光纤EFPI/FBG传感测井系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油作为不可再生的战略性资源在当今世界尤为重要。而目前石油工业所面临采收率低的问题一直是困扰着石油工业最为核心的问题,此问题的解决是建立在对石油井下一系列物理参数高精度、长期可靠监测基础之上的。然而,石油井下高温、高压、强化学腐蚀、强电磁干扰等一系列极端恶劣环境对传感器的可靠性是一种极大地考验。此外,深井探测信号的传输以及能够实时地测量对石油测井的意义也十分重大。在这种情况下,传统的电子学传感器并不能够完全满足石油测井的需要。以光纤法布里-珀罗干涉型传感器和光纤布拉格光栅传感器为代表的波长调制型光纤传感器由于具有波长编码、抗干扰能力强、长期测量稳定可靠、测量精度高、耐高温高压、抗化学腐蚀等优点,近年来受到石油工业的普遍关注和高度重视。
     光纤传感测井系统主要包括三个部分:传感器探头、信号传输光纤、信号解调仪。本文对该系统及其在高温、高压油井下长期实时监测应用中所涉及的关键技术进行了系统的、深入的研究,主要包括以下几方面内容。
     掺铒光纤光源的理论和实验研究。在掺铒光纤放大系统理论模型基础上,对掺铒光纤中光放大的物理过程进行了详细分析,并且对掺铒超荧光光纤光源和可调谐环形腔掺铒光纤激光器进行了数值模拟和实验研究。本文实现了一个输出功率为9.2 mW,覆盖C+L波段的宽谱掺铒超荧光光纤光源,其平均波长为1565.253 nm,平坦区域(平坦度在2.5 dB以内)的谱宽达68 nm(1535~1603 nm)。实现了一种新颖的可调谐环形腔掺铒光纤激光器结构,实现了基于标准C波段掺铒光纤的超宽带可调谐环形腔掺铒光纤激光器,其波长调谐范围首次达到145 nm(1475~1620 nm),覆盖了整个S+C+L波段,输出功率4 mW,激光线宽小于0.03 nm,带宽内边模抑制比大于50 dB。
     设计并研制出一种基于宽带波长扫描环形腔掺铒光纤激光器的光纤传感查询仪。首先研究了宽带波长扫描环形腔掺铒光纤激光器的动态特性。在此基础上,成功的实现了基于宽带波长扫描环形腔掺铒光纤激光器的光纤传感查询仪。该查询仪采用具有极好的温度稳定性、全光谱范围的光纤F-P标准具对扫描光纤激光器进行实时的波长校准。采用五次非线性拟合方法对滤波器的驱动电压和透射波长进行实时标定,解决了光纤F-P可调谐滤波器调谐电压与透射峰值波长关系的非线性、重复性差和迟滞等问题。因此,该光纤传感查询仪实现了高波长测量精度和分辨率。本文采用HCN气体吸收池作为波长标准对该查询仪的波长测量准确度和分辨率进行了测量,其波长测量分辨率为0.9pm,准确度为±2 pm。利用该查询仪对光纤EFPI/FBG串联复用传感器进行了解调实验,光纤EFPI腔长解调分辨率达到0.025 nm,对应压强分辨率为0.32 kPa;FBG的波长解调分辨率为0.63 pm,对应温度分辨率为0.065℃。由于该系统采用的波长扫描环形腔掺铒光纤激光器具有毫瓦量级的输出功率,对于远距离传感应用具有极好的适应能力。由于该系统采用的波长扫描环形腔掺铒光纤激光器的波长扫描范围达到100 nm以上,使得该查询仪在解调光纤EFPI传感器时更为精确,对FBG传感器解调具有更大的波分复用能力。
     针对高温高压长期实时测井应用,对光纤压力/温度传感器系统的若干技术问题做了详细的分析并给出相应的解决方案。油气井下压力、温度是油井生产过程监控的重要参数指标。本文通过对光纤EFPI压力传感器的优化设计,并且建立合理的数学模型,利用FBG温度传感器对其进行温度补偿,消除了光纤EFPI压力传感器的温度交叉敏感性。在25℃~300℃温度变化范围内,在压力测量量程0~72 MPa范围内最大偏差小于满量程的±0.025%。在压力测量量程0~102 MPa范围内,其压力测量分辨率达到为1.1 kPa。该测井系统已成功应用于辽河油田高温稠油井的长期温度/压力实时监测,并且即将应用于中海油海上油井的温度/压力监测。
Oil as a strategic non-renewable resource is particularly important in the world. Low reservoir recovery is the core problem that oil industry faced. This is largely due to the limited availability of information concerning reservoirs and well operation. Real-time, on-line measurement and monitoring of some key physical parameters as well as their temporal and spatial variations in reservoirs and wells is therefore vitally important. However, a series of extremely harsh environment, such as high temperature, high pressure, strong chemical corrosion and strong electromagnetic interference puts forward higher requirements for the sensor used downhole. In addition, the deep well exploration signal transmission and the ability to real-time measurement of oil well are also very important. In this case, the traditional electronics sensors are not able to fully meet the needs of the oil well logging. The optical fiber sensor based on wavelength demodulation such as fiber extrinsic Fabry-Perot interferometric (EFPI) sensor and fiber Bragg grating (FBG), with merits of wavelength coded, immunity to electromagnetic interference, low drift and high precision, has been attracting more and more attention.
     Optical fiber sensor system consists of three parts: sensor probe, signal transmission fiber and wavelength interrogator. In this dissertation, according to high temperature and high pressure well logging application, detailed, systematic and intensively study of some key technologies of fiber EFPI/FBG sensor system are presented. The main research works are outlined as followings:
