机近红外发光器件与太阳能电池
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今时代是信息化时代,随着信息产业化逐步从微电子时代过渡到光电子时代和光子时代,光电材料将成为光电产业的基础支撑。有机半导体光电材料不但具有低毒、价廉、易成型、柔性等优点,还具有光电响应快的特性,有可能在分子尺寸实现对电子行为的控制,并制成分子器件,这就有可能克服无机材料集成电路的集成度限制所带来的困难。酞菁是一类重要的有机小分子光电功能材料,具有大的共轭性和显著的半导体特性,在有机近红外电致发光器件和有机太阳能电池的制备中发挥着重要的作用。
     本文研究了无取代氢酞菁H2Pc的光学性质,然后将H2Pc掺入Alq3作为发光层采用真空蒸镀法制备了有机近红外电致发光器件。研究了H2Pc浓度对器件电致发光谱的影响,708 nm和800 nm附近的发射峰是在H2Pc浓度低时出现,而910 nm和930 nm附近的发射峰是在H2Pc浓度高时出现,详细讨论了这些发射峰来源,并分析了器件发光机制。合成了四取代氢酞菁Tetra-H2Pc,研究了其光学性质,并以Tetra-H2Pc为发光材料采用旋涂和真空蒸镀法制备了有机近红外电致发光器件。对比了Tetra-H2Pc和H2Pc发光性能,结果表明Tetra-H2Pc发光性能较好,还可通过旋涂方法成膜,简化器件工艺。
     以十六氟铜酞菁CuPcF16为发光材料制备了发射波长在1106 nm附近的有机近红外电致磷光器件。器件结构包括单层结构和多层掺杂结构,发光层主体材料分别采用了Alq3、CBP和TPBI,研究表明TPBI是一种较好的主体材料。详细讨论了以TPBI为发光层主体材料的器件的发光机制,并通过在发光层后面插入Alq3:DCJTB层提高了器件发光强度。合成了四取代铜酞菁(4-tert)CuPc,研究了其光学性质,并以其为发光材料制备了发射波长在1110 nm附近的有机近红外电致磷光器件,优化了器件结构。CuPcF16和(4-tert)CuPc发射波长较长,发射光谱较宽,在光通信领域有着潜在的应用价值。
     以(4-tert)CuPc为电子给体材料制备了单层结构、双异质结、本体异质结和具有周期性结构的有机太阳能电池。对器件进行了优化,并分析了器件的光电性能,研究表明所有器件都有明显的光伏效应。(4-tert)CuPc的吸收谱与常用的电子受体材料C60吸收谱互补,其能级与C60能级匹配也好,因此作为一种新颖的给体材料可用于制备各种结构的有机太阳能电池,又由于其溶解性较好,有望通过旋涂方法来简化器件制备工艺。
     研究了氟化镱YbF3作为阴极修饰层对基于CuPc的有机聚合物太阳能电池光伏性能的影响,结果表明YbF3层的插入可以提高器件的开路电压、填充因子和能量转换效率。讨论了YbF3层的作用机制。
The present age is an information age. With the gradual transition of information industrialization from microelectronic age to optoelectronic age, the optoelectronic materials will become the basic support of optoelectronic industry. Organic semiconductor optoelectronic materials have many advantages, such as low toxicity, low cost, easy forming and flexibility. They also have the characteristic of fast optoelectronic response. The electron behavior can be controlled in the molecular size by using these materials, which makes it possible to produce molecular devices. This makes it possible to overcome the difficulty caused by the limitation of integration level of integrated circuit based on inorganic materials. Phthalocyanine is an important kind of organic small molecules-based photoelectric functional material, which has large conjugacy and remarkable characteristic of the semiconductor. They play an important role in making near-infrared organic light emitting devices (NIR-OLEDs) and organic solar cells (OSCs).
