几种一维半导体纳米发光材料的合成及光子学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文合成了几种一维纳米结构,比如分枝纳米异质结、分枝纳米同质结、掺杂微纳结构、合金纳米结构、阵列纳米结构等;对所合成的纳米结构进行相应的形貌、成分、结构表征;并采用拉曼光谱、发光光谱、紫外-吸收光谱、扫描近场光学显微系统等研究了其发光学、光子学性能,主要内容体现于以下几个方面:
     1.通过二次生长过程,以ZnS纳米线为模板,合成多种分枝纳米结构,如ZnxCd1-xS-CdS(0     2.通过化学气相沉积法得到多种掺杂的微纳结构,如Sn(Ⅳ)掺杂的CdS微纳结构、Mn(Ⅱ)掺杂的ZnSe纳米结构、In(Ⅲ)掺杂的ZnTe纳米结构。研究发现:Sn掺杂的CdS一维微纳结构显示了较强的缺陷态发光,而且在不同的掺杂浓度下,这些缺陷态显示了规律性的1LO、2LO、4LO声子辅助发光,说明了掺杂结构中的多声子过程和非线性激子(电子)-声子耦合作用;Mn(Ⅱ)掺杂的ZnSe纳米结构易产生非规则纳米晶体结构,同样是缺陷态发光(多峰)占主导地位;通过对发光峰的mapping发现在这种非规则纳米结构中可能形成与纳米线不同的局域模-回音壁模式;由于拥有短冷却时间和快辐射复合过程,其带边态辐射复合在脉冲激光激发下,可克服晶格束缚重新占据主要地位,甚至可产生受激发射,但这种激射与F-P模不同;然而缺陷态的冷却时间较长、辐射复合过程缓慢,因此即使在高功率的脉冲激光激发下,仍保持自发发射。不同的In(Ⅲ)掺杂浓度导致不同的束缚态,因此,高纯的ZnTe纳米结构和1.15%掺杂浓度的In-ZnTe纳米结构、1.86%掺杂浓度的In-ZnTe纳米结构,可分别实现绿光、红光、近红外光发射。
     3.利用管式电阻炉的温度梯度特性,在单一基片上同时生长了具有不同组分的CdSxSe1-x合金纳米线。沿着基片的长度方向,这些合金纳米线的发光波长从498~692纳米范围内可调,而且,在高激发功率条件下,这些纳米线产生受激发射,激射范围为503~692纳米,这是首次实现如此大范围的可谐调半导体纳米线激光器。这种集成化的多元合金纳米结构可望用于红-绿-蓝光显示器、白光光源、全谱带太阳能电池等。
     4.通过热蒸发法合成一维SnO2纳米带和纳米线并进行一系列的光学研究。研究发现:纳米线含有的缺陷态比纳米带多,因此其束缚激子的能力更强;在连续激光器激发下,SnO2纳米结构只有缺陷态发光;但在脉冲激光激发下,这些纳米结构显示了不同强度的近带边束缚激子发光,在飞秒脉冲激光的高激发功率下甚至实现了受激发射,并且纳米线激射阈值比纳米带更低,产生受激发射的机理可认为是激子-声子耦合作用和大量束缚激子的形成;共振拉曼光谱也证明了激子-声子的强耦合作用和多声子过程。
     5.通过化学气相沉积法,在不同的生长条件下合成多种ZnO纳米结构:如四角锥结构、纳米梳结构、纳米阵列结构。结果发现:这些纳米结构的形貌与生长条件密切相关,同时发光性能也与合成过程紧密相连:纳米四角锥和纳米梳结构的发光质量较高而纳米阵列结构的发光质量则稍差。
In this dissertation, several one dimensional (1D) architecture nanostructures, such as:branched nano-heterostructures, doped micro-nanostructures, array nanostructures, were synthesized. The morphologies, component, structures of these as-grown nanostructures were characterized. Furthermore, we studied their photoluminescence/photonics systematically by UV-vis absorption PL spectrum、Raman spectrum、Scanning near-field optical microscope (SNOM) et.al. The main novel points are shown as follows:
     1. Based on two steps growth process and using ZnS nanowires as template, we synthesized several nanostructures, such as:ZnxCd1-xS-CdS branch nano-heterostructures、six-fold symmetrical CdS branch nano-homostructures、six-fold symmetrical ZnS-ZnO branch nano-heterostructures. Under different synthesis conditions, the chemical component of backbone ZnS nanowires can either maintained, or changed to ZnxCd1-xS alloy, and even to CdS completely. Therefore in such nano-heterostructures, except for the bandgap emission of branched CdS nanostructures in 504nm, these was another emission band that can be tunable between 337-504nm, which is come from the emission of backbone nanowires. The six-fold symmetrical ZnS-ZnO nano-heterostructures integrated the properties of ZnS and ZnO in them. Also, unique optical waveguide can be observed in six-fold symmetrical CdS nano-homostructures.
     2. Sn-CdS micro-nanostructures, Mn-ZnSe nanostructures, In-ZnTe nanostructures were synthesized by CVD technique. Strong defect state emission occurs in Sn doped CdS micro-nanostructures. Furthermore, these defect state emission were assisted by 1LO,2LO,4LO phonons, respectively, which demonstrated multi-phonon processes and nonlinear exciton (electron)-phonon coupling in these doped micro-nanostructures. The defect state emissions (multi-peaks) also dominate the PL spectra in doped ZnSe nanostructures. Whispering gallery modes cavity rather than F-P cavity might form in these nanostructures according to the mappings of each emission peaks. Under high excitation power of pulsed laser, bandgap state emission can achieve lasing because of its short cool time and fast radiative recombination process while defects state still hold the spontaneous emission due to its long cool time and slow radiative recombination process. The lasing mechanism is different from F-P cavity. There were different radiative recombination channels in the In-ZnTe nanostructures with different doped concentration. Therefore we can obtain green、red、near infrared emission in high purity ZnTe、doped ZnTe with 1.15%In (Ⅲ) concentration、doped ZnTe with 1.86%In (Ⅲ),respectively.
