泡沫金属负载纳米TiO_2的制备、表征及其光催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光催化技术是一项环境友好的技术,在环境净化领域,特别是在治理室内空气污染领域的应用前景诱人。然而,由于纳米TiO_2颗粒细微,在气相光催化过程中易于损失,难以回收,不利于催化剂的再生和再利用,给实际应用带来了一定困难。制备负载型纳米TiO_2光催化剂,既可以解决催化剂分离回收的难题,还可以克服催化剂颗粒易团聚和稳定性差的缺点,也是应用活性组分和载体的各种功能组合来设计催化反应器的理想途径。
     载体的选择直接影响催化剂的活性。常用的光催化剂载体如玻璃球、玻璃纤维、活性炭、沸石、多孔陶瓷和硅胶等等,均存在一定的局限性,而泡沫金属材料作为光催化剂的载体具有热稳定性好和机械强度高等优点,它能够分散负载组分并赋予其较好的稳定性,对光能具有良好的利用率,尤其是其均匀的开孔结构具有优良的流体力学性能,作为光催化剂的载体应用于气相光催化领域有非常显著的优势。光催化剂的负载虽然可以解决回收等一系列技术问题,但是也不可避免地引起了纳米光催化剂比表面积的降低,从而降低光催化剂的活性。因此必须通过载体改性和优化负载工艺来提高载体和催化剂的比表面积,增大负载光催化剂活性点的数量,提高光催化活性。用传统方法在高温条件下制备TiO_2,不仅能耗高、光催化剂的比表面积小,而且对载体的影响大。如果能在低温条件下制备出晶相较好、活性高的TiO_2,就可以解决一系列的实用技术问题。此外,由于TiO_2的量子效率偏低且只能响应紫外光,限制了TiO_2的实际应用,可以通过对TiO_2改性提高其光催化效率和实现对可见光的响应,更充分地利用光能。
     本文利用泡沫镍作为载体,通过对载体进行改性和优化负载工艺,制备高活性的泡沫镍基纳米TiO_2光催化剂;通过负载具有大比表面积的中孔材料中间层,增大泡沫镍载体的比表面积,提高复合光催化剂的光催化活性和稳定性;通过低温条件制备比表面积大、光催化活性好的纳米TiO_2,减少对载体的影响;利用表面贵金属Pt沉积和过渡金属Fe3+离子掺杂等方法提高光催化剂的活性和扩展光催化剂的光谱吸收范围,提高光能的利用率。同时,结合XRD、BET、TEM、EPR、XPS和SEM等测试手段,对各种泡沫镍基复合光催化剂的负载方法和光催化性能进行了研究,对载体特性对纳米TiO_2光催化活性影响和Pt沉积与Fe3+掺杂提高TiO_2光催化活性的机理进行了讨论,对某些实用化的关键技术也进行了探讨。论文的研究内容和创新性工作包括:
     1.采用溶胶-凝胶法制备泡沫镍基TiO_2光催化剂,研究了泡沫镍载体的预氧化处理和TiO_2的负载次数对光催化剂结构和性能的影响。研究表明:对泡沫镍进行预氧化处理,其比表面积在400 oC到550 oC范围内随着预氧化温度的升高而增大,泡沫镍载体经550 oC预氧化处理后,比表面积较原始泡沫镍约增大一倍,因此可以增加TiO_2的负载量。预氧化处理在载体表面形成的氧化镍可以有效地阻止光生电子向金属载体的迁移,使光催化活性得到提高。经预氧化处理的泡沫镍负载TiO_2的光催化活性比未经预氧化处理的泡沫镍负载TiO_2提高近90 %。在泡沫镍上重复负载TiO_2,增加了TiO_2的负载量,但并不能持续提高光催化剂的比表面积,在重复负载2次后综合效果最佳,光催化活性较负载1次时提高近13 %。在泡沫镍上负载的TiO_2光催化剂由于泡沫镍载体中镍离子在高温加热时的扩散形成镍掺杂的TiO_2,吸收范围扩展到可见光区(λ< 520 nm),在可见光下具有较好的光催化活性。
     2.采用溶胶-凝胶法在泡沫镍上负载中孔二氧化硅、三氧化二铝以及硅酸铝等中间层,制备泡沫镍基TiO_2/SiO2、TiO_2/Al2O3和TiO_2/Al2O3-SiO2等复合光催化剂。负载中间层后泡沫镍载体的比表面积急剧增大,最高可达167.2 m2 g-1,复合光催化剂的比表面积也可达到近30 m2 g-1,是未负载中间层的泡沫镍基TiO_2光催化剂比表面积的30多倍,提高了负载光催化剂活性点数量,而且中间层可以有效地阻止光生电子向金属载体的迁移,使泡沫镍基复合光催化剂的催化活性和稳定性显著提高。提高复合光催化剂对乙醛的预吸附,可以在催化剂表面附近形成污染物浓度相对较高的环境,有利于光催化反应的进行,但是增大对污染物的预吸附并不是提高光催化剂活性的必要条件,复合光催化剂比表面积的增大才是决定因素。研究结果表明:泡沫镍基复合光催化剂对乙醛的降解率由未负载中间层时照射360 min降解率为90 %提高到照射60 min可降解近100 %;光催化剂的稳定性也由未负载中间层时连续5次试验后光催化效率降低50 %以上,提高到连续10次试验后光催化效率只降低近15 %。
     3.用溶胶-凝胶法低温制备金红石相和锐钛矿相的纳米TiO_2和相应的泡沫镍基TiO_2光催化剂。低温制备法在室温下干燥即可形成金红石或锐钛矿相TiO_2的晶相,在相对较低的温度下加热可形成晶相较好的锐钛矿相纳米TiO_2。研究结果表明:低温制备的泡沫镍基锐钛矿相TiO_2光催化剂比金红石相TiO_2光催化剂的光催化活性高。在制备温度同为240 oC时,金红石相TiO_2光催化剂在紫外光照射420 min后乙醛的降解率只能达到40 %;而锐钛矿相TiO_2光催化剂在紫外光照射120 min后乙醛的降解率可达到近100 %。
     4.用光催化沉积法和热还原法在泡沫镍基TiO_2光催化剂上沉积贵金属Pt,制备泡沫镍基Pt/TiO_2光催化剂。研究表明:沉积Pt以后光催化活性显著提高,降解乙醛的速率比TiO_2光催化剂至少提高3倍以上。在本试验中Pt的沉积量为0.3 wt %时,Pt/TiO_2的光催化活性达到最高值;超过0.3 wt %以后,其光催化活性反而略有下降。由于Pt的沉积在Pt-TiO_2界面上形成了Schottky势垒,为阻止光生电子-空穴的复合提供了有效的电子捕获阱,减小了光生电子和空穴的复合率,从而提高了光催化剂的光催化活性;但是当沉积过量Pt时,金属反而有可能转变为电子-空穴对的复合中心,增大电子空穴的复合几率;同时金属对紫外光的屏蔽作用会增加,从而使得光催化剂产生的电子和空穴减少,降低了光催化活性。所以Pt在TiO_2表面的负载量应该控制在一个合适的范围内才能有效地提高催化剂活性。
     5.用溶胶-凝胶法制备过渡金属Fe3+掺杂的泡沫镍基Fe/TiO_2光催化剂,研究表明:掺杂Fe3+后TiO_2的吸收边随着掺杂Fe3+浓度的升高而逐渐红移,最高可达到近600 nm;锐钛矿TiO_2晶相以及泡沫镍基Fe/TiO_2光催化剂对乙醛气体的吸附并未由于掺杂而发生明显变化;在本实验中,随着掺铁量的增加Fe/TiO_2的光催化活性增加,Fe3+掺杂量为0.3 wt %时对乙醛的降解率最高,超过0.3 wt %以后其光催化活性反而略有下降,显示Fe3+的掺杂存在最佳的浓度。由于掺杂的Fe3+在TiO_2晶格中能够起到浅势捕获阱的作用,通过Fe3+的氧化和还原同时俘获光生电子和空穴,通过降低光生电子-空穴对的复合几率而提高了光催化效率;而当Fe3+的掺杂量继续增加后,电子和空穴陷阱点距离缩短,电子或空穴由体相向表相的迁移过程中遇到了更多的捕获阱,此时Fe3+反而成为间接的光生电子-空穴的复合中心,降低了光催化活性。
     本研究制备的泡沫镍基TiO_2光催化剂通过对载体预处理、重复负载TiO_2、负载中孔中间层和催化剂改性等方法,获得了较高的光催化活性。所开发的一系列泡沫镍基TiO_2光催化剂部分产品已经市场化,在上海博物馆青铜器库房中也获得成功的应用,取得了良好的社会和经济效益。
Photocatalysis, as an environmentally friendly technology, has attracted much attention and showed potential application in environmental protection, especially in the purification of indoor air pollution. However, the nano-size TiO_2 powder is easy to lose in gas-phase photocatalytic reaction and difficult to be collected after the reaction, which disturbs the recycle of photocatalyst and hampers the practical applications of nano-size TiO_2 powder. The immobilization of nano-size TiO_2 overcomes the difficulties in separation and recycle of photocatalyst and restrains aggregation and deactivation of the catalyst particles. The immobilized nano-size TiO_2 is an ideal material to design photocatalytic reactor by combining the functions of the photocatalyst and the support.