     Theoretical and Experimental Study of Erbium-doped fiber source is carried out. Based on theoretical model of erbium-doped fiber amplification system, the physical process of amplification in erbium-doped fiber is numerically simulated. And experimental studies on Erbium-doped Superfluorescent Fiber Source (ESFS) and tunable Erbium-doped Fiber Ring Laser (EDFRL) are implemented. In the dissertation, a spectrum flat C+L-band Superfluorescent fiber source with 68 nm (from 1535 to 1603 nm) bandwidth and 9.2 mW output power is obtained. A standard C-band EDF based novel tunable EDFRL structure is realized, whose operating wavelength can be continuously tuned over 145 nm for the first time. The output power of the EDFRL is 4 mW, the 3 dB linewidth is 0.03 nm, and the optical signal to noise ratio is better than 50 dB.
     An optical fiber sensor interrogator based on wavelength-swept EDFRL (WS-EDFRL) is built up. Firstly, the dynamic characteristics of WS-EDFRL is studied, and then a fiber sensor interrogator based on the WS-EDFRL is successfully constructed. In the system, an etalon with high thermal stability has been used as wavelength reference for calibrating the whole spectrum of fiber laser. A nonlinear fitting algorithm between the applied scan voltage and the transmission wavelength of FFP-TF is adopted for real-time wavelength calibration to eliminate the FFP-TF's shortcomings such as non-linearity, hysteresis and poor repeatability. A HCN gas absorption cell is used as wavelength references to check the wavelength accuracy and resolution. Experimental results show that the accuracy and resolution of the interrogator is±2 pm and 0.9 pm respectively. In addition, the fiber EFPI/FBG multiplexed sensor is demodulated by this system, fiber EFPI gap length resolution is 0.025 nm, corresponding to 0.32 kPa. FBG wavelength resolution is 0.63 pm, corresponding to 0.065℃. The output power of WS-EDFRL used in this interrogator is in milliwatt order of magnitude, so it shows an excellent ability for long distance sensing applications. It also has advantages for precisely demodulating fiber EFPI sensors and the wavelength multiplexing of FBG sensors.
     For the application of long term high temperature and high pressure oil well logging, several key technologies on the fiber temperature/pressure sensing system have been investigated. By optimizing the structure of fiber EFPI/FBG multiplexed pressure and temperature sensor the cross-sensitivity of the pressure/temperature sensor is eliminated, and the maximum pressure deviation of less than±0.025% is achieved in pressure gauge range of 0~72 MPa and in temperature variation range between 25℃and 300℃. The resolution of the fiber EFPI pressure sensor is 1.1 kPa in pressure gauge range of 0~102 MPa. The sensor system has been successfully applied to downhole pressure measurement in Liaohe oil field and is going to be installed in a high-temperature offshore oil well for permanent temperature and pressure monitoring.
引文
[1]刘波.光纤光栅传感系统的研究与实现[D].天津:南开大学,2004.
    [2]B.Culshaw,A.Kersey.Fiber-Optic Sensing:A Historical Perspective[J],Journal Of Lightwave Technology,2008,26:15.
    [3]K.T.V.Grattan,T.Sun.Fiber optic sensor technology:an overview[J],Sensors and Actuators,2000,82:22.
    [4]K.T.V.Grattan,B.T.Meggitt.Optical fiber sensor technology:advanced applications:Bragg gratings and distributed sensors[M].Boston:Kluwer Academic,2000.
    [5]K.T.V.Grattan,B.T.Meggitt.Optical fiber sensor technology:fundamentals[M].Boston:Kluwer Academic,2000.
    [6]赵勇.光纤传感原理与应用技术[M].北京:清华大学出版社,2007.
    [7]江毅.高级光纤传感技术[M].北京:科学出版社,2008.
    [8]J.C.Knight,T.A.Birks,P.S.Russell,et al.All-silica single-mode optical fiber with photonic crystal cladding[J],Optics Letters,1996,21:1547-1549.
    [9]A.Schweinsberg,N.N.Lepeshkin,M.S.Bigelow,et al.Observation of superluminal and slow light propagation in erbium-doped optical fiber[J],Europhysics Letters,2006,73:218-224.
    [10]H.Toshiyoshi,H.Fujita.Electrostatic micro torsion mirrors for an optical switch matrix[J],Journal of Microelectromechanical Systems,1996,5:231-237.