     3. According to the temperature profile of tube furnace, CdSxSe1-x alloy nanowires with different component were synthesized on single substrate wafer. Along the wafer, the emission wavelength of these alloy nanowires can be tuned from 498nm to 692nm. Furthermore, these nanowires can achieve lasing in the range of 503-692nm under high excitation power of pulsed laser. This is the first report about such large tunable wavelength in semiconductor nanowires laser. These integrated ternary alloy nanowires on chip may be used in red-green-blue display、white-light source、full-spectralcoverage solar cells.
     4.1D SnO2 nanobelts and nanowires were synthesized by evaporation method. The density of states of defect is larger in nanowires than that in nanobelts, which result in stronger strength of bound excitons than that in nanobelts. These nanostructures show bound exciton emission with different strength under fs pulsed laser excitation and produce lasing when the excitation power is high enough, while it only shows defect state emission under continuous-wave (CW) laser excitation. The lasing threshold of nanowires is lower than that of nanobelts because of its stronger bound exciton strength. Both exciton-phonon coupling and bound exciton result in the stimulated emission. Resonant Raman spectrum also indicate the strong exciton-phonon coupling and multi-phonons process in such SnO2 nanostructures.
     5. Several ZnO nanostructures, such as nanotetrapods、nanocombs、array nanostructures, were synthesized under different conditions by CVD. The morphologies and optical properties of ZnO nanostructures correlated with their synthesis conditions. Excellent emission properties occur in nanotetrapods and nanocombs, while the emission becomes a little worse in array nanostructures.
引文
[1]Iijima S, Helical microtubules of graphitic carbon. Nature,1991,354 (6348): 56-58
    [2]Wang Z L. Nanowires and Nanobelts:Materials, Properties and Devices Volume Ⅱ. Kluwer Academic Publishers,2003,32-103
    [3]Wang Z L. Towards self-powered nanosystems:from nanogenerators to nanopiezotronics. Adv. Funct. Mater.,2008,18 (22):3553-3567
    [4]Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state. J. Chem. Phys,1984,80 (9):4403-4407
    [5]Herr U, Jing J, Birringer R, Gonser U, et al. Investigation of nanocrystalline iron materials by Mossbauer spectroscopy. Appl. Phys. Lett.,1987,50 (8): 472-474
    [6]Zhang X B, Ha K L, Hark S K, Selenium-related luminescent centers in metalorganic chemical-vapor-phase deposition grown ZnSe epilayers on GaAs. Appl. Phys. Lett.,2001,79 (8):1127-1129
    [7]Wagner R S, Ellis W C, Vapor-Liquid-Solid mechanism of single crystal growth. Appl. Phys. Lett.,1964,4 (5):89-90
    [8]Zhang Y J, Zhang Q, Wang N L, et al. Synthesis of thin Si whiskers nanowires using SiCl4. J. Cryst. Growth,2001,226 (2-3):185-191
    [9]Wu Y, Yang P, Germanium nanowire growth via simple vapor transport. Chem. Mater.,2000,12 (3):605-607
    [10]Wang Y W, Zhang L D, Liang C H, et al. Catalytic growth and photoluminescence properties of semiconductor single crystal ZnS nanowires. Chem. Phys. Lett.,2002,357 (3-4):314-318
    [11]Wang Y W, Meng G W, Zhang L D, et al. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence. Chem. Mater.,2002,14 (4):1773-1777
    [12]Duan X, Lieber C M, General synthesis of compound semiconductor nanowires. Adv. Mater.,2000,12 (4):298-302
    [13]Huang M H, Wu Y, Feick H, et al. Catalytic growth of zinc oxide nanowire by vapor transport. Adv. Mater.,2000,13 (2):113-116
    [14]Chen Y, Li J B, Han Y S, et al. The effect of Mg vapor source on the formation of MgO whiskers and sheets. J. Cryst. Growth,2002,245 (1-2):163-170
    [15]Chen C C, Yeh C C, Chen C H, et al. Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc.,2001,123 (12):2791-2798
    [16]Shi W S, Zheng Y E, Wang N, et al. Synthesis and microstructure of gallium phosphide nanowires. J. Vac. Sci. Tech. B,2001,19(4):1115-1118
    [17]Duan X F, Lieber C M, Laser-assisted catalytic growth of single crystal GaN nanowires. J. Am. Chem. Soc.,2000,122 (1):188-189
    [18]HsuYJ, Lu S Y, Vapor-solid growth of Sn nanowires:growth mechanism and superconductivity. J. Phys. Chem. B,2005,109 (10):4398-4403
    [19]Pan Z W, Dai Z R, Wang Z L, Nanobelts of semiconductor oxides. Science, 2001,291 (5510):1947-1949
    [20]Ye C, Meng G, Wang Y, et al. On the growth of CdS nanowires by the evaporation of CdS nanopowers. J. Phys. Chem. B,2002,106 (40): 10338-10341
    [21]Liu C, Hu Z, Wu Q, et al. Vapor-solid growth and characterization of aluminum nitride nanocones. J. Am. Chem. Soc.,2005,127 (4):1318-1322
    [22]Peng H Y, Zhou X T, Wang N, et al. Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition. Chem. Phys. Lett.,2000,327 (5-6):263-270