     The supports affect the activity of photocatalyst directly. The frequently-used supports for photocatalyst, such as glass ball, fiberglass, activated carbon, zeolite, ceramic foam, silica gel, etc., all have their limits. However, when foam metal is used as photocatalyst substrate, it has many advantages, such as good thermal stability and high mechanical strength. It can load the photocatalyst with stable activity dispersedly and make efficient utilization of photo energy. Especially, when foam metal is used as photocatalyst substrate, the uniform open-pore structure provides it excellent gas-dynamic properties to show significant advantages in gas-phase photocatalytic reactions.
     The immobilization technology resolves many problems such as difficulties in photocatalyst recycle, but it inevitably results in decrease of specific surface area and activity of nano-size photocatalyst. In order to improve the specific surface area of substrate and photocatalyst, increase the active sites number of loaded photocatalyst and enhance the photocatalytic activity, it is necessary to modify substrate and optimize loading methodology. The traditional high-temperature preparation method of TiO_2 needs high energy supply and has much influence on substrate. The specific surface area of photocatalyst is also decreased by high-temperature calcination. If TiO_2 with good crystallinity and high activity can be synthesized at low temperature, many technical problems in practical application will be solved. Moreover, the low quantum efficiency and limited absorption in UV light region of TiO_2 restrain its application in practice. Modification of TiO_2 is effective method to improve the photocatalytic activity and realize absorption of visible light, hence utilize the photo energy more efficiently. In this study, foam nickel was chosen as supports for TiO_2 photocatalysts. TiO_2 films loaded on foam nickel substrate with high photocatalytic activities were prepared by modifying foam nickel substrate and optimizing loading methodology. Coating mesoporous transition layers with large specific surface area contributed to improve the specific surface area of substrate and the photocatalytic activities and stabilities of composite photocatalysts. TiO_2 with large specific surface area and high photocatalytic activity was synthesized at low temperature, which reduced the influence of heating treatment on substrate. The enhancement of photocatalytic activities, the expansion of absorption to visible light region and the improvement of solar energy utilization on TiO_2 films have been successfully achieved through depositing noble metal Pt nano-particles on TiO_2 surface and doping transition metal ion Fe3+. The prepared samples have been characterized using analytical techniques of XRD, BET, TEM, EPR, XPS, SEM, etc. The loading techniques and photocatalytic activities of the composite photocatalysts loaded on foam nickel substrate have been investigated. The mechanism of the influence of substrate properties on photocatalytic activity of nano-size TiO_2 and the enhancement of TiO_2 photocatalytic activity by Pt loading and Fe3+ doping was discussed. Some pivotal technologies for practical applications were also discussed. The main content and innovation of this work are as follows:
     1. TiO_2 photocatalysts loaded on foam nickel substrate were prepared by sol-gel processes. The influence of pre-oxidation treatment of foam nickel substrate and number of TiO_2 coating cycles on the structure and activity of photocatalyst was investigated. The experimental results show that, after pre-oxidation treatment, the specific surface area of foam nickel increases with increasing treating temperature from 400 oC to 550 oC. When the foam nickel substrate is pre-oxidized at 550 oC, its specific surface area is enlarged by
     2 times comparing with the original foam nickel, so the amount of TiO_2 loading is improved. The nickel oxide formed on substrate surface holds back photo-generated electrons from transferring to the metal substrate, thus enhances the photocatalytic activity. The photocatalytic activity of TiO_2 loaded on pre-oxidized foam nickel is 90 % higher than that of TiO_2 loaded on foam nickel without pre-oxidation treatment. Repeated coating improves the amount of TiO_2 loaded on foam nickel, but the photocatalytic activity of TiO_2 cannot increase continuously by repeated coating. The optimum coating cycles for TiO_2 films is two. The photocatalytic activity of TiO_2 films coated for 2 cycles is about 13 % higher than that of TiO_2 films coated for 1 cycle. The Ni2+ ion transfers from the foam nickel substrate to TiO_2 films during the high-temperature treatment and results in the formation of nickel-doped TiO_2 films on foam nickel substrate. The absorption edges of nickel-doped TiO_2 films shift from UV region to visible light region (λ< 520 nm). The nickel-doped TiO_2 films display high photocatalytic activity under visible light irradiation.
     2. The TiO_2/SiO2, TiO_2/Al2O3 and TiO_2/Al2O3-SiO2 films as composite photocatalysts were loaded on foam nickel substrates by sol-gel processes. Mesoporous SiO2, Al2O3 and Al2O3-SiO2 films were loaded as transition layers. The specific surface area of substrate increases sharply by loading the transition layers. The maximal specific surface area of the substrates is 167.2 m2 g-1. The specific surface area of the composite photocatalyst is about 30 m2 g-1, which is as more than 30 times as that of TiO_2 films loaded on foam nickel without transition layers. The increment of active sites on loaded photocatalyst and the prevention of photo-generated electrons from transferring to the metal substrate caused by transition layers result in notable enhancement of photocatalytic activity and stability of the composite photocatalysts loaded on foam nickel substrate. Improving the acetaldehyde pre-absorption ability of composite photocatalysts will form an environment of higher pollutant concentration near the photocatalyst surface, and accelerate the photocatalytic reactions. But the improvement of pre-absorption ability of pollutants is not the necessary condition of photocatalytic activity enhancement. The increase of specific surface area is determinant of photocatalytic activity enhancement. The results show that, the degradation ratio of acetaldehyde on TiO_2 films without transition layers is 90 % after 360 min of UV light irradiation, while the degradation ratio of acetaldehyde on composite photocatalysts with transition layers is about 100 % after 60 min of UV light irradiation. After 5 consecutive runs, the photocatalytic activity of TiO_2 films without transition layers reduces by more than 50 %, while the photocatalytic activity of composite photocatalysts with transition layers only reduces by about 15 % after 10 consecutive runs.
     3. The nano-size TiO_2 (anatase and rutile) and TiO_2 (anatase and rutile) films loaded on foam nickel substrate were prepared by sol-gel processes under low temperature. The anatase or rutile TiO_2 crystal is formed by drying at room temperature through low-temperature-preparation method. Nano-size anatase TiO_2 with good crystallinity is obtained by heating at a relatively low temperature. The results show that, the photocatalytic activity of anatase TiO_2 loaded on foam nickel substrate prepared through low-temperature method is higher than that of rutile TiO_2 loaded on foam nickel substrate prepared through low-temperature method. When the preparation temperature is 240 oC, the degradation ratio of acetaldehyde on rutile TiO_2 photocatalyst is 40 % after 420 min of UV light irradiation, while the degradation ratio of acetaldehyde on anatase TiO_2 photocatalyst is nearly 100 % after 120 min of UV light irradiation.
     4. The Pt/TiO_2 photocatalysts were loaded on foam nickel substrate. The noble metal Pt nano-particles were deposited on TiO_2 surface through photodeposition method and heating reduction method. The results show that, the photocatalytic activity is enhanced greatly by Pt deposition, the acetaldehyde degradation rate on Pt/TiO_2 is as more than three times as that of TiO_2. In this study, the highest photocatalytic activity of Pt/TiO_2 is obtained by 0.3 wt % deposition of Pt. When Pt is deposited more than 0.3 wt %, the activity of Pt/TiO_2 decreases slightly. The Schottky barrier on Pt-TiO_2 interface generates from Pt deposition provides active electron trappers to inhibit the recombination of photo-generated electrons and holes. Hence the recombination rate is reduced and the activity of photocatalyst is enhanced. But when deposited on TiO_2 excessively, the Pt probably becomes the recombination sites of photo-generated electrons and holes, and then the recombination rate will increase. At the same time, the over-deposited metal Pt blocks the UV light irradiation and reduces the number of photo-generated electrons and holes on photocatalyst. As a result, the photocatalytic activity is depressed. Therefore, in order to improve the photocatalytic activity of TiO_2 efficiently, the Pt-doping concentration should be controlled in an optimum range.
     5. The Fe/TiO_2 (TiO_2 doped with transition-metal ion, Fe3+) photocatalysts were loaded on foam nickel substrate by sol-gel processes. The results show that, the absorption edge of TiO_2 shifts to longer wavelength gradually with increasing iron doping until reaches the maximum at 600 nm. The gaseous acetaldehyde adsorption ability of anatase TiO_2 and Fe/TiO_2 loaded on foam nickel does not change obviously after iron doping. In the present study, the photocatalytic activity of Fe/TiO_2 is improved with increasing iron-doping amount and the highest degradation rate of acetaldehyde is obtained by 0.3 wt % iron doping. When the iron-doping amount is more than 0.3 wt %, the activity of Fe/TiO_2 decreases slowly, which indicates that there is an optimum concentration for iron doping in TiO_2. The doped ferric ions in crystal lattice of TiO_2 act as capture traps. The redox processes of ferric ions trap the photo-generated electrons and holes simultaneously, so that the recombination of photo-generated electrons and holes is inhibited and the photocatalytic activity is promoted. When the concentration of doped ferric ions is too high, the distance between trapping sites for photo-generated electrons and holes decreases, the photo-generated electrons and holes will meet more trapping sites before they transfer to the surface, thus the doped ferric ions become indirect recombination sites of the photo-generated electrons and holes, the photocatalytic activity is depressed. TiO_2 films loaded on foam nickel substrates with high photocatalytic activities were prepared by pre-treating the substrate, coating TiO_2 films repeatedly, loading mesoporous transition layers and modifying TiO_2. Some of the developed series products of TiO_2 photocatalysts loaded on foam nickel substrates have been supplied on the market. The successful application of our study in the bronze storeroom of Shanghai Museum has also obtained good social and economic benefits.
