过渡金属元素掺杂材料的结构及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属元素被广泛应用于特种合金,半导体,电光源等诸多行业中,一般主要以掺杂的方式应用于生产实践中,以实现不同的功用。以钇掺杂的氧化锆和Fe掺杂的碳纳米管为例子,本文应用第一性原理计算研究了过渡金属元素掺杂材料的结构及其稳定性。
     论文研究掺杂钇原子以及氧空位,对钇稳定的立方氧化锆的结构稳定性的影响规律。发现在掺杂钇原子浓度较高的结构中,钇原子聚集成钇原子链是形成稳定结构所必需的。在沿着钇原子聚集成链的方向,氧空位的迁移势垒远远低于其他方向的迁移势垒,导致氧空位在掺杂结构中的迁移速率呈现各向异性。我们认为利用这种具有各向异性离子迁移速率的稳定结构。可以设计沿某一特定方向有很高离子迁移率的新型器件。
     论文研究了磁性过渡金属Fe掺杂碳纳米管的结构以及稳定性。我们发现当Fe原子吸附在小管径的碳纳米管内壁时,会使得碳纳米管变形,从而破坏碳纳米管的π键,导致吸附原子与碳纳米管之间的相互作用类型改变,以及相关性质的改变。
     我们发现孤立的Fe的原子能稳定的吸附在碳管内壁。而Fe原子链不能稳定的吸附在碳管内壁。我们认为,在与碳纳米管内壁相互作用时,磁性过渡金属原子d壳层中自旋向上的d电子向自旋向下的d轨道转移,导致了孤立Fe原子和Fe原子链在碳纳米管内壁不同的吸附性质。我们的计算结果很好的解释了Fe原子链在碳纳米管内壁移动时,只受到很小的剪切应力这一实验现象。根据过渡金属元素Fe在碳纳米管管内壁吸附的物理机制,我们解释了磁性过渡金属元素催化碳纳米管生长的物理机理。此外我们认为,利用过渡金属元素Fe在碳纳米管内壁吸附的物理机制,可以设计具有很高电子自旋极化率的新型电子器件。
Transition metal elements have been used in many important fields for different applications, such as alloy steel, high temperature ceramic, semiconductor industry and so on. In this thesis, we have studied the structures and structure stabilities of transition metal atom doped materials, such as yttrium stabilized cubic zirconia and iron doped carbon nanotubes for examples.
     In this thesis, we have studied how the yttrium atoms and oxygen vacancies affect the structure stabilities of yttrium stabilized cubic zirconia. We find that the yttrium atoms assembling and forming yttrium chains are beneficial to stabilize the doped structures of cubic zirconia with high yttrium concentration. When the oxygen atoms diffuse along the directions of yttrium atoms assembling, the diffusion barrier is much lower than that of other directions. Thus, the diffusion barrier of oxygen atoms in this structure is anisotropy. We suggest that new devices with high oxygen iron conductivity on a certain direction could be produced by using this structure.
     We have also studied the structure stabilities of iron doped carbon nanotubes. For the adsorption of Fe atoms in the nanotubes, when the diameter of the nanotube is small, the nanotube could bedeformed by the adsorbing of atoms. This deformation changes theπbonding of the nanotubes and has significant effect on the interaction between the adsorbed atoms and the nanotube.
     We find that a single Fe atom bonds stably with carbon nanotubes, while Fe chains do not bond stably with carbon nanotubes. We have proposed a physical mechanism and show that the transfer energy of spin-up electrons in a half-filled d orbital to the spin-down electrons in another half-filled d orbital in Fe atoms determines the ability of the bonding of single Fe atoms and Fe chains with carbon nanotubes. The results can explain the experiment that Fe nanowires are easy to move inside the nanotubes. Our results also have important implication to the catalysis mechanism of Fe clusters in the growth of carbon nanotubes. Moreover, the electron transfer enhances the spin polarization of the Fe chains near the Fermi level, which has potential application to the high spin polarization nano-devices.
引文
[1] A. H. Heuer, L. W. Hobbs. (Eds.). Science and Technology of ZirconiaII, in: Advances in Ceramics, vol. 12. The American Ceramic Society,Westerville, OH, 1984.
    [2] A. I. Kingon, J. P. Maria, and S. K. Streiffer. Alternative dielectrics to silicon dioxide for memory and logic deviced. Nature, 2000, 406: 1032-1038.