    [23]Tang Q, Liu X, Kamins T I, et al. Twinning in TiSi2-island catalyzed Si nanowires grown by gas-source molecular-beam epitaxy. Appl. Phys. Lett., 2002,81 (13):2451-2453
    [24]Hsiao C H, Chang S J, Wang SB, et al. MBE growth of ZnSe nanowires on oxidized silicon substrate. Superlattices and Microstructures,2009,46 (4): 572-577
    [25]Wu Z H, Mei X Y, Kim D, et al. Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy. Appl. Phys. Lett.,2002,81 (27): 5177-5179
    [26]Cornet D M, Mazzetti V G M, LaPierre R R, Onset of stacking faults in InP nanowires grown by gas source molecular beam epitaxy. Appl. Phys. Lett.,2007, 90(1):013116-013118
    [27]Heitsch A T, Fanfair D D, Tuan H Y, et al. Solution-liquid-solid (SLS) growth of silicon nanowires. J. Am. Chem. Soc.,2008,130 (16):5436-5437
    [28]Yu H, Buhro W E, Solution-liquid-solid growth of soluble GaAs nanowires. Adv. Mater.,2003,15 (5):416-419
    [29]Wang X, Li Y D, Synthesis and characterization of Lanthanide hydroxide single crystal nanowires. Angew. Chem. Int. Ed.,2002,41 (24):4790-4793
    [30]Zhao W G, Ma Z Q, Pei G Q, Hydrothermal growth of ZnO nanowire. Journal of Synthetic Crystals,2007,36 (3):634-637
    [31]Wang H, Liu Y, Li M, et al. Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Applied Physics A:Materials Science & Processing,2009,97 (1):25-29
    [32]Roy P, Srivastava S K, Hydrothermal growth of CuS nanowires from Cu-dithiooxamide, a novel single-source precursor. Crystal growth & design, 2006,6(8):1921-1926
    [33]Wang X, Li Y D, Selected-control hydrothermal synthesis of a and b-MnO2 single hydrothermal method. J. Am. Chem. Soc.,2002,124 (12):2880-2881
    [34]Tang Y. H, Pei L Z, Chen Y W, et al. Self-assembled single hydrothermal method nanotubes under supercritically hydrothermal conditions. Phys. Rev. Lett.,2005,95 (11):116102-116105
    [35]Li Y, Liao H, Ding Y, et al. Novel solvothermal synthesis of CdE (E=S, Se, Te) semiconductor nanorod. Inorg. Chem.,1999,88 (7):1381-1387
    [36]Choi H G, Jung Y H, Kim D K, Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet. J. Am. Cera. Soc.,2005,88 (6):1684-1686
    [37]Geng Z R, Wang M X, Yue G H, et al. Growth of single-crystal Sb2S3 nanowires via solvothermal route. J. Crys. Growth,2008,310 (2):341-344
    [38]Hou Y L, Kondoh H, Che R C, et al. Ferromagnetic FePt nanowires: solvothermal reduction synthesis and characterization. Small,2006,2 (2): 235-238
    [39]Xu X X, Wei W, Qiu X M, et al. Synthesis of InAs nanowires via a low-temperature solvothermal route. Nanotechnology,2006,17 (14):3416-3420
    [40]Guo L, Wu Z H, Liu T, et al. Synthesis of novel Sb2O3 and Sb2O5 nanorods. Chem. Phys. Lett.,2000,318 (1-3):49-52
    [41]Guo L, Ji Y L, Xu H B, et al. Regularly shaped, single-srystalline ZnO nanorods with wurtzite structure. J. Am. Chem. Soc.,2002,124 (50):14864-14865
    [42]Wang X, Gao P, Li J, et al. Rectangular porous ZnO-ZnS nanocables and ZnS nanotubes. Adv. Mater.,2002,14 (23):1732-1735
    [43]Li Y J, You L P, Duan R, et al. Oxidation of a ZnS nanobelt into a ZnO nanotwin belt or double single-crystalline ZnO nanobelts. Solid State Commun., 2004,129 (4):233-238
    [44]Shan C X, Liu Z, Zhang Z Z, et al. A simple route to porous ZnO and ZnCdO nanowires. J. Phys. Chem. B,2006,110 (23):11176-11179
    [45]Wu Q B, Ren S, Deng S Z, et al. Growth of aligned Cu2S nanowire arrays with AAO template and their field-emission properties. J. Vac. Sci. Technol. B,2004, 22(3):1282-1285
    [46]Kim K, Kim M, Cho S M, Pulsed electrodeposition of palladium nanowire arrays using AAO template. Mater. Chem. Phys.,2006,96 (2-3):278-282
    [47]Kim Y H, Han Y H, Lee H J, et al. High density silver nanowire arrays using self-ordered anodic aluminum oxide (AAO) membrane. J. Kor. Cera. Soc.,2008, 45(4):191-195
    [48]Dai H J, Wong E W, Lu Y, et al. Synthesis and characterization of carbide nanorods. Nature,1995,375 (6534):769-772
    [49]Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction. Science,1997,277 (5330):1287-1289
    [50]Zhang Y, Zhu J, Zhang Q, et al. Synthesis of GeO2 nanorods by carbon nanotubes template. Chem. Phys. Lett.,2000,317 (3-5):504-509
    [51]Fan R, Wu Y Y, Li D Y, et al. Fabrication of silica nanotube arrays from vertical silicon nanowire templates. J. Am. Chem. Soc.,2003,125 (18):5254-5255
    [52]Li Y Q, Tang J X, Wang H, et al. Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS nanoribbons, Appl. Phys. Lett.,2007,90(9): 093127-093129
    [53]Huang L, Wang H, Wang Z, et al. Nanowire arrays electrodeposited from liquid crystalline phases. Adv. Mater.,2002,14 (1):61-64
    [54]Jana N R, Gearheart L, Murphy C J, Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B,2001,105 (19):4065-4067