    [11]H.F.T.C.E.Lee.Interferometric optical fiber sensors using internal mirrors[J][J],Electron.Lett.,1988,24:2.
    [12]A.Wang,S.Gollapudi,K.A.Murphy,et al.Sapphire-fiber-based intrinsic Fabry-Perot interferometry,in:The Fifth Annual Smart Materials and Structures Workshop 1992,pp.186-193.
    [13]F.Shen,W.Peng,K.Cooper,et al.UV-induced intrinsic Fabry-Perot interferometric fiber sensors[J],Sensors for Harsh Environments,2004,5590:47-56.
    [14]F.Shen,W.Zhuang,P.Wei,et al.UV-induced intrinsic Fabry-Perot interferometric sensors and their multiplexing for temperature and strain sensing[J],Proceedings of the SPIE-The International Society for Optical Engineering,2006:61740-61741.
    [15]F.Shen,H.Zhengyu,Z.Yizheng,et al.Frequency-division-multiplexed Fabry-Perot interferometric fiber sensors for temperature monitoring in a selective catalytic reduction unit[J],Proceedings of the SPIE-The International Society for Optical Engineering,2005:59981-59988.
    [16]X.Chen,F.B.Shen,A.B.Wang,et al.Novel Fabry-Perot fiber optic sensor with multiple applications[J],Sensors for Harsh Environments,2004,5590:111-121.
    [17]X.Chen,F.B.Shen,Z.A.Wang,et al.Micro-air-gap based intrinsic Fabry-Perot interferometric fiber-optic sensor[J],Applied Optics,2006,45:7760-7766.
    [18]Y.Rap,M.Deng.PCF-based Fabry-Perot refractive-index sensor[J],Advanced Sensor Systems and Applications Iii,2008,6830:D8300-D8300.
    [19]Y.Rap,M.Deng,D.W.Duan,et al.In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber[J],Sensors and Actuators a-Physical,2008,148:33-38.
    [20]Y.Rap.In-line fiber-optic Fabry-Perot refractive-index tip sensors[J],Proceedings of the SPIE-The International Society for Optical Engineering,2008:71332.
    [21]C.E.Lee,R.A.htkins,H.F.Taylor.Performance of a fiber-optic temperature sensor from 200 to 1050℃[J],Opt.Lett.,1988,13:1038-1040.
    [22]H.S.Choi,H.F.Taylor,C.E.Lee.High-performance fiber-optic temperature sensor using low-coherence interferometry[J],Opt.Lett.,1997,22:1814-1816.
    [23]K.A.Murphy,Michael F.Gunther,Ashish M.Vengsarkar,et al.Fiber Optic Smart Structures and Skins Ⅳ[C]:SPIE,1991.
    [24]K.A.Murphy,M.F.Gunther,h.M.Vengsarkar,et al.Fabry-Perot fiber-optic sensors in full-scale fatigue testing on an F-15 aircraft[J],Applied Optics,1992,31:3.
    [25]A.Wang.Optical fiber sensors for energy-production and energy-intensive industries [J],Proceedings of the SHE-The International Society for Optical Engineering,2002,4920:377-381.
    [26]A.Wang,H.Xiao,R.G.May,et al,G.R.Pickrell.Optical fiber sensors for harsh environments[J],International Conference on Sensors and Control Techniques(Icsc 2000),2000,4077:2-6.
    [27]J.C.Xu,G.Pickrell,B.Yu,et al.Epoxy-free high temperature fiber optic pressure sensors for gas turbine engine applications[J],Sensors for Harsh Environments,2004,5590:1-10.
    [28]J.D.Deng,H.Xiao,W.Huo,et al.Optical fiber sensor-based detection of partial discharges in power transformers[J],Optics and Laser Technology,2001,33:305-311.
    [29]Y.Z.Zhu,Z.Y.Huang,F.B.Shen,et al.Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements[J],Optics Letters,2005,30:711-713.
    [30]H.Xiao,Y.Xie,J.Deng,et al.Absolute sapphire optical fiber interferometric sensors,Eds.M.A.Marcus,A.Wang,SPIE,Boston,MA,USA 1999,pp.115-121.
    [31]X.Hal,Z.Wei,R.Lockhard,et al.Absolute Sapphire Optical Fiber Sensor For High Temperature Applications,in:Southeastcon '9.'Engineering new New Century'.,Proceedings.IEEE 1997,pp.351-351.
    [32] Y. Z. Zhu, G. Pickrell, X. W. Wang, et al. Miniature fiber-optic pressure sensor for turbine engine [J], Sensors for Harsh Environments, 2004, 5590:11-18.
    