引文
[1] Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode [J] Nature, 1972, 238: 37-38.
    [2] Carey J. H., Lawrence J., Tosine H. M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspension [J] Bull. Environ. Contam. Toxicol., 1976, 16: 697-701.
    [3] Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO_2 powder [J] Am. Chem. Soc., 1977, 99: 303-308.
    [4] Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J] J. Phys. Chem., 1977, 81: 1484-1489.
    [5] 蔡乃才, 董庆华. 悬浮体系中的半导体光催化及其应用 [J] 化学通报, 1991, 7: 9-12.
    [6] Ollis D. F., Pelizzetti E., Serpone N. Destruction of water contaminants [J] Environ. Sci. Technol., 1991, 25(9): 1523-1529.
    [7] Hoffmann M. R., Martin S. T., Choi W., et al. Environmental applications of semiconductor photocatalysis [J] Chem. Rev., 1995, 95(1): 69-96.
    [8] Wang R., Hashimoto K., Fujishima A., et al. Light induced amphiphilic surfaces [J] Nature, 1997, 388: 431-432.
    [9] Fox M. A., Dulay M. T. Heterogeneous photocatalysis [J] Chem. Rev., 1993, 93: 341-357.
    [10] Marta I. L., Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems [J] Appl. Catal. B: Environ., 1999, 23: 89-114.
    [11] Peller J., Wiest O., Kamat P. V., Synergy of Combining Sonolysis and Photocatalysis in the Degradation and Mineralization of Chlorinated Aromatic Compounds [J] Environ. Sci. Technol., 2003, 37: 1926-11932.
    [12] Rengaraj S., Li X. Z., Enhanced photocatalytic activity of TiO_2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension [J] J. Mol. Catal. A: Chem., 2006, 243: 60-67.
    [13] Rabani J., Yamashita K., Ushida K., et al. Fundamental Reactions in Illuminated Titanium Dioxide Nanocrystallite Layers Studied by Pulsed Laser [J] J. Phys. Chem. B, 1998, 102: 1689-1695.
    [14] Raja P., Bozzi A., Mansilla H., et al. Evidence for superoxide-radical anion, singlet oxygen and OH-radical intervention during the degradation of the lignin model compound (3-methoxy-4-hydroxyphenylmethylcarbinol) [J] J. Photochem. Photobiol. A: Chem., 2005, 169: 271-278.
    [15] Cho M., Chung H., Choi W., et al. Linear correlation between inactivation of E. coli and OH radical concentration in TiO_2 photocatalytic disinfection [J] Water Res., 2004, 38: 1069-1077.
    [16] Coronado J. M., Maira A. J., Martínez A. A., et al. EPR study of the radicals formed upon UVirradiation of ceria-based photocatalysts [J] J. Photochem. Photobiol. A: Chem., 2002, 150: 213-221.
    [17] Antonaraki S., Androulaki E., Dimotikali D., et al. Photolytic degradation of all chlorophenols with polyoxometallates and H2O2 [J] J. Photochem. Photobiol. A: Chem., 2002, 148: 191-197.
    [18] Chhor K., Bocquet J. F., Colbeau J. C., Comparative studies of phenol and salicylic acid photocatalytic degradation: influence of adsorbed oxygen [J] Mater. Chem. Phys., 2004, 86: 123-131.
    [19] Ska B. Z., Grzechulska J., Czuk R. J. K, et al. The pH influence on photocatalytic decomposition of organic dyes over A11 and P25 titanium dioxide [J] Appl. Catal. B: Environ., 2003, 45: 293-300.
    [20] Assabane A., Yahia A. I., Tahiri H., et al. Photocatalytic degradation of polycarboxylic benzoic acids in UV-irradiated aqueous suspensions of titania. Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid) [J] Appl. Catal. B: Environ., 2000, 24: 71-87.
    [21] Carrway E., Hoffman A., Hoffmann M. Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids [J] Environ. Sci. Technol., 1994, 28: 786-793.
    [22] Ishibashi K. I., Fujishima A., Watanabe T., et al. Quantum yields of active oxidative species formed on TiO_2 photocatalyst Photochem [J] J. Photochem. Photobiol. A: Chem., 2000, 134: 139-142.
    [23] Yang J. K., Davis A. P., Photocatalytic Oxidation of Cu (II)-EDTA with Illuminated TiO_2: Kinetics [J] Environ. Sci. Technol., 2000, 34: 3789-3795.
    [24] Elmorsi T. M., Budakowski W. R., Abdelaziz A. S., et al. Photocatalytic Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO_2: A Reaction of Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals [J] Environ. Sci. Technol., 2000, 34: 1018-1022.
    [25] Zhao J., Wu T., Wu K., et al. Photoassisted Degradation of Dye Pollutants. 3. Degradation of the Cationic Dye Rhodamine B in Aqueous Anionic Surfactant/TiO_2 Dispersions under Visible Light Irradiation: Evidence for the Need of Substrate Adsorption on TiO_2 Particles [J] Environ. Sci. Technol., 1998, 32: 2394-2400.
    [26] Wu T., Lin T., Zhao J., et al. TiO_2-Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation [J] Environ. Sci. Technol., 1999, 33: 1379-1387.
    [27] Liu G., Wu T., Zhao J., et al. Photoassisted Degradation of Dye Pollutants. 8. Irreversible Degradation of Alizarin Red under Visible Light Radiation in Air-Equilibrated Aqueous TiO_2 Dispersions [J] Environ. Sci. Technol., 1999, 33: 2081-2087.
    [28] Liu G., Li X., Zhao J., et al. Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO_2 Exposed to Visible Light Radiation [J] Environ. Sci. Technol., 2000, 34:3982-3990.
    [29] Stylidi M., Kondarides D. I., Verykios X. E. Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO_2 suspensions [J] Appl. Catal. B: Environ., 2004, 47: 189-201.
    [30] 张彭义, 余刚, 蒋展鹏. 光活性二氧化钛膜的制备与应用 [J] 环境科学进展, 1998, 6(5): 50-56.
    [31] Arslan I., Balcioglu I. A., Bahnemann D. W. Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO_2-photocatalysts [J] Appl. Catal. B: Environ., 2000, 26: 193-206.
    [32] Babelon P., Dequiedt A. S., Mostéfasba H., et al. SEM and XPS studies of titanium dioxide thin films grown by MOCVD [J] Thin Solid Film, 1998, 322: 63-67.
    [33] 朱永法, 张利, 姚文清等. 溶胶-凝胶法制备薄膜型 TiO_2光催化剂 [J] 催化学报,1999,20(3): 362-364.
    [34] Negishi N., Iyoda T., Hashimoto, K., et al. Preparation of transparent TiO_2 thin film photocatalyst and its photocatalytic activity [J] Chem. Lett., 1995, 7: 841-842.
    [35] 陈士夫, 赵梦月, 陶跃武等. 玻璃纤维负载 TiO_2 光催化降解有机磷农药 [J] 环境科学, 1996, 17(4): 33-35.
    [36] 符小荣, 张校刚, 宋世庚等. TiO_2/Pt/glass 纳米薄膜的制备及对可溶性染料的光电催化降解 [J] 应用化学, 1997, 14(4): 77-79.
    [37] Negishi N., Takeuchi K., Ibusuki T. The surface structure of titanium dioxide thin film photocatalyst [J] Appl. Surf. Sci., 1997, 121/122: 417-420.
    [38] 陈龙庆, 盛闻超, 甘礼华. TiO_2 功能薄膜的制备及影响其光催化活性的因素 [J] 功能材料, 2002, 33(3): 246-249.
    [39] Deki S., Aoi Y., Hiroi O., et al. Titanium (IV) oxide thin films prepared from aqueous solution [J] Chem. Lett., 1996, 23: 433-434.
    [40] Whitesides G. W., Mathias J. P., Seto C. P. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures [J] Science, 1991, 254(5036): 1312-1319.
    [41] Decher G. Fuzzy nano assemblies: toward layered polymeric multicomposites [J] Science, 1997, 277(5330): 1232~1237.
    [42] 郭清萍, 武正簧, 赵君芙等. CVD 法 TiO_2 薄膜的制备条件及光学性质的研究 [J] 太原理工大学学报, 1998, 29(3): 240-243.
    [43] Iler R. K. Multilayers of colloidal particles [J] J. Colloid. Interf. Sci., 1966, 21(6): 569-594.
    [44] Gerischer H., Heller A. The role of oxygen in photooxidation of organic molecules on semiconductor particles [J] J. Phys. Chem., 1991,.95(13): 5261-5267.