     In this thesis, the optical properties of metal-free phthalocyanine (H2Pc) are investigated. NIR-OLEDs were fabricated based on H2Pc doped into Alq3 The organic layers and metal electrode were deposited by vacuum thermal evaporation. The effect of H2Pc doping concentration on the electroluminescence (EL) spectra was investigated. The results indicated that the emissions around 708 nm and 800 nm appeared at low concentration, while the emissions around 910 nm and 930 nm appeared at high concentrations. We discussed the origins of these emissions in details and analyzed the luminous mechanism of the device. Tetra (2-Isopropyl-5-methylphenoxyl) substituted metal-free phthalocyanine (Tetra-H2Pc) was synthesized and its optical properties were also investigated. NIR-OLEDs were fabricated based on Tetra-H2Pc. The devices were fabricated by vacuum deposition and spin coating methods. The EL intensity at about 910 nm in the devices based on Tetra-H2Pc was increased by about 14 times compared with the intensity at about 930 nm in the devices based on H2Pc. This indicated that Tetra-H2Pc was a better kind of luminous material. The preparation technology of the devices can also be simplified because the films can be deposited by spin coating.
     NIR-OLEDs were fabricated by employing CuPcF16 as phosphorescent emitter. The devices emitted light around 1106 nm. The device structures included single-layer and multi-layer structures. Alq3, CBP and TPBI were employed as the host material in the light-emitting layer respectively. The result indicated that TPBI was a better host material. The luminescence mechanism of the device employing TPBI as host material was discussed in details. The luminescence intensity of the device-TPBI was enhanced by inserting Alq3:DCJTB layer below the light-emitting layer. (4-tert)CuPc was synthesized and its optical properties were also investigated. NIR-OLEDs were fabricated employing (4-tert)CuPc as phosphorescent emitter and the device structures were optimized. The device emitted light around 1110 nm. The emission wavelengths of CuPcF16 and (4-tert)CuPc were long. Their emission spectra were also wide. So they have potential applications in optical communication.
     OSCs were fabricated by employing (4-tert)CuPc as donor. The device structures included single-layer structure, double-heterostructure, bulk-heterostructure and periodic structure. The devices were optimized and the photoelectric performances of the devices were also analyzed. The investigation indicated that all the devices had the remarkable photovoltaic effect. The absorption spectrum of (4-tert)CuPc was complementary to that of C60 which was a common donor. The highest occupied molecular orbital and lowest unoccupied molecular orbital of (4-tert)CuPc matched well with those of C60.So as a novel donor, (4-tert)CuPc can be used to fabricate many types of OSCs. The preparation technology of the devices based on (4-tert)CuPc can possibly be simplified because (4-tert)CuPc has good solubility, which makes it possible to prepare (4-tert)CuPc films by spin coating.
     The influences of YbW3 on the photovoltaic performances of organic polymer solar cells based on CuPc were investigated. YbF3 was used as cathode modification layer in the device. The result indicated that the open circuit voltage, short circuit current and fill factor were enhanced after the insertion of YbF3 layer. The functional mechanisms of YbF3 were also analyzed through ultraviolet photoelectron spectroscopy.
引文
[1]Tsutsui T, Fujita K. The Shift from "Hard" to "Soft" Electronics [J]. Advanced Materials,2002,14(13):949-952.
    [2]Chan M Y, Lai S L, Fung M K, et al. Doping-induced efficiency enhancement in organic photovoltaic devices [J]. Applied Physics Letters,2007,90(2):023504(1-3).
    [3]滕枫,侯延冰,印寿跟,等.有机电致发光材料及应用[M].北京:化学工业出版社,2006.
    [4]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005.
    [5]张建成,王夺元.现代光化学[M].北京:化学工业出版社,2006.
    [6]樊美公,等.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001.
    [7]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001.
    [8]朱道本,王佛松.有机固体[M].上海:上海科技出版社,1999.
    [9]Braun A, Tchemiac J. Phthalocyanines:Synthesis [J]. J. Chem. Ber.,1907,40:2709-2718.
    [10]de Diesbach H, Schmidt V, Decker E. Une preparation simple de 1'acide pyromellithique [J]. Helv. Chim. Acta.,1923,6:548-551.
    [11]Moser F H, Thomas A L. Phthalocyanine Compounds [C]. New York:Reinhold Publishing Corporation,1963.
    [12]Robertson J M. An X-ray study of the structure of the phthalocyanines, Part Ⅰ. The Metal-free, Nickel, Copper, and Platinum Compounds [J]. J. Chem. Soc.,1935,615-628.
