高显色指数白光有机发光二极管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有高显色指数的白光有机发光二极管是有机发光二极管中非常重要的一类,在近几年来受到广泛的重视。本文围绕高显色指数的白光有机发光二极管是有机发光二极管进行了一些列的研究。
     采用非掺杂技术制备了高显色指数白光有机发光二极管,器件最大亮度为19096 cd/m2,最大电流效率为4.12 cd/A,器件的发光光谱在8 V到12 V之间色坐标稳定,都在白光等能点(0.333,0.333)附近,白光的显色指数在80.9~90.2之间变化,相关色温在5804 K~6714 K间变化。由于器件中没有激子阻挡层,所以器件的效率比较低。为了提高器件效率,我们进一步在器件中引入Bphen作为激子阻挡层,变化器件结构。提高了器件的效率,得到的器件的最大电流效率为5.17 cd/A,最大功率效率为3.27 lm/W。在7 V到12 V之间色坐标都稳定在白光等能点附近。显色指数都在90以上,相应的相关色温为在5112 K~6989 K之间。
     全部利用激基复合物的发射制作了高显色指数白光有机发光二极管,由于激基复合物的光谱较宽,所以获得的白光光谱覆盖范围比较宽,半高宽大于270 nm。得到的器件在8 V到14 V之间,发光的色坐标始终在白光等能点附近,显色指数全部在92以上,相关色温在3376 K到6571 K之间变化。器件的起亮电压大约为5 V,最大亮度为610 cd/m2,最大效率为0.38 cd/A。
     首先开发了一种双母体结构,这种双母体结构能够提高多种红光和绿光掺杂剂染料的器件的效率。相对于传统的以Alq3为母体的器件,采用双母体结构的器件对于以DMQA为掺杂剂的绿光器件,效率提高了54%;而对于以DCJTB为掺杂剂的红光器件,效率提高了104%。接下来利用开发的双母体结构制作了高效高显色指数的WOLED,这种WOLED从8 V到14 V所有的色坐标都在白光等能点附近,色温在5000 K到6000 K之间,显色指数全部在90以上。颜色质量符合高要求的白光照明应用。器件的最大亮度在14 V时达到,为27853 cd/m2;最大电流密度在7.5 V时达到,为9.58 cd/A;最大效率比对比器件提高了73.6%。
The white organic light-emitting diode (OLED) with high color rendering index (CRI) is an important category in OLEDs. It has drawm much attention in recent years. In this thesis, a series of studies have done on the white OLEDs with high CRI.
     We have fabricated the white OLED with high CRI using undoped technology. The white behaves a maximum luminance of 19096 cd/m2 and a current efficiency of 4.12 cd/A, as well the CIE-1931 xy coordinates shift slightly under biases from 8 to 12 V. A CRI of 90.2 and the corresponding CCT of 5804 K were obtained as well. Because these are no exciton blocking layer in the device, the efficiency is low. To enhance the efficiency, we add the exciton blocking layer into the device. A white OLED with a maximum brightness of 21010 cd/m2 and a current efficiency of 5.17 cd/A were observed, respectively. as well the CIE coordinates locate near the point (0.333, 0.333) under biases from 7 to 12 V. A CRI of 91.2 and the corresponding CCT of 6145 K were obtained.
     A type of white OLED using four exciplexes was fabricated. A very broad white EL band with half-width of about 270 nm was obtained by four emission bands that strongly overlap. No monomer emission is responsible for the EL. A CRI of 94.1, CIE coordinates of (x=0.33, y=0.35), and CCT of 5477 K were obtained at bias voltage of 10 V.
     Firstly, we investigated a type of cohost system. The cohost system can be used in many different red and green dopants. The maximum current efficiencies are increased by 54% and 104% for green and red devices comparing to the conventional Alq3 single host devices. Then we fabricated a white OLED with high CRI using the cohost system above. As a sesult, a maximum brightness of 27853 cd/m2 and a current efficiency of 9.58 cd/A were observed, respectively. The maximum efficiency is increased by 73.6% compared to the control device. The CIE coordinates shift from (0.3432, 0.3397) to (0.3243, 0.3218), the CCT varies from 5035 K to 5915 K and all the CRIs exceed 90 under the biases from 8 to 14 V.