    [45] Kesselman J. M., Shreve G. A., Hoffmann M. R., et al. Flux-matching conditions at TiO_2 photoelectrodes: Is interfacial electron transfer to O2 rate-limiting in the TiO_2-catalyzed photochemical degradation of organics [J] J. Phys. Chem., 1994, 98(50): 13385-13395.
    [46] Nicole J. R., Pierre P., Alain F., et al. Study of the effect of deposited platinum particles on the surface charge of titania aqueous suspensions by potentiometry, electrophoresis, and labeled-ion adsorption [J] J. Phys. Chem., 1986, 90(12): 2733-2738.
    [47] Senevirathna M. K. I., Pitigala P. K. D. D. P., Tennakone K. High quantum efficiency Pt/TiO_2 catalyst for sacrificial water reduction [J] Sol. Energy Mater. Sol. Cell., 2006, 90: 2918-2923.
    [48] Park H., Lee J., Choi W. Study of special cases where the enhanced photocatalytic activities of Pt/TiO_2 vanish under low light intensity [J] Catal. Today, 2006, 111: 259-265.
    [49] Teoh W. Y., M?dler L., Beydoun D., et al. Direct (one-step) synthesis of TiO_2 and Pt/TiO_2 nanoparticles for photocatalytic mineralisation of sucrose [J] Chem. Eng. Sci., 2005, 60: 5852-5861.
    [50] Zou J., Chen C., Liu C., et al. Pt nanoparticles on TiO_2 with novel metal–semiconductor interface as highly efficient photocatalyst [J] Mater. Lett., 2005, 59: 3437-3430.
    [51] Sano T., Negishi N., Takeuchi K., et al. Degradation of toluene and acetaldehyde with Pt-loaded TiO_2 catalyst and parabolic trough concentrator [J] Sol. Energy, 2004, 77: 543-552.
    [52] Vorontsov A. V., Dubovitskaya V. P. Selectivity of photocatalytic oxidation of gaseous ethanol over pure and modified TiO_2 [J] J. Catal., 2004, 221: 102-109.
    [53] Sathish M., Viswanathan B. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting [J] Int. J. Hydrogen Energy, 2006, 31: 891-898.
    [54] Belver C., Lópezmu?oz M. J., Coronado J. M., et al. Palladium enhanced resistance to deactivation of titanium dioxide during the photocatalytic oxidation of toluene vapors [J] Appl. Catal. B: Environ., 2003, 46: 497-509.
    [55] Stir M., Nicula R., Burkel E., Pressure–temperature phase diagrams of pure and Ag-doped nanocrystalline TiO_2 photocatalysts [J] J. Eur. Ceram. Soc., 2006, 26: 1547-1553.
    [56] Kim K. D., Han D. N., Lee J. B., et al. Formation and characterization of Ag-deposited TiO_2 nanoparticles by chemical reduction method [J] Sci. Mater., 2006, 54: 143-146.
    [57] Zhang X., Zhou M., Lei L. Preparation of an Ag-TiO_2 photocatalyst coated on activated carbon by MOCVD [J] Mater. Chem. Phys., 2005, 91: 73-79.
    [58] Moonsiri M., Rangsunvigit P., Chavadej S., et al. Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products [J] J. Chem. Eng., 2004, 97: 241-248.
    [59] Kanan S. M., Kanan M. C., Patterson H. H. Photoluminescence spectroscopy as a probe of silver doped zeolites as photocatalysts [J] Curr. Opin. Solid State Mater. Sci., 2003, 7: 443-449.
    [60] Arabatzis I. M., Stergiopoulos T., Andreeva D., et al. Characterization and photocatalytic activity of Au/TiO_2 thin films for azo-dye degradation [J] J. Catal. 2003, 220: 127-135.
    [61] Sasirekha N., Basha S. J. S., Shanthi K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide [J] Appl. Catal. B: Environ., 2006, 62: 169-180.
    [62] Hadjiivanov K., Vasileva E., Kantcheva M., et al. Ir spectroscopy study of silver ions adsorbed on titania (anatase) [J] Mater. Chem. Phys., 1991, 28 (4): 367-377.
    [63] Ileperuma O. A., Tennakone K., Dissanayake W. D. D. P. Photocatalytic behaviour of metal doped titanium dioxide: studies on the photochemical synthesis of ammonia on Mg/TiO_2 catalyst systems [J] Appl. Catal., 1990, 621: 1-5.
    [64] Wang X. H., Li J. G., Kamiyama H., et al. Fe-doped TiO_2 nanopowders by oxidative pyrolysis of organometallic precursors in induction thermal plasma: synthesis and structural characterization [J] Thin Solid Films, 2006, 506-507: 278-282.
    [65] Liu G., Zhang X., Xu Y., et al. The preparation of Zn2+-doped TiO_2 nanoparticles by sol–gel and solid phase reaction methods respectively and their photocatalytic activities [J] Chemosphere, 2005, 59: 1367-1371.
    [66] Pan C., Wu J. C. S., Visible-light response Cr-doped TiO_2?xNx photocatalysts [J] Mater. Chem. Phys., 2006, 100: 102-107.
    [67] Jing D., Zhang Y., Guo L., Study on the synthesis of Ni doped mesoporous TiO_2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution [J] Chem. Phys. Lett., 2005, 415: 74-78.
    [68] Harada M., Sasaki T., Ebina Y., et al. Preparation and characterizations of Fe- or Ni-substituted titania nanosheets as photocatalysts [J] J. Photochem. Photobiol. A: Chem., 2002, 148: 273-276.
    [69] Yamashita H., Harada M., Misaka J., et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts: Fe ion-implanted TiO_2 [J] Catal. Today, 2003, 84: 191-196.
    [70] Chen S., Cao G., Study on the photocatalytic oxidation of NO2– ions using TiO_2 beads as a photocatalyst [J] Desalination, 2006, 194: 127-134.
    [71] Choi W., Termin A., Hoffmann M. R., The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics [J] J. Phys. Chem., 1994, 98: 13669-13679.
    [72] Butler Z. C., Davis A. P., Photocatalyic oxidation in aqueous titanium dioxide suspensions; the Influence of Dissolved Transition Metals [J] J. Photochem. Photobiol. A: Chem., 1993, 70: 273-283.
    [73] Hwang D., Kim H., Jang J., et al. Photocatalytic decomposition of water–methanol solution overmetal-doped layered perovskites under visible light irradiation [J] Catal. Today 2004, 93: 845-850.
    [74] Gratzel M, Russell F. H. Electron paramagnetic resonance studies of doped titanium dioxide colloids [J] J. Phys. Chem., 1990, 94(6): 2566-2572.
    [75] Chatterjee D., Mahata A., Demineralization of organic pollutants on the dye modified TiO_2 semiconductor particulate system using visible light [J] Appl. Catal. B: Environ., 2001, 33: 119-125.
    [76] Ojah R., Dolui S. K., Photopolymerization of methyl methacrylate using dye-sensitized semiconductor based photocatalyst [J] J. Photochem. Photobiol. A: Chem., 2005, 172: 121-125.
    [77] Lammasniemi J., Rakennus K., Effects of annealing on performance of InP solar cells on GaAs substrates [J] Sol. Energy Mater. Sol. Cell., 1993, 30: 301-307.
    [78] Icli S., Demi? S., Dindar B., et al. Photophysical and photochemical properties of a water-soluble perylene diimide derivative [J] J. Photochem. Photobiol. A: Chem., 2000, 136: 15-24.
    [79] Stafford U., Gray K. A., Kamat P. V., Photocatalytic degradation of 4-chlorophenol: The effects of varying TiO_2 concentration and light wavelength [J] J. Catal., 1997, 167: 25-32.
    [80] Stamatis H., Christakopoulos P., Kekos D., et al. Studies on the synthesis of short-chain geranyl esters catalysed by Fusarium oxysporum esterase in organic solvents [J] J. Mol. Catal. B, 1998, 4: 229-236.
    [81] Shiragami T., Matsumoto J., Inoue H., Yasuda M., Antimony porphyrin complexes as visible-light driven photocatalyst [J] J. Photochem. Photobiol. C, 2005, 6: 227-248.
    [82] Uchihara T., Matsumura M., Ono J., et al. Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide [J] J. Phys. Chem., 1990, 94: 415-418.
    [83] Vrachmou E., Gratzel M., McEvoy A. J. Efficient visible light photoresponse following surface complexation of titanium dioxide with transition metal cyanides [J] J. Electroanal. Chem., 1989, 258: 193-205.
    [84] Nozik A. J., Micic O. I., Curtis C. J. Synthesis and characterization of InP quantum dots [J] J. Phys. Chem., 1994, 98: 4966-4969.
    [85] Bessekhouad Y., Chaoui N., Trzpit M., et al. UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO_2 semiconductors suspension [J] J. Photochem. Photobiol. A: Chem., 2006, 183: 218-224.
    [86] Jang J., Li W., Oh S. H., et al. Fabrication of CdS/TiO_2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light [J] Chem. Phys. Lett., 2006, 425: 278-282.
    [87] Shi D., Feng Y., Zhong S., Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS–TiO_2/SiO2 catalyst [J] Catal. Today, 2004, 98: 505-509.
    [88] Kumar A., Jain A. K., Photophysics and photocatalytic properties of Ag+-activated sandwich Q-CdS–TiO_2 [J] J. Photochem. Photobiol. A: Chem., 2003, 156: 207-218.