    [55]Khan M I, Penchev M, Jing X Y, et al. Electrochemical growth of InSb nanowires and report of a single nanowire field effect transistor. J. Nanoelectron. Optoelectron.,2008,3 (2):199-202
    [56]Molares M E T, Buschmann V, Dobrev D, et al. Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv. Mater.,2001,13 (1):62-65
    [57]李淳飞,“光子学”的来由、现状与未来《传统光学—现代光学—光子学—纳米光子学》的发展路线图分析.第五届全国光子学大会会议论文集第二分册:纤维光学.安徽黄山:中国光学学会,2004,49-53
    [58]Tabagi H, Ogawa H, Yamazaki Y, et al. Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett.,1990,56 (24): 2379-2380
    [59]Law M, Sirbuly D J, Johnson J C, et al. Nanoribbon waveguides for subwavelength photonics integration. Science,2004,305 (5688):1269-1273
    [60]Sirbuly D J, Law M, Pauzauskie P, et al. Optical routing and sensing with nanowire assemblies.PNAS,2005,102 (22):7800-7805
    [61]Barrelet C J, Greytak A B, Lieber C M, Nanowire photonic circuit elements. Nano Lett.,2004,4 (10):1981-1985
    [62]Pan A, Liu D, Liu R, et al. Optical Waveguide through CdS Nanoribbons. Small, 2005,1 (10):980-983
    [63]Pan A L, Wang X, He P B, Color-changeable optical transport through Se-doped CdS 1D Nanostructures.Nano Lett.,2007,7 (10):2970-2975
    [64]Zhao Y S, Peng A D, Fu H B, et.al. Nanowire waveguides and ultraviolet lasers based on small organic molecules. Adv. Mater.,2008,20 (9):1661-1665
    [65]Fang Z Y, Lin C F, Ma R M, et al. Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano,2010,4 (1):75-82
    [66]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers. Science,2001,292 (5523):1897-1899
    [67]Ding J X, Zapien J A, Chen W W, et al. Lasing in ZnS nanowires grown on anodic aluminum oxide templates. Appl. Phys. Lett.,2004,85 (12):2361-2363
    [68]Johnson J C, Choi H J, Knutsen K P, et al. Single gallium nitride nanowire lasers. Nat. Mater.,2002,1 (2):106-110
    [69]Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature,2003,421 (6920):241-245
    [70]Liu Y K, Zapien J A, Shan Y Y, et al. Wavelength-controlled lasing in ZnxCd1-xS single-crystal nanoribbons. Adv. Mater.,2005,17 (11):1372-1377
    [71]Pan A L, Liu R B, Wang F F, et al. High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B,2006,110 (45): 22313-22317
    [72]Gargas D J, Toimil-Molares M E, Yang P D, Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy. J. Am. Chem. Soc,2009,131 (6):2125-2127
    [73]Hill M T, Milan M, Eunice S P L, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics Express,2009,17 (13): 11107-11112
    [74]Hill M T, Oei Y S, Samlbrugge B,et al. Lasing in metallic-coated nanocavities. Nature photonics,2007,1 (10):589-594
    [75]Haraguchi K, Katsuyama T, Hiruma K, Polarization dependence of light emitted from GaAs p-n junctions in quantum wire crystals. J. Appl. Phys.,1994,75 (8): 4220-4225
    [76]Huang Y, Duan X, Lieber C M, Nanowires for integrated multicolor nanophotonics. Small,2005,1 (1):142-147
    [77]Qian F, Gradecvak S, Li Y, et al. Core/multishell manowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett.,2005,5 (11): 2287-2291
    [78]Lai E, Kim W, Yang P D, Vertical nanowire array-based light emitting diodes. Nano Res.,2008,1 (2):123-128
    [79]Lee S K, Kim T H, Lee S Y, et al. High-brightness gallium nitride nanowire UV-blue light emitting diodes. Philosophical Magazine,2007,87 (14-15): 2105-2115
    [80]Minot E D, Kelkensberg F, Kouwen M Van, et al. Single quantum dot nanowire LEDs. Nano Lett.,2007,7 (2):367-371
    [81]Kronik L, Shapira Y, Surface photovoltage phenomena:theory, experiment, and applications. Surf. Sci. Rep.,1999,37(1-5):1-206
    [82]Garnett E C, Yang P D, Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc.,2008,130 (29):9224-9225
    [83]Tian B Z, Zheng X L, Kempa T J, et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449 (7164):885-889
    [84]Fan Z Y, Razavi H, Do J W, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials,2009,8 (8): 648-653
    [85]Czaban J A, Thompson D A, LaPierre R R, et al. GaAs core-shell nanowires for photovoltaic applications. Nano Lett.,2009,9 (1):148-154
    [86]Colombo C, Hei M, Gratzel M, et al. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett.,2009,94 (17):173108-173110
    [87]Oregan B, Gratzel M, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 film. Nature,1991,353 (6346):737-740
    [88]Katoh R, Furube A, Yoshihara T, et al. Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J. Phys. Chem. B,2004,108 (15):4818-4822
    [89]Feng X J, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett.,2008,8 (11):3781-3786
    [90]Martinson A B F, Elam J W, Hupp J T, et al. ZnO nanotube based dye-sensitized Solar cells. Nano Lett.,2007,7 (8):2183-2187
    [91]Yablonovith E, Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett.,1987,58 (20):2059-2062