    [33] X. Wang, J. Xu, Y. Zhu, et al. All-fused-silica miniature optical fiber tip pressure sensor [J], Opt. Lett., 2006, 31:885-887.
    
    [34] D. Donlagic, E. Cibula. All-fiber high-sensitivity pressure sensor with SiO2 diaphragm [J], Opt. Lett., 2005, 30:2071-2073.
    
    [35] E. Cibula, D. Donlagic. Miniature fiber-optic pressure sensor with a polymer diaphragm [J], Appl. Opt., 2005, 44:2736-2744.
    
    [36] D. Bo, H. Ming, S. Liqun, et al. Sulfur Hexafluoride Filled Extrinsic Fabry Perot Interferometric Fiber Optic Sensors for Partial Discharge Detection in Transformers [J], Photonics Technology Letters, IEEE, 2008, 20:1566-1568.
    
    [37] V. Bhatia, K. A. Murphy, R. O. Claus, et al. Optical fibre based absolute extrinsic Fabry - Perot interferometric sensing system [J], Measurement Science and Technology, 1996, 7:58-61.
    
    [38] J. S. Leng, A. Asundi. Non-destructive evaluation of smart materials by using extrinsic Fabry-Perot interferometric and fiber Bragg grating sensors [J], NDT & E International, 2002, 35:273-276.
    
    [39] 赵勇.光纤光栅及其传感技术[M].北京:国防工业出版社, 2007.
    
    [40] B. S. Kawasaki, K. 0. Hill, D. C. Johnson, et al. Narrow-band Bragg reflectors in optical fibers [J], Optics Letters, 1978, 3:3.
    
    [41] K. O. Hill, Y. Fujii, D. C. Johnson, et al. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication [J], Appl. Phys. Lett., 1978, 32:3.
    
    [42] G. Meltz, W. W. Morey, W. H. Glenn. Formation of Bragg gratings in optical fibers by a transverse holographic method [J], Optics Letters, 1989, 14:3.
    
    [43] K. O. Hill, B. Malo, F. Bilodeau, et al. Bragg Gratings Fabricated In Monomode Photosensitive Optical Fiber By UV Exposure Through A Phase Mask [J], Applied Physics Letters, 1993, 62:1035-1037.
    
    [44] P. J. Lemaire, R. M. Atkins, V. Mizrahi, et al. High-pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibers [J], Electron. Lett., 1993, 29:3.
    
    [45] W. W. Morey, G. Meltz, W. H. Glenn. SPIE Conference on Fiber Optic and Laser Sensors [C]. Boston; MA (USA);, 1989.
    
    [46] A. D. Kersey, M. A. Davis, H. J. Patrick, et al. Fiber grating sensors [J], Journal Of Lightwave Technology, 1997, 15:1442-1463.
    
    [47] Y. J. Rao. In-fibre Bragg grating sensors [J], Measurement Science & Technology, 1997, 8:355-375.
    [48] S. Huang, M. Leblanc, M. M. Ohn, et al. Bragg intragrating structural sensing [J], Applied Optics, 1995, 34:5003-5009.
    
    [49] K. 0. Hill, G. Meltz. Fiber Bragg grating technology fundamentals and overview [J], Journal Of Lightwave Technology, 1997, 15:1263-1276.
    
    [50] R. Maaskant, T. Alavie, R. M. Measures, et al. Fiber-optic Bragg grating sensors for bridge monitoring [J], Cement & Concrete Composites, 1997, 19:21-33.
    
    [51] Y. J. Rao. Recent progress in applications of in-fibre Bragg grating sensors [J], Optics and Lasers in Engineering, 1999, 31:297-324.
    
    [52] K. T. V. Grattan, T. Sun. Fiber optic sensor technology: an overview [J], Sensors and Actuators a-Physical, 2000, 82:40-61.
    
    [53] D. C. Betz, G. Thursby, B. Culshaw, et al. Acousto-ultrasonic sensing using fiber Bragg gratings [J], Smart Materials & Structures, 2003, 12:122-128.
    
    [54] B. Lee. Review of the present status of optical fiber sensors [J], Optical Fiber Technology, 2003, 9:57-79.
    