    [13]沈永嘉.酞菁的合成与应用[M].北京:化学工业出版社,2000.
    [14]Griffiths J著.侯毓芬,吴祖望,胡家振,等译.颜色与有机分子结构.北京:化学工业出版社,1985.
    [15]Gouterman M. The Porphyrins. Vol. Ⅲ, Part A, Physical Chemistry [C]. New York: Academic Press,1978.
    [16]VanSlyke S A, Chen C H, Tang C W. Organic electroluminescent devices with improved stability [J]. Applied Physics Letters,1996,69(15):2160-2162.
    [17]Tanaka S, Adachi C, Koyama T, et al. Organic light emitting diodes using triphenylene derivatives as a hole transport material [J]. Chemistry Letters,1998,10:975-976.
    [18]Tominaga T, Hayashi K, Toshima N. Construction of a'sequential potential field' by [Cu(pc)]/[Zn(pc)]double-layered thin film:application to electrochromic and electroluminescent devices [J]. Journal of Porphyrins and Phthalocyanines,1997, 1(3):239-249.
    [19]Cheng C H, Fan Z Q, Yu S K, et al.1.1 μm near-infrared electrophosphorescence from organic light-emitting diodes based on copper phthalocyanine [J]. Applied Physics Letters,2006,88(21):213505(1-3).
    [20]Yu S K, Ma C Y, Cheng C H, et al. Synthesis and 0.88 μm near-infrared electroluminescence properties of a soluble chloroindium phthalocyanine [J]. Dyes and pigments,2008,76(2):492-498.
    [21]Terao Y, Sasabe H, Adachi C. Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells [J]. Applied Physics Letters,2007,90(10):103515(1-3).
    [22]Yang F, Lunt R R, Forrest S R. Simultaneous heterojunction organic solar cells with broad spectral sensitivity [J]. Applied Physics Letters,2008,92(5):053310(1-3)
    [23]Jiang X X, Dai J G, Wang H B, et al. Organic photovoltaic cells using hexadecafluorophthalocyaninatocopper (F16CuPc) as electron acceptor material [J]. Chemical Physics Letters,2007,446(4-6):329-332.
    [24]Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Applied Physics Letters, 1987,51(12):913-915.
    [25]Kido J. Electroluminescence of Rare Earth Complexes in Organic Matrices [C]. Proc. of 8th Inter, workshop on Inorg. Organic EL, Berlin,1996. Aug.13-15.
    [26]Miyamoto Y, Uekawa M, Ikeda H, et al. Electroluminescent properties of a Eu-complex doped in phosphorescent materials [J]. Journal of Luminescence,1999,81(3):159-164.
    [27]Shipley C P, Capecchi S, Salata O V, et al. Orange Electroluminescence from a Divalent Europium Complex [J]. Advanced Materials,1999,11(7):533-536.
    [28]Gillin W P, Curry R J. Erbium (Ⅲ) tris(8-hydroxyquinoline) (ErQ):A potential material for silicon compatible 1.5 μm emitters [J]. Applied Physics Letters,1999, 74(6):798-799.
    [29]Curry R J, Gillin W P.1.54 μm electroluminescence from erbium (Ⅲ) tris(8-hydroxyquinoline) (ErQ)-based organic light-emitting diodes [J]. Applied Physics Letters,1999,75(10):1380-1382.
    [30]Sun R G, Wang Y Z, Zheng Q B, et al.1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound [J]. Journal of Applied Physics, 2000,87(10):7589-7591.
    [31]洪自若,梁春军,赵丹,等.铒配合物的红外有机电致发光[J].发光学报,2000,21(3):269-272.
    [32]Li Z F, Yu J B, Zhou L, et al.1.54 μm Near-infrared photoluminescent and electroluminescent properties of a new Erbium (Ⅲ) organic complex [J]. Organic Electronics,2008,9(4):487-494.
    [33]Kawamura Y, Wada Y, Hasegawa Y, et al. Observation of neodymium electroluminescence [J]. Applied Physics Letters,1999,74(22):3245-3247.