    [89] Hirai T., Suzuki K., Komasawa I., Preparation and Photocatalytic Properties of Composite CdS Nanoparticles–Titanium Dioxide Particles [J] J. Colloid. Interf. Sci., 2001, 244: 262-265.
    [90] Kumar A., Jain A. K., Photophysics and photochemistry of colloidal CdS–TiO_2 coupled semiconductors-photocatalytic oxidation of indole [J] J. Mol. Catal. A: Chem., 2001, 165: 265-273.
    [91] Habibi M. H., Vosooghian H., Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxide suspension [J] J. Photochem. Photobiol. A: Chem., 2005, 174: 45-52.
    [92] Shinguu H., Bhuiyan M. M. H., Ikegami T., et al. Preparation of TiO_2/WO3 multilayer thin film by PLD method and its catalytic response to visible light [J] Thin Solid Films, 2006, 506: 111-114.
    [93] Xing C., Zhang Y., Yan W., et al. Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting [J] Int. J. Hydrogen Energy, 2006, 31: 2018-2024.
    [94] Gopidas K. R., Bohorquez M., Kamat P. V. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems [J] J. Phys. Chem., 1990, 94(16): 6435- 6440.
    [95] Haesselbarth A., Eychmueller A., Eichberger R., et al. Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids [J] J. Phys. Chem., 1993, 97: 5333-5340.
    [96] Rabani J. Sandwich colloids of zinc oxide and zinc sulfide in aqueous solutions [J] J. Phys. Chem., 1989, 93: 7707-7713.
    [97] Zhang M., An T., Hu X., et al. Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide [J] Appl. Catal. A, 2004, 260: 215-222.
    [98] Vinodgopal K., Kamat P. V. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO_2 Coupled Semiconductor Thin Films [J] Environ. Sci. Technol., 1995, 29: 841-845.
    [99] Bedja I., Kamat P. V. Capped semiconductor colloids synthesis and photoelectrochemical behavior of TiO_2 capped SnO2 nanocrystallites [J] J. Phys. Chem., 1995, 99(22): 9182-9188.
    [100] Choi H., Stathatos E., Dionysiou D. D. Sol–gel preparation of mesoporous photocatalytic TiO_2 films and TiO_2/Al2O3 composite membranes for environmental applications [J] Appl. Catal. B: Environ., 2006, 63: 60-67.
    [101] Lopez T., Navarrete J., Gomez R., et al. Spectroscopic characterization of sol-gel silica obtained by electron irradiation [J] Mater. Lett., 1999, 38: 1-5.
    [102] Yang Q., Xie C., Xu Z., et al. Effects of synthesis parameters on the physico-chemical andphotoactivity properties of titania–silica mixed oxide prepared via basic hydrolyzation [J] J. Mol. Catal. A, 2005, 239: 144-150.
    [103] Emeline A. V., Kuzmin G. N., Basov L. L., Serpone N., Photoactivity and photoselectivity of a dielectric metal-oxide photocatalyst (ZrO2) probed by the photoinduced reduction of oxygen and oxidation of hydrogen [J] J. Photochem. Photobiol. A: Chem., 2005, 174: 214-221.
    [104] Tanabe K., Sumiyoshi T., Shibata K., et al. A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides [J] Bull. Chem. Soc., 1974, 47: 1064-1066.
    [105] 清山哲郎著, 黄敏明译. 金属氧化物及其催化作用 [M] 合肥: 中国科学技术大学出版社, 1991, 248-249.
    [106] 濑升等著, 赵修建译. 超微颗粒导论 [M] 武汉: 武汉工业大学出版社, 1991, 50-51.
    [107] Kawai M., Onaka M., Izumi Y., Clay montmorillonite-catalyzed aldol reactions of silyl enol ethers with aldehydes and acetals [J] Chem. Lett., 1986, 9: 1581-1584.
    [108] 梁娟, 王善鋆主编. 催化剂新材料: 催化科学与技术 [M] 北京: 化学工业出版社, 1990, 52-53.
    [109] Pinnavaia T. J. Intercalated clay catalysts [J] Science 1983, 220: 365-371.
    [110] Enea O., Bard A. J., Photoredox reactions at semiconductor particles incorporated into clays. Cadmium sulfide and zinc sulfide+cadmium sulfide mixtures in colloidal montmorillonite suspensions [J] J. Phys. Chem., 1986, 90: 301-306.
    [111] Stramel R. D., Nakamura T., Thomas J. K. Cadmium sulfide on synthetic clay [J] Chem. Phys. Lett., 1986, 130: 423-425.
    [112] Shoji Y., Yamanaka S., Nishihara T., et al. Preparation and properties of titania pillared clay [J] Mater. Chem. Phys., 1987, 17: 87-101.
    [113] Yoneyama H., Haga S., Yamanaka S., Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay [J] J. Phys. Chem., 1989, 93: 4833-4837.
    [114] Miyoshi H., Mori H., Yoneyama H., Light-induced decomposition of saturated carboxylic acids on iron oxide incorporated clay suspended in aqueous solutions [J] Langmuir, 1991, 7: 503-507.
    [115] Kazunari K., Domen K., Kudo A., et al. Overall photodecomposition of water on a layered niobiate catalyst [J] Catal. Today, 1990, 8: 77-84.
    [116] Fernandez A., Lassaletta G., Jimenez V. M., et al. Preparation and characterization of TiO_2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification [J] Appl. Catal. B: Environ., 1995, 7: 49-63.
    [117] Sauer M. L., Ollis D. F. Photocatalyzed Oxidation of Ethanol and Acetaldehyde in Humidified Air [J] J. Catal., 1996, 158: 570-582.
    [118] Sauer M. L., Ollis D. F. Acetone Oxidation in a Photocatalytic Monolith Reactor [J] J. Catal., 1994, 149: 81-91.
    [119] Matthews R. W. Photooxidation Degradation of Coloured Organics in Water Using Supported Catalysts TiO_2 on Sand [J] Water Res., 1991, 25: 1169-1176.
    [120] 胡春, 王怡中. 负载型二氧化钛光催化剂的制备方法, 中国专利, CN1265939A, 2000-09-13.
    [121] Deguchi T., Imai K., Matsui H., et al. Rapid Electroplating of Photocatalytically Highly Active TiO_2-Zn Nanocomposite Films on Stell [J] J. Mater. Sci., 2001, 36: 4723-4729.
    [122] Traversa E., Divona M. L., Nunziante P. Photoelectrochemical Properties of Sol-Gel Processed Ag-TiO_2 Nanocomposite Thin Films [J] J. Sol-Gel Sci. Technol., 2001, 22: 115-123.
    [123] Watanabe T., Fukayama S., Miyauchi M., et al. Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO_2 Thin Film Prepared by Sol-Gel Process on a Soda-Lime Glass [J] J. Sol-Gel Sci. Technol., 2000, 19: 71-76.
    [124] Koelsch M., Cassaignon S., Guillemoles J. F., et al. Comparison of Optical and Electrochemical Properties of Anatase and Brookite TiO_2 Synthesized by the Sol-Gel Method [J] Thin Solid Films, 2002, 403/404: 312-319.
    [125] 黄晖, 罗宏杰, 姚嘉. 水热法制备 TiO_2 薄膜的研究 [J] 物理学报, 2002, 51(8): 1881-1886.
    [126] Jackson N. B., Wang C. M., Luo Z., et al. Attachment of TiO_2 Powders to Hollow Glass Microbeads: Activity of the TiO_2-Coated Beads in the Photoassisted Oxidation of Ethanol to Acetaldehyde [J] Electrochem. Soc., 1991, 138(12): 660-662.
    [127] 方佑龄, 赵文宽, 尹少华等. 纳米TiO_2在空心陶瓷微球上的固定化及光催化分解辛烷 [J] 应用化学, 1997, 14(2): 81-83.
    [128] 王怡中, 胡春. 有机物多相光催化降解反应中催化剂固定化技术研究 [J] 环境科学, 1998, 19(4): 40-43.
    [129] Negishi N., Takeuchi K. Preparation of TiO_2 Thin Film Photocatalyst by dip Coating Using a Highly Uicous Solvent [J] J. Sol-Gel Sci. Technol., 2001, 22: 23-31.
    [130] 胡春, 王怡中, 汤鸿霄. 表面键联型TiO_2/SiO2固定化催化剂的结构及催化性能 [J] 催化学报, 2001, 22(2): 185-187.
    [131] Beydoun D., Amal R., Low G. K. C. Novel photocatalyst: titania-coated magnetite. activity and photodissolution [J] J. Phys. Chem. B, 2000, 104: 4387-4390.
    [132] 胡海, 肖文浚, 上官文峰. 泡沫金属的制备、性能及其在催化反应中的应用 [J] 工业催化 2006, 14: 55-58.
    [133] Pestryakov A. N., Yurchenko E. V., Feofilov A. E. Foam-metal catalysts for purification of waste gases and neutralization of automotive emissions [J] Catal. Taday, 1996, 29: 67-70.
    [134] Pestryakov A. N., Lunin V. V. Selective oxidation of alcohols over foam-metal catalysts [J] Appl. Catal. A: General, 2002, 227: 125-130.