    [3] A. Dittmar, H. Kosslick, and D. Herein. Microwave plasma assisted preparation of disperse chromium oxide supported catalysts influence of the microwave plasma treatment on the properties of the supports. Catal. Today, 2004, 89: 169-176.
    [4] V.M. Orera, R.I. Merino, Y. Chen, R. Cases, and P.J. Alonso. Intrinsic electron and hole defects in stabilized zirconia single crystals. Phys. Rev. B, 1990, 42: 9782-9789.
    [5] N. Mommer, T. Lee, J. A. Gardner, W. E. Evenson. Oxygen vacancy trapping in tetragonal ZrO2 studied by In–111/Cd perturbed angular correlation. Phys. Rev. B, 2000, 61: 162-167.
    [6] S. Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58.
    [7] S. Iijima, and T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603-605.
    [8] F. López-Urías, E. Mu?oz-Sandoval, M. Reyes-Reyes, A. H. Romero, M. Terrones, and J. L. Morán-López. Creation of helical vortices during magnetization of aligned carbon nanotubes filled with Fe: Theory and experiment. Phys. Rev. Lett., 2005, 94: 216102 (4 pages).
    [9] Y. Yagi, T. M. Briere1, M. H. F. Sluiter, V. Kumar, A. A. Farajian, and Y. Kawazoe. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study. Phys. Rev. B, 2004, 69: 075414-075422.
    [10] E. Durgun, S. Dag, V. M. K. Bagci, O. Gulseren, T. Yildirim, and S. Ciraci. Systematic study of adsorption of single atoms on a carbon nanotube. Phys. Rev. B, 2003, 67: 201401-201404.
    [11] C.Y. Yam, C. C. Ma, X. J. Wang, and G. H. Chen. Electronic structure and charge distribution of potassium-iodide-intercalated single-walled carbon nanotubes. Appl. Phys. Lett., 2004, 85: 4484-4486.
    [12] E. Durgun, and S. Ciraci. Spin-dependent electronic structure of transition-metal atomic chains adsorbed on single-wall carbon nanotubes. Phys. Rev. B, 2006, 74: 125404-125411.
    [13] J. D. McCullough, and K. N. Trueblood. The crystal structure of monoclinic ZrO2. Acta Cryst, 1959, 12: 507-511.
    [14] D. K. Smith, and H. W. Newkirk. The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Cryst, 1965, 18: 983-991.
    [15] G. Teufer. The crystal structure of tetragonal ZrO2. Acta Cryst, 1962, 15: 1187-1188.
    [16] D. K. Smith, and C. F. Cline. Verification of existence of cubic zirconia at high temperature. J. Amer. Chem. Soc., 1962, 45: 249-250.
    [17] E. H. Kisi, and C.J. Howard. Crystal structures of zirconia phases and their inter-relation. Key Eng. Mater, 1998, 153–154: 1–36.
    [18] P. Li, I. W. Chen, and J. E. Penner-Han. X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. Phys. Rev. B, 1993, 48: 10063-10073.
    [19] R. C. Garvie, R. H. Hanninck, and R. T. Pascoe. Ceramic steel?. Nature (London), 1975, 258: 703–704.
    [20] R. M. McMeeking, and A. G. Evans. Mechanics of transformation-toughening in brittle materials. J. Am. Ceram. Soc., 1982, 65: 242–246.
    [21] P. Li, I. W. Chen, and J. E. Penner-Hahn. Effect of dopants on zirconia stabilization—an X-ray absorption study: I. Trivalent dopants. J. Am. Ceram. Soc., 1994, 77: 118–128.
    [22] B. D. Kernan, A. He, and A. H. Heuer. Microstructural evolution and microhardness in zirconia-based EB-PVD thermal barrier coatings. J. Am. Ceram. Soc., 2003, 86: 959-968.
    [23] C. Wagner. Uber den mechanismus der elektrischen stromleitung im nernststift. naturwissenschaften, 1943, 31: 65–68.
    [24] K. Kiukkola, and C. Wagner. Measurements on galvanic cells involving solid electrolytes. J. Electrochem. Soc., 1957, 104: 79–87.
    [25] W. J. Fleming. Physical principles governing the nonideal behaviour of the zirconia oxygen sensor. J. Electrochem. Soc., 1977, 124: 21-29.