    [34]Li Z F, Yu J B, Zhou L, et al. The near-infrared optical properties of an Nd (Ⅲ) complex and its potential application in electroluminescence [J]. Inorganic Chemistry Communications,2009,12(2):151-153.
    [35]Hong Z R, Liang C J, Li R G, et al. Infrared electroluminescence of ytterbium complexes in organic light emitting diodes [J]. Thin Solid Films,2001,391 (1):122-125.
    [36]Hong Z R, Liang C J, Li R G, et al. Infrared and visible emission from organic electroluminescent devices based on praseodymium complex [J]. Applied Physics Letters, 2001,79(13):1942-1944.
    [37]Crosby G A, Whan R E, Alire R M. Intramolecular Energy Transfer in Rare Earth Chelates-Role of the Triplet State[J]. Journal of Chemical Physics,1961,34(3):743-748.
    [38]Slooff L H, van Blaaderen A, Polman A, et al. Rare-earth doped polymers for planar optical amplifiers [J]. Journal of Applied Physics,2002,91(7):3955-3980.
    [39]Hasegawa Y, Ohkubo T, Sogabe K, et al. Luminescence of Novel Neodymium Sulfonylaminate Complexes in Organic Media [J]. Angewandte Chemie International Edition,2000, 39(2):357-360.
    [40]Slooff L H, Polman A, Oude Wolbers M P, et al. Optical properties of erbium-doped organic polydentate cage complexes [J]. Journal of Applied Physics,1998,83(1):497-503.
    [41]Tessler N, Medvedev V, Kazes M, et al. Efficient near-infrared polymer nanocrystal light-emitting diodes [J]. Science,2002,295(5559):1506-1508.
    [42]Suzuki H. Infrared electroluminescence from an organic ionic dye containing no rare-earth ions [J]. Applied Physics Letters,2002,80(18):3256-3258.
    [43]Ishigure T, Koike Y, Fleming J W. Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties [J]. Journal of Lightwave Technology,2000,18(2):178-184.
    [44]Hikita M, Tomaru S, Enbutsu K, et al. Polymeric optical waveguide films for short-distance optical interconnects [J]. IEEE Journal of Selected Topics in Quantum Electronics,1999,5(5):1237-1242.
    [45]Xuan Y, Qian G, Wang Z Y, et al. Near-infrared polymer light-emitting diodes based on infrared dye doped poly(N-vinylcarbazole) film [J]. Thin Solid Films,2008, 516(21):7891-7893.
    [46]Cocchi M, Virgili D, Fattori V, et al. Highly efficient near-infrared organic excimer electrophosphorescent diodes [J]. Applied Physics Letters,2007,90(2):023506(1-3).
    [47]Cocchi M, Kalinowski J, Virgili D, et al. Excimer-based red/near-infrared organic light-emitting diodes with very high quantum efficiency [J]. Applied Physics Letters, 2008,92(11):113302(1-3).
    [48]Broke C, Hanson K, Djurovich P I, et al. Highly Efficient, Near-Infrared Electrophosphorescence from a Pt-Metalloporphyrin Complex [J]. Angewandte Chemie International Edition,2007,46 (7):1109-1112.
    [49]Qian G, Zhong Z, Luo M, et al. Simple and Efficient Near-Infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission above 1000 nm [J]. Advanced Materials,2009,21 (1):111-116.
    [50]Ohmori Y, Fujii A, Uchida M, et al. Fabrication and characteristics of 8-hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode [J]. Applied Physics Letters,1993, 62(25):3250-3252.
    [51]Ohmori Y, Fujii A, Yoshida M, et al. Novel Characteristics of Electroluminescent Diode with Organic Multiple-Quantum-Well Structure [J]. Japanese Journal of Applied Physics,1995,34(7B):3790-3793.
    [52]Fujii A, Yoshida M, Ohmori Y, et al. Polarization Anisotropy of Organic Electroluminescent Diode with Periodic Multilayer Structure Utilizing 8-Hydroxyquinoline Aluminum and Aromatic Diamine [J]. Japanese Journal of Applied Physics,1995,34(5B):L621-L624.
    [53]Dodabalapur A, Rothberg L J, Miller T M. Color variation with electroluminescent organic semiconductors in multimode resonant cavities [J]. Applied Physics Letters, 1994,65(18):2308-2310.