    [55] A. Mendez, T. F. Morse, F. Mendez.Fiber Optic Smart Structures and Skins II [C]:SPIE, 1989.
    
    [56] 饶云江,王义平,朱涛.光纤光栅原理及应用[M].北京:科学出版社, 2006.
    
    [57] S. H. Yun, D. J. Richardson, B. Y. Kim. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser [J], Optics Letters, 1998, 23:843-845.
    
    [58] T. L. Lowder, K. H. Smith, B. L. Ipson, et al. High-temperature sensing using surface relief fiber Bragg gratings [J], IEEE Photonics Technology Letters, 2005, 17:1926-1928.
    
    [59] D. J. Hill, P. J. Nash, D. A. Jackson, et al. A fiber laser hydrophone array [J], Fiber Optic Sensor Technology and Applications, 1999, 3860:55-66.
    
    [60] T. Liu, G. F. Fernando, Y. J. Rao, et al. Simultaneous strain and temperature measurements in composites using a multiplexed fiber Bragg grating sensor and an extrinsic Fabry-Perot sensor, Ed. R. O. Claus, SPIE, San Diego, CA, USA 1997, pp. 203-212.
    
    [61] D. Grobnic, C. W. Smelser, S. J. Mihailov, et al. Long-term thermal stability tests at 1000C of silica fibre Bragg gratings made with ultrafast laser radiation [J], Measurement Science and Technology, 2006, 17:1009-1013.
    
    [62] http://sensa.org/.
    
    [63] http://www.weatherford.com/.
    
    [64] http://www.ziebel.biz/ .
    
    [65] http://www. sabeus. com/.
    
    [66] Optical Sensing Systems Brochure [J], weatherford ,2000.
    
    [67] http://www.cidra.com/.
    
    [68] Sensornet: http://www.sensornet.co.uk/.
    [69] S. H. Aref, H. Latifi, M. I. Zibaii, et al. Fiber optic Fabry Perot pressure sensor with low sensitivity to temperature changes for downhole application [J], Optics Communications, 2007, 269:322-330.
    
    [70] S. H. Aref, M. I. Zibaii, H. Latifi. An improved fiber optic pressure and temperature sensor for downhole application [J], Measurement Science & Technology, 2009, 20:-.
    
    [71] http://www.shell.com/.
    
    [72] A. L. Schawlow, C. H. Townes. Infrared and Optical Masers [J], Physical Review, 1958, 112:1940.
    
    [73] T. H. Maiman. Stimulated Optical Radiation in Ruby [J], Nature, 1960, 187:493-494.
    
    [74] E. Snitzer. Proposed Fiber Cavities for Optical Masers [J], Journal of Applied Physics, 1961, 32:36-39.
    
    [75] E. Snitzer. Optical Maser Action of Nd+3 in a Barium Crown Glass [J], Physical Review Letters, 1961, 7:444.
    
    [76] C. J. Koester, E. Snitzer. Amplification in a Fiber Laser [J], Appl. Opt., 1964, 3:1182-1186.
    
    [77] J. Stone, C. A. Burrus. Neodymium-doped silica lasers in end-pumped fiber geometry [J], Applied Physics Letters, 1973, 23:388-389.
    
    [78] J. Stone, C. A. Burrus. NeodymiunrDoped Fiber Lasers: Room Temperature cw Operation with an Injection Laser Pump [J], Appl. Opt., 1974, 13:1256-1258.
    
    [79] S. B. Poole, D. N. Payne, M. E. Fermann. Fabrication of low-loss optical fibres containing rare-earth ions [J], Electronics Letters, 1985, 21:737-738.
    
    [80] I. P. Alcock, A. C. Tropper, A. I. Ferguson, et al. Q-switched operation of a neodymium-doped monomode fibre laser [J], Electronics Letters, 1986, 22:84-85.
    
    [81] R. J. Mears, L. Reekie, S. B. Poole, et al. Neodymium-doped silica single-mode fibre lasers [J], Electronics Letters, 1985, 21:738-740.
    
    [82] M. I. D, M. D. B, A. B. J, et al. New all-fiber laser, Optical Society of America 1987, p. WI3.
    
    [83] A. Bellemare. Continuous wave silica based erbium doped fibre lasers [J], Progress in Quantum Electronics, 2003, 27:211-266.
    
    [84] R. J. Mears, L. Reekie, S. B. Poole, et al. Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 um [J], Electronics Letters, 1986, 22:159-160.
    
    [85] R. J. Mears, L. Reekie, I. M. Jauncey, et al. Low-noise erbium-doped fibre amplifier operating at 1.54 um [J], Electronics Letters, 1987, 23:1026-1028.
    