    [26] A. Eichler, and G. Kresse. First-principles calculations for the surface termination of pure and yttria-doped zirconia surfaces. Phys. Rev. B, 2004, 69: 045402-045418.
    [27] R. Ben-Michael, and D. S. Tannhauser. J. Genossar, ESR centers in reduced stabilized zirconia. Phys. Rev. B, 1991, 43: 7395-7404.
    [28] V. R. PaiVernecker, A. N. Patelin, F. J. Crowne, and D. C. Nagle. Color centerinduced band-gap shift in yttria-stabilized zirconia. Phys. Rev. B, 1989, 40: 8555-8557.
    [29] R. I. Merino, V. M. Orera, E. E. Lomonoya, and S. K. Batygov. Paramagnetic electron traps in reduced stabilized zirconia. Phys. Rev. B, 1995, 52: 6150-6153.
    [30] C. B. Azzoni, and A. Paleari. Effects of yttria concentration on the EPR signal in X-Ray-irradiated yttria-stabilized zirconia. Phys. Rev. B, 1989, 40: 9333-9335.
    [31] J. M. Constantini, F. Beuneu, D. Gourier, C. Trautmanm, G. Calas, and M. Toulemonde. Colour-centre production in yttria-stabilized zirconia by swift charged particle irradiation. J. Phys.: Condens. Matter, 2004, 16: 3957-3971.
    [32] V. S. Stubican, J. R. Hellmann, and S. P. Ray. Defects and ordering in zirconia crystalline solutions. Mater. Sci. Monogr., 1982, 10: 257-261.
    [33] C. Pascual, and P. Duran. Subsolidus Phase equilibria and ordering in the system ZrO2-Y2O3. J. Am. Ceram. Soc., 1983, 66: 23-27.
    [34] A. Predith, G. Ceder, C. Wolverton, K. Persson, and T. Mueller. Ab initio prediction of ordered ground-state structures in ZrO2-Y2O3. Phys. Rev. B, 2008, 77: 144104-144110.
    [35] K. Kawata, H. Maekawa, T. Nemoto, and T. Yamamura. Local structure analysis of YSZ by Y-89 MAS-NMR. Solid State Ionics, 2006, 177: 1687–1690.
    [36] J. P. Goff, W. Hayes, S. Hull, M. T. Hutchings, and K. N. Clausen. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B, 1999, 59: 14202-14219.
    [37] A. Bogicevic, C. Wolverton, G. M. Crosbie, and E. B. Stechel. Defect ordering in aliovalently doped cubic zirconia from first principles. Phys. Rev. B, 2001, 64: 014106-014119.
    [38] A. Bogicevic, and C. Wolverton. Nature and strength of defect interactions in cubic stabilized zirconia. Phys. Rev. B, 2003, 67: 024106-024118.
    [39] D. M. Ramo, and A. L. Shluger. Structure and spectroscopic properties of oxygen divacancy in yttrium-stabilized zirconia. Journal of Physics: Conference Series, 2008, 117: 012022-012029.
    [40] F. Pietrucci, M. Bemasconi, A. Laio, and M. Parrinello. Vacancy-vacancy interaction and oxygen diffusion in stabilized cubic ZrO2 from first principles. Phys. Rev. B, 2008, 78: 094301-094307.
    [41] G. Stapper, M. Bernasconi, N. Nicoloso, and M. Parrinello. Ab initio study of structural and electronic properties of yttria-stabilized cubic zirconia. Phys. Rev. B, 1999, 59: 797-810.
    [42] P. Jain, H. J. Avila-Paredes, C. Gapuz, S. Sen, and S. Kim. High-Resolution 89Y and 45Sc NMR Spectroscopic Study of short-range structural order in nanocrystalline Y- and Sc-doped CeO2 and ZrO2. J. Phys. Chem. C, 2009, 113: 6553–6560.
    [43] J. T. S. Irvine, A. J. Feighery, D. P. Fagg, and S. Garca-Martn. Structural studies on the optimisation of fast oxide ion transport. Solid State Ionics, 2000, 136–137: 879–885.
    [44] R. Pornprasertsuka, P. Ramanarayananb, Charles B. Musgrave, and Fritz B. Prinz. Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles. J. Appl. Phys., 2005, 98: 103513-103520.
    [45] R. Krishnamurthy, Y. G. Yoon, D. J. Srolovitz, and R. Car. Oxygen diffusion in yttria-stabilized zirconia: A new simulation model. J. Am. Ceram. Soc., 2004, 87: 1821–1830.