    [135] Hustert K., Zepp R. G. Photocatalytic degradation of selected azo dyes [J] Chemosphere, 1992, 24(3): 335-342.
    [136] Hidaka H., Asai Y., Zhao J., et al. Photoelectrochemical decomposition of surfactants on a TiO_2/TCO particulate film electrode assembly [J] J. Phys. Chem., 1995, 99(20): 8244-8248.
    [137] Kormann C., Bahnemann D. W., Hoffmann M. R. Photolysis of chloroform and other organic molecules in aqueous TiO_2 suspensions [J] Environ. Sci. Technol., 1991, 25(3): 494-500.
    [138] Takita Y., Yamada H., Hashida M., et al. Conversion of 1,1,2-trichloro-trifluoroethane (CFC113) over TiO_2-Supported metal and metal oxide catalysts [J] Chem. Lett., 1990, 221(5): 715-718.
    [139] 方佑龄, 赵文宽, 张国华等. 用浸涂法制备飘浮负载型 TiO_2 薄膜光催化降解辛烷 [J] 环境化学, 1997, 16 (5): 413-417.
    [140] Augugliaro V., Loddo V., Marci G., et al. Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions [J] J. Catal, 1997, 166(2): 272-283.
    [141] Ulick S., Kimberly A. G., Prashant V. K. Radiolytic and TiO_2-assisted photocatalytic degradation of 4-chlorophonel. a comparative study [J] J. Phys. Chem., 1994, 98: 6343-6351.
    [142] Madhumita B., Michael J. S. Ultraviolet photooxidation for the destruction of VOCs in air [J] Water Res., 1994, 28: 2407-2415.
    [143] Lynette A. D., Gregory B. R. Fluidized-bad photocatalytic oxidation of trichloroethylene in contaminated airstreams [J] Environ. Sci. Technol., 1992, 26: 492-495.
    [144] Mark R. N., William A. J., Daniel M. B., et al. Direct amass spectrometric studies of the destruction of hazardous waste. 2. gas-phase photocatalytic oxidation of trichloroethylene over TiO_2: products and mechanisms [J] Environ. Sci. Technol., 1993, 27: 732-740.
    [145] Alberici R. M., Jardim W. F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide [J] Appl. Catal. B: Environ., 1997, 14(1): 55-68.
    [146] Sopyan I., Murasawa S., Hashimoto K., et al. Highly efficient TiO_2 film photocatalyst degradation of gaseous acetaldehyde [J] Chem. Lett.,1994, 4: 723-726.
    [147] Peral J., Ollis D. F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation [J] J. Catal., 1992, 136(2): 554-565.
    [148] Raupp G. B., Junio C. T. Photocatalytic oxidation of oxygenated air toxics [J] Appl. Surf. Sci., 1993, 72(4): 321-327.
    [149] Sauer M. L., Hale M. A., Ollis D. F. Heterogeneous photocatalytic oxidation of dilutetoluene-chlorocarbon mixtures in air [J] J. Photochem. Photobiol A: Chem., 1995, 88(2-3): 169-178.
    [150] Avila P., Bahamonde A., Blanco J., et al. Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts [J] Appl. Catal. B: Environ., 1998, 17(1-2): 75-88.
    [151] Wang K., Tsai H., Hsieh Y. The kinetics of photocatalytic degradation of tricholroethylene in gas phase over TiO_2 supported on glass bead [J] Appl. Catal. B: Environ., 1998, 17(4): 313-320.
    [152] Dibble L. A., Raupp G. B. Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide [J] Catal. Lett., 1991, 4: 345-354.
    [153] Mozzanega H., Herrmann J. M., Pichat P. NH3 oxidation over UV-irradiated TiO_2 at room temperature [J] J. Phys. Chem., 1979, 83(17): 2251-2255.
    [154] Ibusuki T., Takauchi K. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis [J] J. Mol. Catal., 1994, 88(1): 93-102.
    [155] Srinivasan S., Hiroyuki U., Hiroshi Y. Photocatalytic degradation of gaseous pyridine over zeolite-supported titanium dioxide [J] J. Catal., 1994, 149: 189-194.
    [156] Norihiko T., Tsukasa T., Srinivasan S., et al. Effect of insert supports for titanium dioxide loading on enhancement of photodecomposition of gaseous propionadehyde [J] J. Phys. Chem., 1995, 99: 9986-9991.
    [157] Hiroshi Y., Tsukasa T. Titanium dioxide/adsorbent hybrid photocatalysts of organic substances of dilute concentration [J] Catal. Today, 2000, 58: 133-140.
    [158] 古政荣, 陈爱平, 戴智明等. 活性炭-纳米二氧化钛复合光催化剂空气净化网的研制 [J] 华东理工大学学报, 2000, 26(4): 367-371.
    [159] Ihara T., Miyoshi M., Ando M. Preparation of a visible-light-active TiO_2 photocatalyst by RF plasma treatment [J] J. Mater. Sci., 2001, 36: 4201-4207.
    [160] Takeuchi M., Yamashita H., Matsuoka M. Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO_2 thin film photocatalyst [J] Catal. Lett., 2000, 67: 135-137.
    [161] Vinodgopal K., Stafford U., Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chloropenol on immobilized TiO_2 particulate films [J] J. Phys. Chem., 1994, 98: 6797-6803.
    [162] 郑宜, 李旦振, 付贤智. C2H4 的微波场助气相光催化氧化 [J] 高等学校化学学报, 2001, 22(3): 443-445.
    [163] 张茂林, 安太成, 胡晓洪等. 泡沫镍负载纳米 ZnO-SnO2 光催化降解三氯乙烯 [J] 环境科学学报, 2005, 25(2): 259-263.
    [164] 丁时锋, 唐超群. 泡沫镍负载 TiO_2 光催化降解丙酮研究 [J] 环境科学与技术, 2002, 25: 3-7.
    [165] 丁震, 陈晓东, 陈连生等. 微波加热制备泡沫镍负载 La3+掺杂纳米 TiO_2 及其光催化降解甲醛的性能 [J] 催化学报, 2006, 27(5): 449-453.
    [166] Liu H., Cheng S. A., Zhang J. Q., et al. Titanium dioxide as photocatalyst on porous nickel: Adsorption and the photocatalytic degradation of sulfosalicylic acid [J] Chemosphere, 1999, 38(2): 283-292.
    [167] Leng W. H., Liu H., Cheng S. A., et al. Kinetics of photocatalytic degradation of aniline in water over TiO_2 supported on porous nickel [J] J. Photochem. Photobiol. A: Chem., 2000, 131(1-3): 125-132.
    [1] Bessekhouad Y., Robert D., Weber J. V. Synthesis of photocatalytic TiO_2 nanoparticles: optimization of the preparation conditions [J] J. Photochem. Photobiol. A: Chem., 2003, 157: 47-53.
    [2] 李光明, 徐子颉, 甘礼华等. TiO_2 凝胶形成的动力学研究 [J] 同济大学学报, 1999, 27(3): 347-350.
    [3] 胡正安, 唐超群. Sol-gel法制备纳米TiO_2的原料配比和胶凝过程机理探研 [J] 功能材料, 2002, 33(4): 394-397.
    [4] 李葵英. 界面与胶体的物理化学 [M] 哈尔滨: 哈尔滨工业大学出版社, 1998, 196-197.
    [5] 于向阳, 程继健, 杜永娟. TiO_2 光催化薄膜的制备法 [J] 玻璃与搪瓷 2001, 29(1): 37-41.
    [6] Shang J., Li W., Zhu Y. F. Structure and photocatalytic characteristics of TiO_2 film photocatalyst coated on stainless steel webnet [J] J. Mol. Catal. A: Chem., 2003, 202: 187-195.
    [7] Saha N. C., Tompkins H. G.. Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study [J] J. Appl. Phys., 1992, 72: 3072-3079.
    [8] Hu C., Tang Y. C., Tang H. X. Characterization and photocatalytic activity of transition metal supported surface bond-conjugated TiO_2/SiO2 [J] Catal. Today, 2004, 90: 325-330.
    [9] Jing D. W., Zhang Y. J., Guo L. J. Study on the synthesis of Ni doped mesoporous TiO_2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution [J] Chem. Phy. Lett., 2005, 415: 74-78.
    [10] Tsutomu U., Tetsuya Y., Hisayoshi I., et al. Analysis of electronic structures of 3d transition metal-doped TiO_2 based on band calculations [J] J. Phy. Chem. Solids, 2002, 63: 1909-1920.
    [11] Krishnan R., Chenthamarakshan C. R., Yang M., et al. Cathodic photoprocesses on titania films and in aqueous suspensions [J] J. Electroanal. Chem., 2002, 538-539: 173-182.
    [12] Sang E. P., Hyunku J., Joon W. K. Effect of impurities in TiO_2 thin films on trichloroethyleneconversion [J] Sol. Energy Mater. Sol. Cell., 2004, 83: 39-53.
    [13] Sopyan I., Watanabe M., Murasawa S., et al. An efficient TiO_2 thin-film photocatalyst photocatalytic properties in gas-phase acetaldehyde degradation [J] J. Photoch. Photobio. A: Chem., 1996, 98: 79-86.