引文
[1] Tang C W, Vanslyke S A, Organic electroluminescent diodes [J], Appl. Phys. Lett., 1987, 51(12): 913-915.
    [2] Hung L S, Chen C H, Recent progress of molecular organic electroluminescent materials and devices[J], Mat. Sci. Eng. R, 2002, 39(5-6): 143-222.
    [3] Samuel I D W, Turnbull G A, Organic semiconductor lasers[J], Chem. Rev., 2007(4), 107:1272-1295.
    [4] Kozlov V G, Bulovic V, Burrows P E, et al. Laser action in organic semiconductor waveguide and double-heterostructure[J], Nature, 1997, 389(6649): 362-364.
    [5] Garnier F, Hajlaoui R, Yassar A, et al. All-polymer field-effect transistor realized by printing techniques[J], Science, 1994, 265(5179): 1684-1686.
    [6] Granstrom M, Petritsch K, Arias A C, et al. Laminated fabrication of polymeric photovoltaic diodes[J], Nature, 1998, 395(6699): 257-260.
    [7] Günes S, Neugebauer H, Sariciftci N S, Conjugated polymer-based organic solar cells[J], Chem. Rev., 2007, 107(4): 1324-1338.
    [8] Peumans P, Yakimov A, Forrest S R, Small molecular weight organic thin-film photodectectors and solor cells[J], J. Appl. Phys., 2003, 93(7): 3693-3723.
    [9] Yu G, Pakbaz K, Heeger A J, Semiconducting polymer diodes: large size, low cost photodetectors with excellent visible-ultraviolet sensitivity[J], Appl. Phys. Lett., 1994, 64(25): 3422-2424.
    [10] Thomas III S W, Joly G D, Swager T M, Chemical sensors based on amplifying fluorescent conjugated polymers[J], Chem. Rev., 2007, 107(4): 1339-1386.
    [11] Bozano L D, Kean B W, Beinhoff M, et al. Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanopaticles[J], Adv. Fuct. Mater., 2005, 15(12): 1933-1939.
    [12] Yang Y, Ouyang J, Ma L, et al. Electrical switching and bistability in organic/polymeric thin films and memory devices[J], Adv. Funct. Mater., 2006, 16(8): 1001-1014.
    [13] Bernanose A, Vouaux P, J.Chim. Phys., 1955, 52: 396.
    [14] Pope M, et al., Electroluminescence in organic crystals[J], J. Chem. Phys., 1963, 38: 2042.
    [15] Vincett P S, Barlow W A, Hann R A, et al. Electral conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J], Thin Solid Films, 1982, 44(2): 172-183.
    [16] Adachi C, Tokito S, Tsutsui T et al. Electroluminescence in Organic Films with Three-Layer Structure[J], Jpn. J. Appl. Phys., 1988, 27: L269-L271.
    [17] Burroughes J H, Bradley D D C, Brown A R, et al. Light emitting diodes based on conjugated polymers[J], Nature, 1990, 347: 539-541.
    [18] Brown D, Heeger A J, Electroluminescence from light-emitting diodes fabricated from conducting polymers[J], Thin Solid Film, 1992, 216(1): 96-98.
    [19] Gustafsson G, Cao Y, Treacy G M, et al. Flexible light-emitting diodes made from soluble conducting polymers[J], Nature, 1992, 357: 477-479.
    [20] Baldo M A, O’Brien D F, You Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J], Nature, 1998, 395(6698) :151-154.
    [21] Adachi C, Baldo M A, Thompson M E, et al. Nearly 100% internal phosphorescence efficiency in an organic light emitting device[J], J. Appl. Phys., 2001, 90(10): 5048-5051.
    [22] Su Y R n, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices[J], Nature, 2006, 440(7086): 908-912.
    [23] Zhou X, Pfeiffer M, Blochwitz J, et al. Very low operating voltage organic light-emitting diodes using a p-doped amorphous hole injection layer[J], Appl. Phys. Lett.,2001, 7(84): 410-412.