    [92]John S, Strong localization of photon in certain disordered dielectric superlattices. Phys. Rev. Lett.,1987,58 (23):2486-2489
    [93]Subramania G, Lin S Y, Tuning the microcavity resonant wavelength in a two-dimensional photonic crystal by modifying the cavity geometry. Appl. Phys. Lett.,2003,83 (22):4491-4493
    [94]Park H G, Barrelet C J, Wu Y N, et al. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature photonics,2008,2 (10): 622-626
    [95]Wang Z L. Nanowires and Nanobelts:Materials, Properties and Devices Volume I. Kluwer Academic Publishers,2003,14-66
    [96]Xia Y N, Yang P D, Sun Y G, et al. One-dimensional nanostructures:synthesis, characterization, and applications. Adv. Mater.,2003,15 (5):353-389
    [97]Patolsky F, Lieber C M, Nanowire nanosensors. Material Today,2005,8 (4): 20-28
    [98]Li Y, Qian F, Xiang J, et al. Nanowire electronic and optoelectronic devices. Material Today,2006,9 (10):18-27
    [99]Thelander C, Agarwal P, Brongersma S, et al. Nanowire-based one-dimensional electronics. Material Today,2006,9 (10):28-35
    [100]Eymery J, Rieutord F, Nicolin V F, et al. Strain and shape of epitaxial InAs/InP nanowire superlattice measured by grazing incidence X-ray techniques. Nano Lett.,2007,7 (9):2596-2601
    [101]Yoo B, Xiao F, Bozhilov K N, et al. Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater.,2007,19 (2):296-299
    [102]Chueh Y L, Hsieh C H, Chang M T, et al. RuO2 nanowires and RuO2/TiO2 core/shell nanowires:from synthesis to mechanical, optical, electrical, and photoconductive properties. Adv. Mater.,2007,19 (1):143-149
    [103]Wu Y, Xiang J, Yang C, et al. Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature,2004,430 (6995): 61-65
    [104]Hu J Q, Y Bando, Zhan J H, et al. Fabrication of silica-shielded Ga-ZnS metal-semiconductor nanowire heterojunctions. Adv. Mater.,2005,17 (16): 1964-1969
    [105]Lan Z H, Liang C H, Hsu C W, et al. Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowire substrates. Adv. Funct. Mater.,2004,14 (3):233-237
    [106]Lao J Y, Wen J G, Ren Z F, Hierarchical ZnO nanostructures. Nano Lett.,2002, 2(11):1287-1291
    [107]Bae S Y, Seo H W, Choi H C, et al. Heterostructures of ZnO nanorods with various one-dimensional nanostructures. J. Phys. Chem. B,2004,108 (33): 12318-12326
    [108]Shen G Z, Chen D, Lee C J, et al. Hierarchical saw-like ZnO nanobelt/ZnS nanowire heterostructures induced by polar surfaces. J. Phys. Chem. B,2006, 110(32):15689-15693
    [109]Shen G Z, Ye C H, Golberg D, et al. Structure and cathodoluminescence of hierarchical Zn3P2/ZnS nanotube/nanowire heterostructures. Appl. Phys. Lett., 2007,90(7):073115-073117
    [110]Zhu Y C, Bando Y, Yin L W, et al. Design and fabrication of BN-sheathed ZnS nanoarchitectures. Adv. Mater.,2004,16(4):331-334
    [111]May S J, Zheng J G, B. Wessels W, et al. Dendritic nanowire growth mediated by a self-assembled catalyst. Adv. Mater.,2005,17 (5):598-602
    [112]Fang X S, Ye C H, Zhang L D, et al. Temperature-controlled catalytic growth of ZnS nanostructures by evaporation of ZnS nanopowers. Adv. Func. Mater., 2005,15(1):63-68
    [113]Pan A L, Liu R B, Yang Q, et al. Stimulated emissions in aligned CdS nanowires at room temperature. J. Phys. Chem. B,2005,109 (51):24268-24272
    [114]Zou B S, Liu R B, Wang F F, et al. Lasing mechanism of ZnO nanowires/nanobelts at room temperature. J. Phys. Chem. B,2006,110 (26): 12865-12873
    [115]Brenner S S, Sears G W, Mechanism of whisker growth-Ⅲ nature of growth sites. Acta Mater.,1956,4(3):268-270
    [116]Zhou W C, Pan A L, Li Y, et al. Controllable fabrication of high-quality 6-fold symmetry-branched CdS nanostructures with ZnS nanowires as templates. J. Phys. Chem. C,2008,112 (25):9253-9260
    [117]Xiong Q H, Chen G, Acord J D, et al. Optical properties of rectangular cross-sectional ZnS nanowires. Nano Lett.,2004,4 (9):1663-1668
    [118]Ye C H, Fang X S, Li G H, et al. Origin of the green photoluminescence from zinc sulfide nanobelts. Appl. Phys. Lett.,2004,85 (15):3035-3037
    [119]Shen G Z, Cho J H, Yoo J K, et al. Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. J. Phys. Chem. B,2005,109 (19):9294-9298
    [120]Salem A M, Structure, refractive-index dispersion and the optical absorption edge of chemically deposited ZnxCd1-xS thin films. Appl. Phys. A:Mater. Sci. Process,2002,74 (2):205-211
    [121]Dick K A, Deppert K, Larsson M W, et al. Synthesis of branched'nanotrees'by controlled seeding of multiple branching events. Nat. Mater.,2004,3(6): 380-384
    [122]Matthews J W, Blakeslee A E, Defects in epitaxial multilayers. J. Cryst. Growth, 1974,27:118-125
    [123]Neil M O, Marohn J, Mclendon G, Dynamics of electron-hole pair recombination in semiconductor clusters. J. Phys. Chem,1990,94 (10): 4356-4363