    [14] Vorontsov A. V., Savinov E. N., Lion C., et al. TiO_2 reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor [J] Appl. Catal. B: Environ., 2003, 44: 25-40.
    [15] Sopyan I., Murasawa S., Hashimoto K., et al. Highly Efficient TiO_2 Film Photocatalyst. Degradation of Gaseous Acetaldehyde [J] Chem. Lett., 1994, 23: 723-726.
    [16] Dibble L. A., Raupp G. B. Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide [J] Catal. Lett., 1990, 4: 345-354.
    [17] Raupp G. B., Junto C. T. Photocatalytic oxidation of oxygenated air toxics [J] Appl. Surf. Sci., 1993, 72: 321-327.
    [1] Wang J., Shen J., Zhou B., et al. Giant magnetoresistance in mechanically alloyed Ag2Cu2Fe alloys [J] Nanostr. Mater., 1998, 10: 893-897.
    [2] 杨南如, 余桂郁. 溶胶-凝胶法的基本原理与过程 [J] 硅酸盐通报, 1993, 2: 56-61.
    [3] 王娟, 张长瑞, 冯坚. 溶胶—凝胶法制备 SiO2 气凝胶薄膜溶胶粘度的研究 [J] 国防科技大学学报, 2003, 25(6): 30-34.
    [4] 张锐, 秦丹丹, 王海龙等. 溶胶凝胶法制备SiO2工艺 [J] 郑州大学学报(工学版), 2006, 27(3): 119-122.
    [5] Takeda N., Torimoto T., Sampath S., et al. Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde [J] J. Phys. Chem., 1995, 99(24): 9986-9991.
    [6] Takeda N., Ohtani M., Torimoto T., et al. Evaluation of Diffusibility of Adsorbed Propionaldehyde on Titanium Dioxide-Loaded Adsorbent Photocatalyst Films from Its Photodecomposition Rate [J] J. Phys. Chem. B, 1997, 101: 2644-2649.
    [7] Uchida H., Itoh S., Yoneyama H. Photocatalytic Decomposition of Propyzamide Using TiO_2 Supported on Activated Carbon [J] Chem. Lett., 1993, 72: 1995-1998.
    [8] Torimoto T., Ito S., Kuwabata S., et al. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide [J] Environ. Sci. Technol., 1996, 30(4): 1275-1281.
    [9] Minero C., Catozzo F., Pelizzetti E. Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions [J] Langmuir, 1992, 8(2): 481-486.
    [1] 肖进兵, 罗有训, 罗根样等. 氧化铝负载氮化钼的表面性质及加氢脱氢性能 [J] 催化学报, 2001, 22(6): 571-574.
    [2] 袁强, 扬乐夫, 史春开等. 改性氧化铝为载体的钯催化剂对甲烷催化氧化作用的研究 [J] 厦门大学学报(自然科学版), 2002, 41(2): 199-203.
    [3] 王守国, 王元鸿, 谢忠巍等. 氧化铝负载杂多酸催化甲醇脱水制备二甲醚 [J] 现代化工, 2000, 20(11): 39-41.
    [4] 高占先, 李志勇, 莫自如. 改性氧化铝催化伯醇脱水合成1-烯烃研究 [J] 大连理工大学学报, 2001, 41(4): 412-415.
    [5] 丁子上. 溶胶—凝胶制备材料的进展 [J] 硅酸盐学报, 1993, 21(5): 443-445.
    [6] 路清梅, 董文生, 王浩静等. 溶胶凝胶法制备新型高性能多晶铝酸钇纤维:I.纤维前驱溶胶的制备 [J] 无机材料学报, 2002, (3): 1-6.
    [7] 赵昱. 溶胶凝胶法制备多晶氧化铝纤维的研究 [J] 硅酸盐通报, 2000, (4): 36-38.
    [8] Chou Y. H. The preparation of alumina fibre by sol-gel processing [J] J. Mater. Sci., 1994, 29: 3408-3411.
    [9] 刘凤荣. 陶瓷基复合材料界面 [J] 南京大学学报(自然科学版), 1995, 31(1): 7-10.
    [10] 谢征芳, 肖加余, 陈朝辉等. 溶胶-凝胶法制备复合材料用氧化铝基体及涂层研究 [J] 宇航材料工艺, 1999, (2): 30-37.
    [11] Sauer M. L., Ollis D. F. Catalyst deactivation in gas–solid photocatalysis [J] J. Catal., 1996. 163(1): 215-217.
    [12] Peral J., Ollis D. F. TiO_2 photocatalyst deactivation by gas-phase oxidation of heteroatom organics [J] J. Mol. Catal. A: Chem., 1997, 115(2): 347-354.
    [13] Piera E., Ayllón J. A., Doménech X.. TiO_2 deactivation during gas-phase photocatalytic oxidation of ethanol [J] Catal. Today, 2002, 76(2-4): 259-270.
    [1] 王淑峰, 刘立强, 姚树玉. 连续莫来石陶瓷纤维的制备研究 [J] 硅酸盐通报, 2006, 3(25): 15-19.
    [2] Daniel M. D., Nan Y., Ilhan A. A. Nanocomposite mullite/mullite powders by spray pyrolysis [J] J. Nanopart. Res., 1999, 1: 127-130.
    [3] Walendziewski J., Stolarski M. Synthesis and properties of alumina aerogels (II) [J]. React. Kinet. Catal. Lett., 2000, 71(2): 201-207.
    [4] Touati F., Gharbi N., Colomban P. H. Structural evolution in polylysed hybrid organic.inorganic alumina gels [J] J. Mater. Sci., 2000, 35: 1565-1570.
    [5] Himmel B., Gerber T. H., Burger H., et al. Structural characterization of SiO2.Al2O3 aerogels [J] J .Non-Cryst. Solids, 1995, 186: 149-158.
    [6] Poco J. F., Satcher J. H. J. R., Hrubesh L. W. Synthesis of high porosity, monolithic alumina aerogels [J] J. Non-Cryst. Solids, 2001, 285: 57-63.
    [7] 何文, 沈建兴, 韩丽合. 合成莫来石纳米粉的红外吸收光谱研究 [J] 无机盐工业, 2000, 32(6): 6-8.
    [8] Uchida H., Itoh S., Yoneyama H. Photocatalytic decomposition of propyzamide using TiO_2 supported on activated carbon [J] Chem. Lett., 1993, (22): 1995-1998.
    [9] Torimoto T., Ito S., Kuwabata S., et al. Effects of adsorbents used as supports for titanium dioxide loading on photocatalytic degradation of propyzamide [J] Environ. Sci. Technol., 1996, 30(4): 1275-1281.
    [1] Shu Y., Li R. X., He Q. L., et al. Low temperature synthesis of nanosize rutile titania crystal in liquid media [J] Mater. Chem. Phy., 2002, 75: 76-80.
    [2] Shu Y., Hitoshi H., Daisaku M., et al. Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution–reprecipitation process [J] J. Photochem. Photobio. A: Chem., 2004, 163: 1-8.
    [3] Zheng Y. Q., Shi E. W., Chen Z. Z., et al. Influence of solution concentration on the hydrothermalpreparation of titania crystallites [J] J. Mater. Chem., 2001, 11: 1547-1551.
    [4] 吴梦强. 凝胶-水热法制备纺锤TiO_2粉体 [J] 硅酸盐学报, 2002, 30(1): 108-110.
    [5] Ollis D. F., Alekabi H. Photocatalytic purification and treatment of water and air [M] Amsterdam: Elsevier Science Pulishers B V, 1993, 127-130.
    [6] Roger I. B., Teresita G. C., A structural investigation of titanium dioxide photocatalysts [J] J. Soild. State. Chem., 1991, 92: 178-190.
    [7] Sclafani A., Hermann M. J. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions [J] J. Phys. Chem., 1996, 100(32): 13655-13661.
    [8] Salvador P., Gonzalez M. L. G., Munoz F. Catalytic role of lattice defects in the photoassisted oxidation of water at (001) n-titanium(IV) oxide rutile [J] J. Phys. Chem., 1992, 96(25): 10349-10353.
    [9] Sanjines R., Tang H., Berger H., et al. Electronic structure of anatase TiO_2 oxide [J] J. Appl. Phys., 1994, 75: 2945-2951.
    [10] Campostrini R., Carturan G., Sol-gel derived anatase TiO_2: morphology and photoactivity [J] Mater. Chem. Phys., 1994, 38: 277-283.
    [11] 沈伟韧, 赵文宽, 贺飞等. TiO_2光催化反应及其在废水处理中的应用 [J] 化学进展, 1998, 10(4): 349-361.
    [12] Sopyan I., Watanabe M., A film-type photocatalyst incorporating highly active TiO_2 powder and fluororesin binder: photocatalytic activity and long-term stability [J] J. Electroanal. Chem., 1996, 415: 183-186.
    [13] Jung K. Y., Park S. B. Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene [J] Appl. Catal. B: Environ., 2000, 25: 249-256.
    [14] Jung K. Y., Park S. B. Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene [J] J. Photochem. Photobiol. A: Chem., 1999, 127: 117-122.
    [15] Kumar S. R., Suresh C., Vasudevan A. K., et al. Phase transformation in sol-gel titania containing silica [J] Mater. Lett., 1999, 38: 161-166.