    [24] F?rster T, Transfer mechanisms of electronic excitation energy[J], Discuss. Faladay., 1959, 27: 7-339.
    [25] Dexter D L, A theory of sensitized luminescence in solids [J] J. Chem. Phys., 1953, 21(5): 836-851.
    [26]陈金鑫,黄孝文,OLED有机电致发光材料与器件[M],第一版,北京:清华大学出版社,2007.
    [27] Kalinowski J, Organic electroluminescence materials and devices [M], 1st edition, Amsterdam: Gordan & Breach, 1997, chap 1.
    [28] Das S, Chowdhury A, Roy S, et al., Charge injection mechanisms in solid state organic light-emitting devices based on alizarin violet [J], phys. Stat. sol. (a), 2000, 178(2): 811-818.
    [29] Scott J C, Brock P J, Salem J R, et al., Charge transport processes in organic light-emitting devices [J], Synth. Met., 2000, 111: 289-293.
    [30] Raikh M, Wei X, Current-voltage characteristics of polymer light-emitting diode at low voltages [J], Mol. Crys. & Liq. Crys., 1994, 256: 563-569.
    [31] Lemmer U, Scheidler M, Kerting R, et al., Hopping and related phenomena: proceeding of 6th international conference on hopping and related phenomna [M], Israel, 1995, 400.
    [32] Gutmann F, Lysons L E, Organic semicondectors [M] 1st edition, New York: John Wiley & Sons, Inc., 1967, chap. 7.
    [33] Shinar J, Savvateev V, A survey of organic light-emitting devices [M], 1st edition, New York: Springer-Verlag Co., 2002, chap. 1.
    [34] Vannikov A, Grishina A D, Novikov S V, Electron transport and electroluminescence in polymer layers [J], Russ. Chem. Rev., 1994, 63(2): 103-129.
    [35] Baldo M A, O’Brien D F, Thompson M E, et al., Excitonic singlet-triplet ratios in a semiconducting organic thin film [J], Phys. Rev. B, 1999, 60(20): 14422-14428.
    [36] Cao Y, Parker I D, Xu G, et al., Improved quantum efficiency for electroluminescence in semiconducting polymers [J], Nature 1999, 397(6718): 414-417.
    [37]荆其诚,焦书兰,喻柏林等,色度学[M],第一版,北京:科学出版社,1979年.
    [38] Sze S M, Physics of semiconductor devices [M],, New York: Wiley, 1981.
    [39] Kido J, Hongawa K, Okuyama K, et al., White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes [J], Appl. Phys. Lett., 1994, 64(7): 815-817.
    [40] Kido J, Kimura M, Nagai K, et al., Multilayer white light-emitting organic electroluminescent devices [J], Science, 1995, 267(5202): 1332-1334.
    [41] D’Andrade B W, Thompson M E, Forrest S R, Controlling exciton diffusion in multilayer white phosphorescent organic light emitting devices [J], Adv. Mater., 2002, 14(2): 147-151.
    [42] Sun Y, Giebink N C, Kanno H, et al., Management of singlet and triplet excitons for efficient white organic light-emitting devices [J], Nature, 2006, 440(7086): 908-912.
    [43] Kawamura Y, Yanagida S, Forrest S R, Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers [J], J. Appl. Phys., 2002, 92(1): 87-93.
    [44] D’Andrade B W, Holmes R J, Forrest S R, Efficient organic electrophosphorescent white-light-emitting device with a triple doped emissive layer [J], Adv. Mater., 2004, 16(7): 624-628.
    [45] D’Andrade B W, Brooks J, Adamovich V, et al., White light emission using triplet excimers in electrophosphorescent organic light emitting devices[J], Adv. Mater., 2002, 14(15): 1032-1036.
    [46] Duggal A R, Shiang J J, Heller C M, et al. Organic light-emitting devices for illumination quality white light [J], Appl. Phys. Lett., 2002, 80(19): 3470-3472.
    [47] Matsumura M, Furukawa T, Efficient electroluminescence from a rubrene sub-monolayer inserted between electron- and hole- transport layer [J], Jpn. J. Appl. Phys.,Part 1, 2001, 40(5A): 3211-3214.