    [124]Spanhel L, Haase M, Weller H, et al. Photochemistry of colloidal semiconductors.20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem.Soc,1987,109 (19):5649-5655
    [125]Akiyama H, Pfeiffer L N, Yoshita M, et al. Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity. Phys. Rev. B,2003, 67 (4):041302-041305
    [126]Liu D F, Xiang Y J, Wu X C,et al. Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers. Nano Lett.,2006,6 (10): 2375-2378
    [127]Huang M H., Wu Y Y, Feick H, et al. Catalytic growth of zinc oxide nanowires by vapor transpor. Adv. Mater.,2001,13 (2):113-116
    [128]Rao C N R, Deepak F L, Gundiah G, et al. Inorganic nanowires. Progress in Solid State Chemistry,2003,31 (1-2):5-147
    [129]Lu M P, Song J H, Lu M Y, et al. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett.,2009,9 (3):1223-1227
    [130]Dattoli E N, Wan Q, Guo W, et al. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett.,2007,7 (8):2463-2469
    [131]Kim D S, Cho Y J, Park J, (Mn, Zn) Co-doped CdS nanowires. J. Phys. Chem. C, 2007,111 (29):10861-10868
    [132]Liu R B, Pan A L, Fan H M, et al. Phonon-assisted stimulated emission in Mn-doped ZnO nanowires. J. Phys.:Condens. Matter,2007,19 (13): 136206-136215
    [133]Liu R B, Pan A L, Wang F F, et al. Optical processes in the formation of stimulated emission from ZnO nanowires. Chinese Physics,2007,16 (4): 1129-1134
    [134]Li Q G, Penner R M, Photoconductive cadmium sulfide hemicylindrical shell nanowire ensembles. Nano Lett.,2005,5 (9):1720-1725
    [135]Agarwal R, Barrelet C J, Lieber C M, Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett.,2005,5 (5):917-920
    [136]Martin J, Cichos F, Huisken F, et al. Electron-phonon coupling and localization of excitons in single silicon nanocrystals. Nano Lett.,2008,8 (2):656-660
    [137]Shen W Z, Exciton-longitudinal-optical phonon coupling in quantum wires and quantum dots. Physica B:Condensed Matter,2002,322 (1-2):201-204
    [138]Richard M, Kasprzak J, Andre R, et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B,2005,72 (20):201301-201304
    [139]Wang R P, Xu G, Jin P, Size dependence of electron-phonon coupling in ZnO nanowires. Phys. Rev. B,2004,69 (11):113303-113306
    [140]Hu J Q, Bando Y, Golberg D, et al. Single-crystalline nanotubes of ⅡB-Ⅵ semiconductors. Appl. Phys. Lett.,2005,87 (11):113107-113109
    [141]Arguello C A, Rousseau D L, Porto S P S, First-order Raman effect in Wurtzite-Type Crystals. Phys. Rev.,1969,181 (3):1351-1363
    [142]Smith A J, Meek P E, Liang W Y, Raman scattering studies of SnS2 and SnSe2. J. Phys. C:Solid State Phys.,1977,10 (8):1321-1323
    [143]Abello L, Bochu B, Gaskov A, et al. Structural characterization of nanocrystalline SnO2 by X-ray and Raman spectroscopy. J. Solid. State. Chem.,1998,135 (1):78-85
    [144]Hoenig C L, Searcy A W, Knudsen and langmuir evaporation studies of stannic oxide. J. Am. Ceram. Soc.,1966,49(3):128-134
    [145]Gao P X, Wang Z L, Self-assembled nanowire-nanoribbon junction arrays of ZnO. J. Phys. Chem. B,2002,106 (49):12653-12658
    [146]Mahan G D, Gupta R, Xiong Q, et al. Optical phonons in polar semiconductor nanowires. Phys. Rev. B,2003,68 (7):073402-073405
    [147]Takagahara T, Hanamura E, Giant-oscillator-strength effect on excitonic optical nonlinearities due to localization. Phys. Rev. Lett.,1986,56 (23):2533-2536
    [148]Hanamura E, Very large optical nonlinearity of semiconductor microcrystallites. Phys. Rev. B,1988,37 (3):1273-1279
    [149]Pan A L, Liu R B, Zou B S, Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature. Appl. Phys. Lett.,2006,88 (17): 173102-173104
    [150]Wei S H, Zhang S B, Structure stability and carrier localization in CdX (X=S, Se, Te) semiconductors. Phys. Rev. B,2000,62 (11):6944-6947
    [151]Cardona M, Weinstein M, Wolff G.A, Ultraviolet reflection spectrum of cubic CdS. Phys. Rev.,1965,140 (2A):A633-A637
    [152]Haase M A, Qiu J, Depuydt J M, et al. Blue-green laser diodes. Appl. Phys. Lett.,1991,59(11):1272-1274
    [153]Albert D, Nurnberger J, Hock V, et al. Influence of p-type doping on the degradation of ZnSe laser diodes. Appl. Phys. Lett.,1999,74 (14):1957-1959
    [154]Zhao L J, Pang Q, Cai Y, et al. Vertically aligned zinc selenide nanoribbon arrays:micro structure and field emission. J. Phys. D:Appl. Phys.,2007,40 (12): 3587-3591
    [155]Philipose U, Ruda H E, Shik A, et al. Conductivity and photoconductivity in undoped ZnSe nanowire array. J. Appl. Phys.,2006,99 (6):066106-066108
    [156]Vugt L K, Zhang B, Piccione B, et al. Size-dependent waveguide dispersion in nanowire optical cavities:slowed light and dispersionless guiding. Nano Lett., 2009,9(4):1684-1688