    [54]Dodabalapur A, Rothberg L J, Miller T M, et al. Microcavity effects in organic semiconductors [J]. Applied Physics Letter,1994,64(19):2486-2488.
    [55]Notomi M, Suzuki H, Tamamura T. Directional lasing oscillation of two-dimensional organic photonic crystal lasers at several photonic band gaps [J]. Applied Physics Letters,2001,78(10):1325-1327.
    [56]Parker I D. Carrier tunneling and device characteristics in polymer light-emitting diodes [J]. Journal of Applied Physics,1994,75(3):1656-1666.
    [57]Matsumura M, Akai T, Saito M, et al. Height of the energy barrier existing between cathodes and hydroxyquinoline-aluminum complex of organic electroluminescence devices [J]. Journal of Applied Physics,1996,79(1):264-268.
    [58]Adachi C, Baldo M A, Thompson M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J]. Journal of Applied Physics,2001, 90(10):5048-5051.
    [59]Grice A W, Bradley D D D C, Bernius M T, et al. High brightness and efficiency blue light-emitting polymer diodes [J]. Applied Physics Letters,1998,73(5):629-631.
    [60]Shen Z L, Burrows P E, Bulovic V, et al. Three-color, Tunable,Organic Light-Emitting Devices [J]. Science,1997,276(5321):2009-2011.
    [61]Scurlock R D, Wang B J, Ogilby P R, et al. Singlet Oxygen as a Reactive Intermediate in the Photodegradation of an Electroluminescent Polymer [J]. Journal of the American Chemical Society,1995,117(41):10194-10202.
    [62]Sheats J R. Stacked Organic Light-Emitting Diodes in Full Color [J]. Science,1997, 277(5323):191-192.
    [63]Kallmann H, Pope M. Photovoltaic effect in organic crystals [J]. The Journal of Chemical Physics,1959,30(2):585-586.
    [64]Ghosh A K, Morel D L, Feng T, et al. Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky-barrier cells [J]. Journal of Applied Physics,1974, 45(1):230-236.
    [65]Tang C W. Two-layer organic photovoltaic cell [J]. Applied Physics Letter,1986,48 (2):183-185.
    [66]Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene [J]. Science,1992,258(5087):1474-1476.
    [67]Yu G, Gao J, Hummelen J C, et al. Polymer Photovoltaic Cells:Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions [J]. Science,1995, 270(5243):1789-1791.
    [68]Peumans P, Forrest S R. Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells [J]. Applied Physics Letter,2001,79(1): 126-128.
    [69]Taima T, Chikamatsu M, Yoshida Y, et al. Effects of intrinsic layer thickness on solar cell parameters of organic p-i-n heterojunction photovoltaic cells [J]. Applied Physics Letters,2004,85(26):6412-6414.
    [70]Rand B P, Xue J, Yang F, et al. Organic solar cells with sensitivity extending into the near infrared [J]. Applied Physics Letters,2005,87(23):233508(1-3).
    [71]Ma W, Yang C, Gong X, et al. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology [J]. Advanced Functional Materials,2005,15(10):1617-1622.
    [72]Kim J Y, Lee K, Coates N E, et al. Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing [J]. Science,2007,317(5835):222-225.
    [73]Chen F C, Wu J L, Lee C L, et al. Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles [J]. Applied Physics Letters, 2009,95(1):013305(1-3).
    [74]Wudl F. The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids [J]. Accounts of Chemical Research,1992,25(3):157-161.
    [75]Hiramoto M, Fujiwara H, Yokoyama M. Three-layered organic solar cell with a photoactive interlayer of codeposited pigments [J]. Applied Physics Letter,1991, 58(10):1062-1064.
    [76]Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunction photovoltaic cell [J]. nature materials,2005,4(1):37-41.
    [77]Derouiche H, Djara V. Impact of the energy difference in LUMO and HOMO of the bulk hetero junctions components on the efficiency of organic solar cells [J]. Solar Energy Materials and Solar Cells,2007,91(13):1163-1167.