    [86] R. P. Webb, W. J. Devlin. Travelling-wave laser amplifier experiments at 1.5 um [J], Electronics Letters, 1984, 20:706-707.
    
    [87] R. H. Stolen, E. P. Ippen. Raman gain in glass optical waveguides [J], Applied Physics Letters, 1973, 22:276-278.
    [88]M.Horiguchi,K.Yoshino,M.Shimizu,et al.670 nm semiconductor laser diode pumped erbium-doped fibre amplifiers[J],Electronics Letters,1993,29:593-595.
    [89]T.J.Whitley.Laser diode pumped operation of Er-doped fibre amplifier[J],Electronics Letters,1988,24:1537-1539.
    [90]M.Horiguchi,M.Shimizu,M.Yamada,et al.Highly efficient optical fibre amplifier pumped by a 0.8 um band laser diode[J],Electronics Letters,1990,26:1758-1759.
    [91]M.Yamada,M.Shimizu,T.Takeshita,et al.Er-doped fiber amplifier pumped by 0.98um laser diodes[J],Photonics Technology Letters,IEEE,1989,1:422-424.
    [92]M.Suyama,K.Nakamura,S.Kashiwa,et al.14.4-dB Gain of Erbium-Doped Fiber Amplifier Pumped by 1.49-μm Laser Diode,Optical Society of America 1989,p.PD6.
    [93]H.Nakamura,A.Fujisaka,H.Ogoshi.Gain and noise characteristics of erbium doped fiber amplifier pumped at 1530 nm,Optical Society of America 1996,p.WK9.
    [94]Z.Fu,D.Yang,W.Ye,et al.Widely tunable compact erbium-doped fiber ring laser for fiber-optic sensing applications[J],Optics & Laser Technology,2009,41:392-396.
    [95]H.Y.Ryu,W.K.Lee,H.S.Moon,et al.Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy[J],Optics Communications,2007,275:379-384.
    [96]A.Bellemare,M.Karbsek,C.Riviere,et al.A broadly tunable erbium-doped fiber ring laser:experimentation and modeling[J],Selected Topics in Quantum Electronics,IEEE Journal of,2001,7:22-29.
    [97]P.F.Wysocki,M.J.F.Digonnet,B.Y.Kim,et al.Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications[J],Lightwave Technology,Journal of,1994,12:550-567.
    [98]D.C.Hall,W.K.Burns,R.P.Moeller.High stability Er-doped superfluorescent fiber sources[J],Lightwave Technology,Journal of,1995,13:1452-1460.
    [99]肖瑞.掺饵光纤光源研究[D].长沙:国防科技大学,2002.
    [100]K.Iwatsuki.Long-term bias stability of all-PANDA fibre gyroscope with Er-doped superfluorescent fibre laser[J],Electronics Letters,1991,27:1092-1093.
    [101]H.Masuda,S.Rawai,K.Suzuki,et al.1.65 um band fibre Raman amplifier pumped by wavelength-tunable broad-linewidth light source,in:Optical Communication,1998.24th Europoan Conference on 1998,pp.137-141 vol.133.
    [102]K.Takada,M.Shimizu,M.ramada,et al.Ultrahigh sensitivity low coherence OTDR using Er-doped high-power superfluorescent fibre source[J],Electronics Letters,1992,28:29-31.
    [103]K.Takada,T.Kitagawa,M.Shimizu,et al.High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fibre source and erbium-doped power amplifier[J],Electronics Letters,1993,29:365-367.
    [104]K.Takada,H.Yamada,S.Mitachi.Tunable narrow-band light source using two optical circulators[J],Photonics Technology Letters,IEEE,1997,9:91-93.
    [105]J.S.Lee,Y.C.Chung,D.J.DiGiovanni.Spectrum-sliced fiber amplifier light source for multichannel WDM applications[J],Photonics Technology Letters,IEEE,1993,5:1458-1461.
    [106]D.D.Sampson,W.T.Holloway.100 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems[J],Electronics Letters,1994,30:1611-1612.
    [107]T.A.Berkoff,A.D.Kersey.Fiber Bragg grating array sensor system using a bandpass wavelength division multiplexer and interferometric detection[J],Photonics Technology Letters,IEEE,1996,8:1522-1524.