    [48] Tsuji T, Naka S, Okada H, et al., Nondoped-type white organic electroluminescent devices utilizing complementary color and exciton diffusion [J], Appl. Phys. Lett., 2002, 81(18): 3329-3331.
    [49] Xie W F, Wu Z J, Liu S Y, et al., Non-doped-type white organic light-emitting devices based on yellow-emitting ultrathin 5,6,11,12-tetraphenylnaphthacene and blue-emitting 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl [J], J. Phys. D: Appl. Phys.,2003, 36(19): 2331-2334.
    [50] Choukri H, Fischer A, Forget S, et al., White organic light-emitting diodes with fine chromaticity tuning via ultrathin layer position shifting [J], Appl. Phys.Lett., 2006, 89(18): 183513.
    [51] Xie W, Liu S, Zhao Y, A nondoped-type small molecule white organic light-emitting device[J]., J. Phys. D: Appl. Phys., 2003, 36(11): 1246-1248.
    [52] Cheng G, Zhao Y, Zhang Y, et al.,White organic light-emitting devices using 2,5,2’,5’-tetrakis(4’-biphenylenevinyl)-biphenyl as blue light-emitting layer [J], Appl. Phys. Lett., 2004, 84(22): 4457-4459.
    [53] Bulovi? V, Deshpande R, Thompson M E, et al.,Tuning the color emission of thin film molecular organic light emitting devices by the solid state solvation effect [J]., Chem. Phys. Lett., 1999, 308(3-4): 317-322.
    [54] Mazhari B, Recombination efficiency in bilayer organic light-emitting diode [J]., Solid-StateElectronics, 2005, 49(3): 311-315.
    [55] Ruhstaller B, Carter S A, Barth S, et al., Transient and steady-state behavior of space charges in multilayer organic light-emitting diodes [J], J. Appl. Phys., 2001, 49(8): 4575-4586.
    [56] Martin S J , Verschoor G L B, M A Webster, et al., The internal electric field distribution in bilayer organic light emitting diodes [J]., Org. Electron., 2002, 3(3-4):129-141.
    [57] Liang C J, Choy W C H, Color tunable organic light-emitting diodes by using europium organometallic complex [J]., Appl. Phys. Lett., 2006, 89(25): 251108.
    [58] Chen C H, Meng H F, Recombination distribution and color tuning of multilayer organic light-emitting diode [J]., Appl. Phys. Lett., 2005, 86(20): 201102.
    [59] Thompson J, Blyth R I R, Mazzeo M, et al., White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode [J], Appl. Phys.Lett.,2001,79(5): 560-562.
    [60] Wang D, Li W L, Chu B,et al., Highly efficient green organic light-emitting diodes from single exciplex emission [J], Appl. Phys. Lett., 2008, 92(5): 053304.
    [61] Wang D, Li W L , Su Z S, et al., Broad wavelength modulating and design of organic white diode based on lighting by using exciplex emission from mixed acceptors [J], Appl. Phys. Lett., 2006, 89(23): 233511.
    [62] Li M T, Li W L, Chen L L, et al., Tuning emission color of electroluminescence from two organic interfacial exciplexes by modulating the thickness of middle gadolinium complex layer [J]., Appl. Phys. Lett., 2006, 88(9): 091108.
    [63] Feng J, Li F, Gao W B, et al., White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer [J]., Appl. Phys. Lett., 2001, 78(25): 3947-3949.
    [64] Mazzeo M, Pisignano D, Sala F D, et al., Organic single-layer white light-emitting diodes by exciplex emission from spin-coated blends of blue-emitting molecules [J]., Appl. Phys. Lett., 2003, 82(3):334-336.
    [65] Hong Z R, Lee C S, Lee S T, et al., Bifunctional photovoltaic and electroluminescent devices using a starburst amine as an electron donor and hole-transporting material [J]., Appl. Phys. Lett., 2002, 81(15): 2878-2880.
    [66] Kawabe Y, Abe J, Electron mobility measurement using exciplex-type organic light-emitting diodes [J]., Appl. Phys. Lett., 2002, 81(3): 493-495.