    [16] 高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及应用 [M] 北京: 化学工业出版社, 2003, 31-35.
    [1] Toshinori T., Takehiro K., Tomohisa Y., et al. A photocatalytic membrane reactor for VOC decomposition using Pt-modified titanium oxide porous membranes [J] J. Membr. Sci., 2006, 280: 156-162.
    [2] Zhang C. B., He H., Tanaka K. Catalytic performance and mechanism of a Pt/TiO_2 catalyst for the oxidation of formaldehyde at room temperature [J] Appl. Catal. B: Environ., 2006, 65: 37-43.
    [3] Thammanoon S., Susumu Y. Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO_2 prepared by single-step sol–gel process with surfactant template [J] Int. J. Hydrogen Energy, 2006, 31: 786-796.
    [4] Yoshiteru M., Yoji M., Tatsuya S., et al. Immobilization of noble metal nanoparticles on the surface of TiO_2 by the sonochemical method: Photocatalytic production of hydrogen from an aqueous solution of ethanol [J] Ultrason. Sonochem., 2007, 14: 387-392.
    [5] Sano T., Negishi N., Uchino K., et al. Photocatalytic degradation of gaseous acetaldehyde on TiO_2 with photodeposited metals and metal oxides [J] J. Photochem. Photobio. A: Chem., 2003,160: 93-98.
    [6] Masaaki K., Masato T., Masaya M., et al. Photocatalytic water splitting using Pt-loaded visible light-responsive TiO_2 thin film photocatalysts [J] Catal. Today, 2007, 120: 133-138.
    [7] Keller V., Bernhardt P., Garin F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO_2, Pt/TiO_2 and WO3/TiO_2 catalysts [J] J. Catal., 2003, 215(1): 129-138.
    [8] Falconer J. L., Magrini B. K. A. Photocatalytic and Thermal Catalytic Oxidation of Acetaldehyde on Pt/TiO_2 [J] J. Catal., 1998, 179(1): 171-178.
    [9] Sano T., Kutsuna S., Negishi N., et al. Effect of Pd-photodeposition over TiO_2 on product selectivity in photocatalytic degradation of vinyl chloride monomer [J] J. Mol. Catal. A, 2002, 189: 263-270.
    [10] Sheng J., Shivalingappa L., Karasawa J., et al. Low-temperature formation of photocatalytic Pt-anatase film by magnetron sputtering [J] J.Mater. Sci., 1996, 34: 6201-6206.
    [11] Ohtani B., Iwai K., Nishimoto S., et al. Role of Platinum Deposits on Titanium(IV) Oxide Particles: Structural and Kinetic Analyses of Photocatalytic Reaction in Aqueous Alcohol and Amino Acid Solutions [J] J. Phys. Chem. B, 1997, 101(17): 3349-3359.
    [12] Tanaka K., Capule M. F. V., Hisanaga T. Effect of crystallinity of TiO_2 on its photocatalytic action [J] Chem. Phys. Lett., 1991, 187(1-2): 73-76.
    [13] Fu X., Zeltner W. A., Anderson M. A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts [J] Appl. Catal. B: Environ., 1995, 6: 209- 224.
    [14] Zhang Y., Crittenden J. C., David W., et al. Fixed-bedphotocatalysts for solar decontaminantion ofwater [J] Environ. Sci. Technol., 1994, 28: 435-442.
    [15] Sun B., Alexandre V. Role of platinum deposited on TiO_2 in phenol photocatalytic oxidation [J] Langmuir, 2003, 19(8): 3151-3156.
    [16] Liu C., Bao Z. N., Yang Z. H., et al . Photocatalytic performance of TiO_2 modified by doped transition metal ions [J] J. Catal., 2001, 22(2): 215-218.
    [17] Li F. B., Li X. Z. Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment [J] Appl. Catal. A: Gen., 2002, 228: 15-27.
    [18] 高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及应用 [M] 北京: 化学工业出版社, 2002, 12.
    [19] Zhang Y., Reller A. Nanocrystalline Iron-Doped Mesoporous Titania and Its Phase Transition [J] J. Mater. Chem., 2001, 11(10): 2537-2541.
    [20] Zhu J. F., Zheng W., He B., et al. Characterization of Fe-TiO_2 photocatalyst synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water [J] J. Mol. Catal. A: Chem., 2004, 216: 35-43.
    [21] 苏碧桃, 张彰, 郑坚等. Fe3+掺杂 TiO_2纳米复合粒子的合成及表征 [J] 化学学报, 2002, 60(11): 1936-1940.
    [22] 闫鹏飞, 王建强, 江欣等. 掺铁 TiO_2 纳米晶的制备及光催化性能研究 [J] 材料科学与工艺, 2003, 10(1): 28-32.
    [23] 林劲冬, 梁丽云, 蓝仁华等. Fe/TiO_2光催化涂层材料的制备及在可见光下清除甲醛的性能表征 [J] 精细化工, 2004, 21(2): 115-118.
    [24] Egerton T. A., Harris E., Lawson E. J., et al. An EPR study of diffusion of iron into rutile [J] Phys. Chem. Chem. Phys., 2001, (3): 497-504.
    [25] Soria J., Conesa J. C., Augugliaro V., et al. Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions [J] J. Phys. Chem., 1991, (95): 274-282.
    [26] Zhang Y., Ebbinghaus S. G., Weidenkaff A., et al. Controlled Iron-Doping of Macrotextured Nanocrystalline Titania [J] Chem. Mater., 2003, (15): 4028-4033.
    [27] Amorelli A., Evans J. C., Rowlands C. C., et al. An electron spin resonance study of rutile and anatase titanium dioxide polycrystalline powders treated with transition-metal ions [J] J. Chem. Soc. Faraday Trans. I, 1987, (83): 3541-3548.
    [28] Ranjit K., Viswanat B. Photocatalytic degradation of TCE in the gas phase using TiO_2 pellets [J] J. Photochem. Photobiol. A: Chem., 1997, 108: 73-77.
    [29] Litter M., Navio J. Photocatalytic properties of iron-doped titania semiconductors [J] J. Photochem. Photobiol. A: Chem., 1996, 98: 171-181.
    [30] Zhang Z., Wang C., Zakaria R., et al. Role of particle size in nanocrytalline TiO_2 basedphotocatalysts [J] J. Phys. Chem. B, 1998, 102(52): 10871-10878.
    [31] 王建强, 辛柏福, 于海涛等. Fe3+-TiO_2/SiO2 光催化剂降解罗丹明 B 的研究 [J] 高等学校化学学报, 2003, 24(6): 1093-1096.
    [32] Serpone N., Lawless D. Spectroscopic photoconductivity and photocatalytic studies of TiO_2 colloids: naked and with the lattice doped with Cr3+, Fe3+ and V5+ cations [J] Langmuir, 1994, 10: 643-652.
    [33] Navio J. A., Testa J. J., Djedjeian P., et al. Iron-doped titania powders prepared by a sol-gel method, part Ⅱ : photocatalytic properties [J] Appl. Catal. A: Gen., 1999, 178: 191-203.
    [34] Wang C., Bahnemann D., Dohrmann J., et al. A novel preparation of iron-doped TiO_2 nanoparticles with enhanced photocatalytic activity [J] Chem. Commun., 2000, 16: 1539-1540.
    [35] Choi W., Termit A., Hoffman M. R.. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics [J] J. Phys. Chem., 1994, 98(51): 13669-13679.
    [36] 张敬畅, 李青, 曹维良等. 超临界流体干燥法制备TiO_2/Fe2O3和TiO_2/Fe2O3/SiO2复合纳米粒子及光催化性能 [J] 复合材料学报, 2005, 22(1): 79-84.
    [37] 姜洪波, 高濂, 张青红等. Fe2O3/TiO_2 和 ZnO/TiO_2 纳米颗粒薄膜的亲水性能和光催化性能的研究 [J] 无机材料学报, 2003, 18(3): 695-699.
    [38] Kasuga T., Hiramatsu M., Hirano M., et al. Preparation of TiO_2-based powders with high photocatalytic activities [J] J. Mater. Res., 1997, 12(3): 607-609.
    [39] Dhananjeyan M. R., Kandavelu V., Renganathan R. A study on the photocatalytic reactions of TiO_2 with certain pyrimidine bases: effects of dopants (Fe3+) and calcinations [J] J. Mole. Catal. A: Chem., 2001, 51: 217-223.
    [40] 王艳芹, 张莉, 程虎民等. 掺杂过渡金属离子的 TiO_2 复合纳米粒子光催化剂-罗丹明 B 的光催化降解 [J] 高等学校化学学报, 2000, 21(6): 958-960.
    [41] 苏文悦, 付贤智, 魏可镁. SO42-表面修饰对 TiO_2 结构及其光催化性能的影响 [J]物理化学学报, 2001, 17 (1): 28-31.
    [42] 付宏刚, 王建强, 任志宇等. Fe3+-TiO_2/SiO_2薄膜催化剂的结构对其光催化性能影响 [J] 高等学校化学学报, 2003, 24 (9): 1671-1676.
    [43] 罗谷风. 结晶学导论 [M] 北京: 地质出版社, 1985, 1-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700