    [78]Shao Y, Sista S, Chu C W, et al. Enhancement of tetracene photovoltaic devices with heat treatment [J]. Applied Physics Letters,2007,90(10):103501(1-3).
    [79]Chen W B, Xiang H F, Xu Z X, et al. Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer [J]. Applied Physics Letters,2007, 91(19):191109(1-3).
    [80]Liu P, Li Q, Huang M S, et al. High open circuit voltage organic photovoltaic cells based on oligothiophene derivatives [J]. Applied Physics Letters,2006, 89(21):213501(1-3).
    [81]Tan Z, Yang C, Zhou E, et al. Performance improvement of polymer solar cells by using a solution processible titanium chelate as cathode buffer layer [J]. Applied Physics Letters,2007,91(2):023509(1-3).
    [82]Chen F C, Tseng H C, Ko C J. Solvent mixtures for improving device efficiency of polymer photovoltaic devices [J]. Applied Physics Letters,2008,92(10):103316(1-3).
    [83]Mihailetchi V D, Xie H X, de Boer B, et al. Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene):Methanofullerene Bulk-Heterojunction Solar Cells [J]. Advanced Functional Materials,2006,16(5):699-708.
    [84]张正华,李陵岚,叶楚平,等.有机太阳电池与塑料太阳电池[M].北京:化学工业出版社2006.
    [85]Barth S, Bassler H. Intrinsic Photoconduction in PPV-Type Conjugated Polymers [J]. Physical Review Letters,1997,79(22):4445-4448.
    [86]Marks R N, Halls J J M, Bradley D D C, et al. The photovoltaic response in poly(p-phenylene vinylene) thin-film devices [J]. Journal of Physics:Condensed Matter,1994,6(7):1379-1394.
    [87]Brabec C J, Cravino A, Meissner D, et al. The influence of materials work function on the open circuit voltage of plastic solar cells [J]. Thin Solid Films,2002,403-404: 368-372.
    [88]Scharber M C, Muhlbacher D, Koppe M, et al. Design Rules for Donors in Bulk-Heterojunction Solar Cells-Towards 10 % Energy-Conversion Efficiency [J]. Advanced Materials,2006,18(6):789-794.
    [89]Liu J, Shi Y, Yang Y. Solvation-Induced Morphology Effects on the Performance of Polymer-Based Photovoltaic Devices [J]. Advanced Functional Materials,2001, 11 (6):420-424.
    [90]Mihailetchi V D, Blom P W M, Hummelen J C, et al. Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells [J]. Journal of Applied Physics,2003,94(10):6849-6854.
    [91]Zhang F, Perzon E, Wang X, et al. Polymer Solar Cells Based on a Low-Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm [J]. Advanced Functional Materials,2005,15(5):745-750.
    [92]Hoppe H, Sariciftci N S. Morphology of polymer/fullerene bulk heterojunction solar cells [J]. Journal of Materials Chemistry,2006,16(1):45-61.
    [93]Mattias Andersson L, Zhang F, Inganas 0. Stoichiometry, mobility, and performance in bulk heterojunction solar cells [J]. Applied Physics Letters,2007, 91(7):071108 (1-3).
    [94]Lacic S and Inganas 0. Modeling electrical transport in blend heterojunction organic solar cells [J]. Journal of Applied Physics,2005,97(12):124901(1-7).
    [95]Zhang F L, Johansson M, Andersson M R, et al. Polymer solar cells based on MEH-PPV and PCBM [J]. Synthetic Metals,137(1-3):1401-1402.
    [96]密保秀,高志强,邓先宇,等.基于有机薄膜的太阳能电池材料与器件研究进展[J].中国科学B辑:化学,2008,38(11):957-975.
    [97]Zhang Z L, Jiang X Y, Xu S H, et al. Stability enhancement of organic electroluminescent diode through buffer layer or rubrene doping in hole-transporting laye [J]. Synthetic Metals,1997,91(1-3):131-132.
    [98]Assour J M and Harrison S E. On the Optical Absorptions of Phthalocyanines [J]. Journal of the American Chemical Society,1965,87 (3):651-652.
    [99]Yoshino K, Hikida M, Tatsuno K, et al. Emission Spectra of Phthalocyanine Crystals [J]. Journal of the physical society of Japan,1973,34(2):441-445.