    [108]L.Reekie,I.M.Jauncey,S.B.Poole,et al.Diode laser pumped operation of an Er-doped single mode fibre laser[J],Electronics Letters,1987,23:1076-1078.
    [109]P.Barnsley,P.Urquhart,C.Millar,et al.Fiber Fox-Smith resonators:application to single-longitudinal-mode operation of fiber lasers[J],J.Opt.Soc.Am.A,1988,5:1339-1346.
    [110]P.L.Scrivener,E.J.Tarbox,P.D.Maton.Narrow linewidth tunable operation of Er-doped single-mode fibre laser[J],Electronics Letters,1989,25:549-550.
    [111]J.L.Zyskind,J.W.Sulhoff,J.Stone,et al.Electrically tunable,diode-pumped erbium-doped fibre ring laser with fibre Fabry-Perot etalon[J],Electronics Letters,1991,27:1950-1951.
    [112]M.W.Maeda,J.S.Patel,D.A.Smith,et al.An electronically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element[J],Photonics Technology Letters,IEEE,1990,2:787-789.
    [113]H.M.Presby,A.F.Benner,C.A.Edwards.Laser Micromachining Of Efficient Fiber Microlenses[J],Appl.Opt.,1990,29:2692-2695.
    [114]D.A.Smith,M.W.Maeda,J.J.Johnson,et al.Acoustically tuned erbium-doped fiber ring laser[J],Opt.Lett.,1991,16:387-389.
    [115]G.A.Ball,W.W.Morey.Compression-tuned single-frequency Bragg grating fiber laser [J],Opt.Lett.,1994,19:1979-1981.
    [116]K.Hsu,W.H.Loh,D.Liang,et al.Efficient and tunable Er/Yb fiber grating lasers [J],Lightwave Technology,Journal of,1997,15:1438-1441.
    [117]S.Yamashita,M.Nishihara.Widely tunable erbium-doped fiber ring laser over 80 nm,in:Communications,1999.APCC/OECC,1502:1509-1510.
    [118]S.Yamashita.Widely tunable erbium-doped fiber ring laser covering both C-band and L-band[J],Selected Topics in Quantum Electronics,IEEE Journal of,2001,7:41-43.
    [119]M.Karasek,A.Bellemare.Numerical analysis of multifrequency erbium-doped fibre ring laser employing periodic filter and frequency shifter[J],Optoelectronics,IEE Proceedings -,2000,147:115-119.
    [120]董新永,关柏鸥,文伟成,et al.高斜率效率L波段宽带可调谐光纤环形腔激光器[J],光学学报,2002.
    [121]董新永,赵春柳,关柏鸥,et al.可调谐光纤环形腔激光器输出特性的理论与实验研究[J],物理学报,2002.
    [122]X.Dong,N.Ngo,P.Shum,et al.Linear cavity erbium-doped fiber laser with over 100 nm tuning range[J],Opt.Express,2003,11:1689-1694.
    [123]X.Dong,H.Y.Tam,B.O.Guan,et al.High power erbium-doped fiber ring laser with widely tunable range over 100 nm[J],Optics Communications,2003,224:295-299.
    [124]D.Xinyong,P.Shum,N.Q.Ngo,et al.Output power characteristics of tunable erbium-doped fiber ring lasers[J],Lightwave Technology,Journal of,2005,23:1334-1341.
    [125]E.Desurvire,C.R.Giles,J.R.Simpson.Gain saturation effects in high-speed,multichannel erbium-doped fiber amplifiers at 1.53 um[J],Lightwave Technology,Journal of,1989,7:2095-2104.
    [126]E.Desurvire,J.R.Simpson.Amplification of spontaneous emission in erbium-doped single-mode fibers[J],Lightwave Technology,Journal of,1989,7:835-845.
    [127]肖瑞,冯莹,唐波.用于高精度光纤陀螺的宽带掺铒光纤光源[J],光电子技术与信息,2003,6:40-44.
    [128]P.F.Wysocki,R.F.Kalman,M.J.F.Digonnet,et al.1.55-um broadband fiber sources pumped near 980 nm,SPIE,San Jose,USA 1991,pp.66-77.
    [129]P.F.Wysocki,K.A.Fesler,A.C.Liu,et al.Spectrum thermal stability of Nd- and Er-doped fiber sources,Ed.M.J.F.Digonnet,SPIE,San Jose,USA 1991,pp.234-245.
    [130]P.F.Wysocki.Broadband erbium-doped fiber sources for the fiber-optic gyroscope [D].Stanford,CA:Stanford Univ.,CA 1992.
    [131]R.F.Kalman,P.F.Wysocki,M.J.F.Digonnet:United States Patent(1993).
    [132]D.C.Hall,W.K.Burns.Wavelength stability optimisation in Er-doped superfluorescent fibre sources[J],Electronics Letters,1994,30:653-654.