    [46] E. Durgun, and S. Ciraci. Spin-dependent electronic structure of transition-metal atomic chains adsorbed on single-wall carbon nanotubes. Phys. Rev. B, 2006, 74: 125404-125411.
    [47] R. R. Meyer, et al. Discrete Atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science, 2000, 289: 1324-1326.
    [48] S. Dag and S. Ciraci. Coverage and strain dependent magnetization of titanium coated carbon nanotubes. Phys. Rev. B, 2005, 71: 165414-165419.
    [49] J. Zhao, A. Buldum, J. Han, and J. P. Lu. First principles study of Li intercalated carbon nanotube ropes. Phys. Rev. Lett. 2000, 85: 1706 (4 pages).
    [50] J. Lee, H. Kim, S. J. Kahng, G. Kim, Y. W. Son, J. Ihm, H. Kato, Z. W. Wang, T. Okazaki, H. Shinohara, and Y. Kuk. Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes. Nature, 2002, 415: 1005-1008.
    [51] J. M. Simmons1, I. In, V. E. Campbell, T. J. Mark, F. Léonard, P. Gopalan, and M. A. Eriksson. Optically modulated conduction in chromophore functionalized single wall carbon nanotubes. Phys. Rev. Lett. , 2007, 98: 086802 (4 pages).
    [52] A. Bachtold, et. al. Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. Appl. Phys. Lett., 1998, 73: 274-276.
    [53] A. N. Andriotis,et. al. Catalytic action of Ni atoms in the formation of carbon nanotubes: A molecular dynamics study. Appl. Phys. Lett., 2000, 76: 3890-3892.
    [54] G. A. Prinz. Magnetoelectronics. Science, 1998, 282 (5394): 1660-1663.
    [55] K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science, 2004, 306: 1362-1364.
    [56] P. M. Ajayan, S. Iijima, and T. Ichihashi. Electron-energy-loss spectroscopy of carbon nanometer-size tubes. Phys. Rev. B, 1993, 47: 6859-6862.
    [57] D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano. Lett., 2006, 6: 2642-2645.
    [58] N. Hamada, S. Sawada, and A. Oshiyama. New one-dimensional conductors: Graphitic microtubules. Phys. Rev. Lett. , 1992, 68: 1579 (4 pages).
    [59] J. W. G. Wildoer, L. C. Venema, and A. G. Rinzler. Electronic structure of atomically resolved carbon nanotubes. Nature, 1998, 391: 59-62.
    [60] Y. Yagi, et. al. Stable geometries and magnetic properties of single-walled carbon nanotubes doped with 3d transition metals: A first-principles study. Phys. Rev. B, 2004, 69: 075414-075422.
    [61] E. Durgun, S. Dag, V. M. K. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci. Systematic study of adsorption of single atoms on a carbon nanotube. Phys. Rev. B, 2003, 67: 201401-201404.
    [62] S. B. Fagana, R. Motaa, A. J. R. da Silvab, and A. Fazzio. Ab initio study of an iron atom interacting with single-wall carbon nanotubes. Phys. Rev. B, 2003, 67: 205414-205418.
    [63] S. B. Fagana, R. Motaa, A. J. R. da Silvab, and A. Fazzio. Fe and Mn atoms interacting with carbon nanotubes. Phys. B, 2003, 340-342: 982-985.
    [64] S. B. Fagana, R. Motaa, A. J. R. da Silvab, and A. Fazzio. Electronic and magnetic properties of iron chains on carbon nanotubes. Microelectronics Journal, 2003, 34: 481-484.
    [65] N. Grobert, et. al. Enhanced magnetic coercivities in Fe nanowires. Appl. Phys. Lett., 1999, 75: 3363-3364.
    [66] S. Karmakar, S. M. Sharma, P. V. Teredesai, and A. K. Sood. Pressure-induced phase transitions in iron-filled carbon nanotubes: X-ray diffraction studies. Phys. Rev. B, 2004, 69: 165414-165418.
    [67] A. Leonhardt, et. al. Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene. J. Appl. Phys, 2005, 98: 074315-074319.
    [68] Y. J. Kang, J. Choi, C.Y. Moon, and K. J. Chang. Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms. Phys. Rev. B, 2005, 71: 115441-115447.