    [157]McCall S L, Levi A F J, Slusher. E, et al. Whispering gallery mode microdisk lasers. Appl. Phys. Lett.,1992,60 (3):289-291
    [158]Collot L, Lefevre-Seguin V, Brune M, et al. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. Euro. Phys. Lett.,1993, 23 (5):327-334
    [159]Ilchenko V S, Matsko A B, Optical resonators with whispering-gallery modes-Part II:applications. IEEE J. Sel. Top. Quantum Electron.2006,12 (1): 15-32
    [160]Czekalla C, Sturm C, Grund R S, et al. Whispering gallery mode lasing in zinc oxide microwires. Appl. Phys. Lett.,2008,92 (24):241102-241104
    [161]Wang D, Seo H W, Tin C C, et al. Lasing in whispering gallery mode in ZnO nanonails. J. Appl. Phys.,2006,99 (9):093112-093115
    [162]Chang S, Rex N B, Chang R K, et al. Stimulated emission and lasing in whispering-gallery modes of GaN microdisk cavities. Appl. Phys. Lett.,1999, 75 (2):166-168
    [163]Dong H X, Chen Z H, Sun L X, et al. Whispering gallery modes in indium oxide hexagonal microcavities. Appl. Phys. Lett.,2009,94 (17):173115-173117
    [164]Zhang R J, Seo S Y, Milenin A P, et al. Visible range whispering-gallery mode in microdisk array based on size-controlled Si nanocrystals. Appl. Phys. Lett., 2006,88(15):153120-153122
    [165]Rakovich Y P, Yang L, Mccabe E M, et al. Whispering gallery mode emission from a composite system of CdTe nanocrystals and a spherical microcavity. Semicond. Sci. Technol.2003,18 (11):914-918
    [166]Spillane S M, Kippenberg T J, Vahala K J, Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature,2002,415 (6872):621-623
    [167]Xu X L, Brossard F S F, Williams D A, et al. Mapping cavity modes of ZnO nanobelts. Appl. Phys. Lett.,2009,94 (23):231103-231105
    [168]Jiang Y, Meng X M, Yiu W C, et al. Zinc selenide nanoribbons and nanowires. J. Phys. Chem. B,2004,108 (9):2784-2787
    [169]Leung Y P, Choy W C H, Markov I, et al. Synthesis of wurtzite ZnSe nanorings by thermal evaporation. Appl. Phys. Lett.,2006,88 (18):183110-183112
    [170]Lam C C, Leung P T, Young K, Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering. J. Opt. Soc. Am. B,1992, 9(9):1585-1592
    [171]Ghulinyan M, Navarro-Urrios D, Pitanti A, et al. Whispering-gallery modes and light emission from a Si-nanocrystal-based single microdisk resonator. Opt. Express,2008,16 (17):13218-13224
    [172]Philipose U, Xu T, Yang S, et al. Enhancement of band edge luminescence in ZnSe nanowires. J. Appl. Phys.,2006,100(8):084316-084321
    [173]Wang F F, Zhang Z H, Liu R B, et al. Structure and stimulated emission of ZnSe nanoribbons grown by thermal evaporation. Nanotechnology,2007,18 (30): 305705-305709
    [174]Massa J S, Buller G S, Walker A C, et al. Photoluminescence decay measurements of n and p type doped ZnSe grown by molecular beam epitaxy. Appl. Phys. Lett.,1994,64 (5):589-591
    [175]Bogani F, Grifoni S, Gurioli M, et al. Band-edge dynamics and trapping in ZnSe crystals. Phys. Rev. B,1995,52 (4):2543-2549
    [176]Tanaka T, Hayashida K, Saito K, et al. Effect of surface treatment on properties of ZnTe LED fabricated by Al thermal diffusion. Phys. Stat. Sol. B,2006,243 (4):959-962
    [177]Bozzini B, Baker M A, Cavallotti P L, et al. Electrodeposition of ZnTe for photovoltaic cells. Thin Solid Films,2000,361:388-395
    [178]Huo H B, Dai L, Xia D Y, et al. Synthesis and optical properties of ZnTe single-crystalline nanowires. J. Nanosci. Nanotechnol.,2006,6 (4):1182-1184
    [179]Zhong X H, Feng Y Y, Knoll W G, et al. Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc.,2003,125 (44), 13559-13563
    [180]Pradhan N, Peng X G, Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters:control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc,2007,129 (11):3339-3347
    [181]Pradhan N, Goorskey D, Thessing J, et al. An alternative of CdSe nanocrystal emitters:pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc.,2005,127 (50):17586-17587
    [182]Tokumoto M S, Smith A, Santilli C V, et al. Effect of In concentration in the starting solution on the structural and electrical properties of ZnO films prepared by the pyrosol process at 450℃. J. Non-Cryst. Solids,2000,273 (1-3): 302-306
    [183]Sernelius B E, Berggren K F, Jin Z C, et al. Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B,1988,37 (17):10244-10248
    [184]Sanon G, Rup R, Mansingh A, Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. Phys. Rev. B,1991,44 (11):5672-5680
    [185]Nicholls J E, Davies J J, An optically-detected magnetic resonance investigation of recombination emission in indium doped zinc sulphide. J. Phys. C:Solid State Phys,1980,13 (12):2393-2405
    [186]Fernandez P, Garcia J A, Remon A, et al. Cathodoluminescence microscopy and photoluminescence of defects in ZnTe. Semicond. Sci. Technol.,1998,13 (4): 410-416