    [100]Fujii A, Yoshida M, Ohmori Y, et al. Two-Band Electroluminescent Emission in Organic Electroluminescent Diode with Phthalocyanine Film [J]. Japanese Journal of Applied Physics,1996,35 (1A):L37-L39.
    [101]Orti E, Crespo R, Piqueras M C, et al. Theoretical determination of the molecular and solid-state electronic structures of phthalocyanine and largely extended phthalocyanine macrocycles [J]. Journal of Materials Chemistry,1996, 6(11):1751-1761.
    [102]Rebarz M, Wojdyla M, Bala W, et al. Study of excited states in thin films of perylene derivatives by photoluminescence and absorption spectroscopy [J]. Optical Materials, 2008,30(5):774-776.
    [103]Sidorov A N and Kotlyar I P. Opt. Spectrosc. (USSR),1961,11:92-96.
    [104]Sakakibara Y, Bera R N, Mizutani T, et al. Photoluminescence Properties of Magnesium, Chloroaluminum, Bromoaluminum, and Metal-Free Phthalocyanine Solid Films [J].The Journal of Physical Chemistry B,2001,105(8):1547-1553.
    [105]Tang C W, VanSlyke S A, Chen C H. Electroluminescence of doped organic thin films [J]. Journal of Applied Physics,1989,65(9):3610-3616.
    [106]Baldo M A,O'Brien D F, Thompson M E, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film [J]. Physical Review B,1999,60 (20):14422-14428.
    [107]Loutfy R 0 and Sharp J H. Electrode behaviour of insoluble suspensions of metal-free phthalocyanines in methylene chloride [J]. Journal of Applied Electrochemistry,1977, 7(4):315-321.
    [108]Ma C Y, Ye K Q, Yu S K, et al. Synthesis and hypochromic effect of phthalocyanines and metal phthalocyanines [J]. Dyes and Pigments,2007,74(1):141-147.
    [109]Snow A W and Jarvis N L. Molecular association and monolayer formation of soluble phthalocyanine compounds [J]. Journal of the American Chemical Society,1984, 106(17):4706-4711.
    [110]Sommerauer M, Rager C, Hanack M. Separation of 2(3),9(10),16(17),23(24)-tetra-substituted phthalocyanines with newly developed HPLC phases [J]. Journal of the American Chemical Society,1996,118(42):10085-10093.
    [111]Rager C, Schmid G, Hanack M. Influence of substituents, reaction conditions and central metals on the isomer distributions of 1(4)-tetrasubstituted phthalocyanines [J]. Chemistry-A European Journal,1999,5(1):280-288.
    [112]Schouwink P, Schafer A H, Seidel C, et al. The influence of molecular aggregation on the device properties of organic light emitting diodes [J]. Thin Solid Films,2000, 372(1-2):163-168.
    [113]Xiang H F, Xu Z X, Roy V A L, et al. Deep-red to near-infrared electrophosphorescence based on bis(8-hydroxyquinolato) platinum(Ⅱ) complexes [J]. Applied Physics Letters, 2008,92(16):163305(1-3).
    [114]Baldo M A, O'Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature,1998,395(6698):151-154.
    [115]Rosenow T C, Walzer K, Leo K. Near-infrared organic light emitting diodes based on heavy metal phthalocyanines [J]. Journal of Applied Physics,2008, 103(4):043105(1-4).
    [116]Bao Z, Lovinger A J, Brown J. New Air-Stable n-Channel Organic Thin Film Transistors [J]. Journal of the American Chemical Society,1998,120(1):207-208.
    [117]Kasha M, Rawls H R, El-Bayoumi M A. The exciton model in molecular spectroscopy [J]. Pure and Applied Chemistry,1965,11 (3-4):371-392.
    [118]Schlettwein D, Graaf H, Meyer J P, et al. Molecular Interactions in Thin Films of Hexadecafluorophthalocyaninatozinc (F16PcZn) as Compared to Islands of N, N'-Dimethylperylene-3,4,9,10-biscarboximide (MePTCDI) [J]. The Journal of Physical Chemistry B,1999,103(16):3078-3086.