    [67] Thompson, J Blyth R I R, Mazzeo M, et al., White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode? [J]., Appl. Phys. Lett. ,2001, 79(5): 560-562.
    [68] Okumoto K, Shirota Y, Exciplex formation at the organic solid/solid interface and tuning of the emission color in organic electroluminescent devices [J]., J. lumin., 2000, 87: 1171-1173.
    [69] Li G, Kim C H, Zhou Z, et al., Combinatorial study of exciplex formation at the interface between two wide band gap organic semiconductors[J], Appl. Phys. Lett. ,2006, 88(25): 253505.
    [70] Chen B, Zhang X H, Lin X Q,et al., Improved color purity and efficiency of blue organic light-emitting diodes via suppression of exciplex formation [J]., Synth. Met. 2001, 118(1-3): 193-196.
    [71] Tang C W, Vanslyke S A, Chen C H, Electroluminescence of doped organic thin films [J], J. Appl. Phys., 1989, 65(9): 3610-3616.
    [72] Shi J, Tang C W, Doped organic electroluminescent devices with improved stability [J]., Appl. Phys. Lett., 1997, 70(13):1665-1667.
    [73] Hamada Y, Kanno H, Tsujioka T,et al., Red organic light-emitting diodes using an emitting assist dopant [J] Appl. Phys. Lett., 1999, 75(12): 1682-1684.
    [74] Feng J, Li F, Gao W B, et al., Improvement of efficiency and color purity utilizing two-step energy transfer for red organic light-emitting devices [J], Appl. Phys. Lett., 2002, 81(16): 2935-2937.
    [75] Kondakov D Y, Sandifer J R, Tang C W, et al., Nonradiative recombination centers and electrical aging of organic light-emitting diodes: Direct connection between accumulation of trapped charge and luminance loss [J], J. Appl. Phys., 2003, 93(2):1108-1119.
    [76] Liu T H, Iou C Y, Chen C H, Doped red organic electroluminescent devices based on a cohost emitter system [J], Appl. Phys. Lett., 2003, 83(25): 5241-5243.
    [77] Lee J H, Wu C I, Liu S W, et al., Mixed host organic light-emitting devices with low driving voltage and long lifetime [J], Appl. Phys. Lett., 2005, 86(10): 103506.
    [78] Wen S W, Lee M T, Chen C H, Recent Development of Blue Fluorescent OLED Materials and Devices [J]., IEEE/OSA J. Display Technol., 2005, 1(1): 90-99.
    [79] Ohmori Y, Kajii H, Sawatani T, et al., Enhancement of electroluminescence utilizing confined energy transfer for red light emission[J]., Thin Solid Films, 2001, 393(1-2): 407-411.
    [80] Su W M, Li W L, Hong Z R, et al., Improved electroluminescent efficiency of organic light emitting devices by co-doping N, N'dimethyl-quinacridone and Coumarin6 in tris-(8-hydroxyquinoline) aluminum[J]., Appl. Phys. Lett., 2005, 87(21): 213501.
    [81] Yuan Y, Lian J, Li S, et al., Improved efficiency in organic light-emitting devices with tris-(8-hydroxyquinoline) aluminium doped 9,10-di(2-naphthyl) anthracene emission layer [J] ., J. Phys. D: Appl. Phys., 2008, 41: 225103.
    [82] Bulovic V, Shoustikov A, Baldo M A, et al., Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts [J]., Chem. Phys. Lett., 1998, 287(3-4): 455-460.
    [83] Fukuno K, Osasa T, Iwasaki Y, et al., Organic electroluminescence devices based on mixture of aluminum–hydroxyquinoline complex and compound with low dielectric constant [J]., Jpn. J. Appl. Phys. Part I, 2005,44: 6245-6248.
    [84] Zhu J Z, Li W L, Chu B, et al., Improved efficiency for green and red emitting electroluminescent devices using the same cohost composed of 9,10-di(2-naphthyl) anthracene and tris-(8-hydroxyquinolinato) aluminum [J]., Physica E, 2009, 42(2): 158-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700