    [187]Luo M, Vanmil B L, Tompkins R P, et al. Photoluminescence of ZnTe and ZnTe:Cr grown by molecular-beam epitaxy. J. Appl. Phys.,2005,97 (1): 013518-013525
    [188]Yu Y M, Nam S, Lee K S, et al. Photoluminescence characteristics of ZnTe epilayers. J. Appl. Phys.,2001,90 (2):807-812
    [189]Irwin J C, Lacombe J, Raman scattering in ZnTe. J. Appl. Phys.,1970,41 (4): 1444-1050
    [190]Walukiewicz W, Acoustic-phonon scattering in modulation-doped heterostructures. Phys. Rev. B,1988,37 (14):8530-8533
    [191]Glavin B A, Kochelap V A, Linnik T L, et al. Generation of high-frequency coherent acoustic phonons in superlattices under hopping transport. I. Linear theory of phonon instability. Phys. Rev. B,2002,65 (8):085303-085323
    [192]Tredicucci A, Gmachl C, Capasso F, et al. A multiwavelength semiconductor laser. Nature,1998,396 (6709):350-353
    [193]Martensson T, Patrik C, Wacaser B, Epitaxial Ⅲ-Ⅴ Nanowires on Silicon. Nano Lett.,2004,4 (10):1987-1990
    [194]Pan A L, Yang H, Liu R B, et al. Color-tunable photoluminescence of alloyed CdSxSe1-x nanobelts. J. Am. Chem. Soc.,2005,127 (45):15692-15693
    [195]Kuykendall T, Ulrich P, Aloni S, et al. Complete composition tunability of InGaN nanowires using a combinatorial approach. Nat. Mater.,2007,6 (12): 951-956
    [196]Shan C X, Liu Z, Ng C M, et al. ZnxCd1-xSe alloy nanowires covering the entire compositional range grown by metalorganic chemical vapor deposition. Appl. Phys. Lett.,2005,87 (3):033108-033110
    [197]Hill R, Energy-gap variations in semiconductor alloys. J. Phys. C:Solid State Phys.,1974,7 (3):521-526
    [198]Fang X S, Zhang L D, Controlled growth of one-dimensional oxide nanomaterials. J. Mater. Sci. Technol.,2006,22 (6):721-736
    [199]Mathur S, Barth S, Shen H, et al. Size-dependent photoconductance in SnO2 nanowires. Small,2005,1 (7):713-717
    [200]Zhang Y, Kolmakov A, Chretien S, et al. Control of catalytic reactions at the surface of a metal oxide nanowire by manipulating electron density inside it. Nano Lett.,2004,4 (3):403-407
    [201]Sirbuly D J, Tao A, Yang P D, Multifunctional nanowire evanescent wave optical sensors. Adv. Mater.,2007,19 (1):61-66
    [202]Maestre D, Cremades A, Piqueras J, Growth and luminescence properties of micro-and nanotubes in sintered tin oxide. J. Appl. Phys.,2005,97 (4): 044316-044319
    [203]Faglia G, Baratto C, Sberveglieri G, et al. Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Appl. Phys. Lett.,2005,86 (1):011923-011925
    [204]Agekyan V T, Spectroscopic properties of semiconductor crystals with direct forbidden energy gap. Phys. Status Solidi A,1977,43 (1):11-42
    [205]Kihc C, Zunger A, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett.,2002,88 (9):095501-095504
    [206]Porto S P S, Fleury P A, Damen T C, Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev.,1967,154 (2):522-526
    [207]Ursaki V V, Tiginyanu I M, Zalamai V V, et al. Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers. Phys. Rev. B,2004,70 (15):155204-155211
    [208]Katiyar R S, Dawson P, Hargreave M M, et al. Dynamics of the rutile structure 111. Lattice dynamics, infrared and Raman spectra of SnO2. J. Phys:Condens. Matter 1971,4:2421-2431
    [209]Dieeguez A, Romano-Rodr(?)guez A, VilaaA, et al. The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys.,2001,90 (3):1550-1557
    [210]Wang X D, Summers C J, Wang Z L, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett.,2004,4 (3):423-426
    [211]Wang Z L, Nnanostructures of zinc oxide. Materials today,2004,7(6):26-33
    [212]Wang Z L, Song J H, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science,2006,312 (5771):242-246
    [213]Wan Q, Wang T H, Zhao J C, Enhanced photocatalytic activity of ZnO nanotetrapods. Appl. Phys. Lett.,2005,87 (8):083105-083107
    [214]Li H X, Xia M X, Dai G Z, et al. Growth of oriented zinc oxide nanowire array into novel hierarchical structures in aqueous solutions. J. Phys. Chem. C,2008, 112(45):17546-17553
    [215]Gao P X, Wang Z L, Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process. J. Phys. Chem. B,2004,108 (23):7534-7537
    [216]Yan H Q, He R R, Johnson J, et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc.,2003,125 (16):4728-4729
    [217]Pan Z W, Mahurin S M, Dai S, et al. Nanowire array gratings with ZnO Combs, Nano Lett.,2005,5 (4):723-727
    [218]Hong Y J, An S J, Jung H S, et al. Position-controlled selective growth of ZnO nanorods on Si substrates using facet-controlled GaN micropatterns, Adv. Mater.,2007,19 (24):4416-4419
    [219]Greene L E, Law M, Goldberger J, et al. Low-temperature wafer scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed.,2003,42 (26): 3031-3034

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700