    [69] M. Weissmann, G. García, M. Kiwi, R. Ramírez, and C.-C. Fu. Theoretical study of iron-filled carbon nanotubes. Phys. Rev. B, 2006, 73: 125435-125442.
    [70] K. Svensson, H. Olin, and E. Olsson. Nanopipettes for metal transport. Phys. Rev. Lett. 2004, 93: 145901 (4 pages).
    [71] X. Yang, and J. Ni. High-coverage stable structures of potassium adsorbed on single-walled carbon nanotubes. Phys. Rev. B, 2004, 69: 125419-125422.
    [72] D. H. Chi,et. al. Electronic structures of Pt clusters adsorbed on (5, 5) single wall carbon nanotube. Chemical Physics Letters, 2006, 432: 213–217.
    [73] Y. Zhang, and H. Dai. Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett., 2000, 77: 3015-3017.
    [74] C. Yang, J. Zhao, and J. P. Lu. Magnetism of transition-metal/carbon-nanotube hybrid structures. Phys. Rev. Lett.,2003, 90: 257203 (4 pages).
    [75] C. Yang, J. Zhao, and J. P. Lu. Complete spin-polarization for a carbon nanotube with an adsorbed atomic chain of transition metal. Nano Letters, 2004, 4: 561-563.
    [76] R. J. Soulen Jr,et. al. Measuring the spin polarization of a metal with a superconducting point contact. Science, 1998, 282: 85-88.
    [77] K. Tsukagosh, B. W. Alphenaar and H. Ago. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature, 1999, 401: 572-574.
    [78] M. Born, and R. Oppenheimer, Ann. Phys., 1927, 84: 457-484.
    [79] P. Hohenberg, and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 1964, 136: B864-B871.
    [80] W. Kohn, and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1964, 140: A1133-A1138.
    [81] R. Car, and M. Parrinello. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 1985, 55: 2471 (4 pages).
    [82] D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41: 7892-7895.
    [83] P. E. Bl?chl. Projector augmented-wave method. Phys. Rev. B,1994, 50: 17953-17979.
    [84] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 1992, 64: 1045-1097.
    [85] R. O. Jones, and O. Gunnarsson. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 1989, 61: 689-746.
    [86] J. P. Perdew, J. A. Chevary. S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46: 6671-6687.
    [87] J. Perdew, and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1922, 45: 13244-13249.
    [88] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38: 3098-3100.
    [89] C. Lee, W. Yang, and R. G. Parr. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37: 785-789.
    [90] J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. , 1996, 77: 3865 (4 pages).
    [91] W. C. Topp, and J. J. Hopfield. Chemically motivated pseudopotential for sodium. Phys. Rev. B, 1973, 7: 1295-1303.
    [92] L. Kleinman, and D. M. Bylander. Efficacious form for model pseudopotentials. Phys. Rev. Lett. , 1992, 48: 1425 (4 pages).
    [93] D. R. Hamann, M. Schluter and C. Chiang. Norm-conserving pseudopotentials. Phys. Rev. Lett. , 1979, 43: 1494 (4 pages).
    [94] G. Kresse, and D. Joubert. From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B, 1999, 59: 1758-1775.
    [95] D. M. Wood, and A. Zunger. A new method for diagonalising large matrices. J. Phys. A, 1995, 18: 1343-1345.
    [96] P. Pulay. Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett., 1980, 73: 393-398.
    [97] H. J. Monkhorst, and J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13: 5188-5192.
    [98] P. E. Bl?chl, O. Jepsen, and O. K. Andersen. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B, 1994, 49: 16223-16233.
    [99] M. Methfessel, and A. T. Paxton. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 1989, 40: 3616-3621.
    [100] R. P. Feynman. Forces in molecules. Phys. Rev., 1939, 56: 340-343.
    [101] G. Kresse, and J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47: 558-561.
    [102] G. Kresse, and J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49: 14251-14269.
    [103] G. Kresse, and J. Furthmuller. Massively parallel linear-scaling algorithm in an ab initiolocal-orbital total-energy method. Comput. Mater. Sci., 1996, 6: 15-50.
    [104] G. Kresse, and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54: 11169-11186.
    [105] D. M. Duffy, and J. A. Blackman. Magnetism of 3d transition-metal adatoms and dimers on graphite. Phys. Rev. B, 1998, 58: 7443-7449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700