    [119]Ma C Y, Tian D L, Hou X K, et al. Synthesis and Characterization of Several Soluble Tetraphenoxy-Substituted Copper and Zinc Phthalocyanines [J]. Synthesis-Stuttgart, 2005,2005(5):741-748.
    [120]Engel M K. Single-crystal and solid state molecular structures of phthalocyanine complexes [J]. Kawamura Rikagaku Kenkyusho Hokoku,1997,8:11-54.
    [121]Shirk J S, Pong R G S, Flom S R, et al. Effect of Axial Substitution on the Optical Limiting Properties of Indium Phthalocyanines [J]. The Journal of Physical Chemistry A,2000,104(7):1438-1449.
    [122]Green M A, Emery K, King D L, et al. Solar cell efficiency tables (version 22) [J]. Progress in Photovoltaics:Research and Applications,2003,11(5):347-352.
    [123]Song Q L, Wang M L, Obbard E G, et al. Degradation of small-molecule organic solar cells [J]. Applied Physics Letters,2006,89(25):251118(1-3).
    [124]Drechsel J, Mannig B, Kozlowski F, et al. High efficiency organic solar cells based on single or multiple PIN structures [J].Thin Solid Films,2004,451-452:515-517.
    [125]Somashekarappa M P, Keshavayya J, Sherigara B S. Synthesis and spectroscopic investigations of iron(Ⅲ) complexes with chlorides and dianionic, symmetrically halogen substituted phthalocyanines as ligands [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2003,59(4):883-893.
    [126]Tokito S, Sakata J, Taga Y. The molecular orientation in copper phthalocyanine thin films deposited on metal film surfaces [J].Thin Solid Films,1995,256(1-2):182-185.
    [127]Wohrle D and Meissner D. Organic Solar Cells [J]. Advanced Materials,1991, 3 (3):129-138.
    [128]Tang C W and Albrecht A C. Photovoltaic effects of metal-chlorophyll-a-metal sandwich cells [J]. The Journal of Chemical Physics,1975,62(6):2139-2149.
    [129]Wang Q, Li Y, Yan X Z, et al. Organic photovoltaic cells made from sandwich-type rare earth phthalocyaninato double and triple deckers [J]. Applied Physics Letters,2008, 93(7):073303 (1-3).
    [130]Sugiyama K, Ishii H, Ouchi Y, et al. Dependence of indium-tin-oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies [J]. Journal of Applied Physics,2000,87(1):295-298.
    [131]Ko C J, Lin Y K, Chen F C, et al. Modified buffer layers for polymer photovoltaic devices [J]. Applied Physics Letters,2007,90(6):063509(1-3).
    [132]Shrotriya V, Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells [J]. Applied Physics Letters,2006,88(7):073508(1-3).
    [133]Kim D Y, Subbiah J, Sarasqueta G, et al. The effect of molybdenum oxide interlayer on organic photovoltaic cells [J]. Applied Physics Letters,2009,95(9):093304(1-3).
    [134]Zhang C F, Tong S W, Jiang C Y, et al. Simple tandem organic photovoltaic cells for improved energy conversion efficiency [J]. Applied Physics Letters,2008, 92(8):083310(1-3).
    [135]Shaheen S E, Jabbour G E, Morrell M M, et al. Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode [J]. Journal of Applied Physics, 1998,84(4):2324-2327.
    [136]Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells [J]. Applied Physics Letters,2002, 80 (7):1288-1290.
    [137]Li Y, Duan L, Liu Q, et al. Investigation of an efficient YbF3/Al cathode for tris-(8-hydroxyquinoline)aluminum-based small molecular organic light-emitting diodes [J]. Applied Surface Science,2008,254(22):7223-7226.
    [138]Brown T M, Friend R H, Millard I S, et al. Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes [J]. Journal of Applied Physics,2003, 93(10):6159-6172.
    [139]Winkler R and Pantelides S T. Charge transfer and dipole moments of polyatomic systems [J]. The Journal of Chemical Physics,1997,106(18):7714-7719.
    [140]Woodruff D P and Delchar T A. Modern Techniques of Surface Science [C]. Cambridge University Press, Cambridge, UK,1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700