    [133]P.H.Gap,L.K.Ah,C.Y.Jun,et al.Feedback effects in erbium-doped fiber amplifier/source for open-loop fiber-optic gyroscope[J],Lightwave Technology,Journal of,1997,15:1587-1593.
    [134]D.G.Falquier,J.L.Wagener,M.J.F.Digonnet,et al.Polarized superfluorescent fiber source[J],Opt.Lett.,1997,22:160-162.
    [135]H.J.Patrick,A.D.Kersey,W.K.Burns,et al.Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilisation[J],Electronics Letters,1997,33:2061-2063.
    [136]L.Goldberg,J.P.Koplow,R.P.Moeller,et al.High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber[J],Opt.Lett.,1998,23:1037-1039.
    [137]D.M.Dagenais,L.Goldberg,R.P.Moeller,et al.Wavelength stability characteristics of a high-power,amplified superfluorescent source[J],Lightwave Technology,Journal of,1999,17:1415-1422.
    [138]C.D.Su,L.A.Wang.Effect of adding a long period grating in a double-pass backward Er-doped superfluorescent fiber source[J],Lightwave Technology,Journal of,1999,17:1896-1903.
    [139]R.P.Espindola,G.Ales,J.Park,et al.80 nm spectrally flattened,high power erbium amplified spontaneous emission fibre source[J],Electronics Letters,2000,36:1263-1265.
    [140]J.H.Lee,U.C.Ryu,N.Park.Passive erbium-doped fiber seed photon generator for high-power Er3+-doped fiber fluorescent sources with an 80-nm bandwidth[J],Opt.Lett.,1999,24:279-281.
    [141]P.H.Gap,M.Digonnet,G.Kino.Er-doped superfluorescent fiber source with a 0.5-ppm long-term mean-wavelength stability[J],Lightwave Technology,Journal of,2003,21:3427-3433.
    [142]A.Altuncu.Band selection in broadband loop ASE source using seed signal injection [J],Photonics Technology Letters,IEEE,2006,18:1043-1045.
    [143]沈林放,钱景仁.高稳定宽频带掺饵光纤超荧光光源[J],光学学报,2001.
    [144]钱景仁,程旭,朱冰.掺铒光纤超荧光宽带光源的实验研究[J],中国激光,1998.
    [145]沈林放,陈登鹏,钱景仁.掺饵光纤超荧光光源的理论模拟[J],计算物理,2001.
    [146]沈林放,钱景仁.双程后向结构饵光纤超荧光光源的理论分析[J],量子电子学报,2000.
    [147]侯国付,李乙钢,付成鹏,et al.掺稀土元素光纤超荧光光源[J],激光杂志,2002.
    [148]王蓟,赵崇光,刘洋,et al.L波段高掺饵光纤超荧光光源[J],发光学报,2006.
    [149]孙良勇.宽带掺铒光纤超荧光光源的研究[D],2006.
    [150]刘少辉.C+L波段宽带ASE光源研究[D],2006.
    [151]陈爽,冯莹,魏立安.一种低成本简化结构的超宽带光纤光源[J],半导体光电,2006.
    [152]郭小东,乔学光,贾振安,et al.新颖的双级双程输出C+L波段高功率宽带光源[J],光电子.激光,2005.
    [153]R.G.May,A.Wang,H.Xiao,et al.SCIIB pressure sensors for oil extraction applications,in:Harsh Environment Sensors Ⅱ Boston,MA,USA 1999.
    [154]G.Zhang,Q.Yu,S.Song.An investigation of interference/intensity demodulated fiber-optic Eabry-Perot cavity sensor[J],Sensors and Actuators A:Physical,2004,116:33-38.
    [155]B.Qi,G.R.Pickrell,J.Xu,et al.Novel data processing techniques for dispersive white light interferometer[J],Optical Engineering,2003,42:3165-3171.
    [156]T.Liu,G.F.Fernando.A frequency division multiplexed low-finesse fiber optic Fabry-Perot sensor system for strain and displacement measurements[J],Review of Scientific Instruments,2000,71:1275-1278.
    [157]章鹏,朱永,陈伟民.光纤法布里-珀罗传感器腔长的傅里叶变换解调原理研究[J],光子学报,2004.
    [158]S.M.Musa.Real-Time Signal Processing and Hardware Development for a Wavelength Modulated Optical Fiber Sensor System[D]:Virginia Polytechnic Institute and State University,1997.
    [159]C.Belleville,G.Duplain.White-light interferometric multimode fiber-optic strain sensor[J],Opt.Lett.,1993,18:78-80.
    [160]荆振国.白光非本征法布里—珀罗干涉光纤传感器及其应用研究[D],2006.
    [161]宋世德.长周期光纤光栅的特性及传感应用研究[D],2006.
    [162]http://www.roctest.com/.
    [163]http://www.micronoptics.com.cn/.
    [164]http://www.smartfibres.com/.
    [165]http://www.primephotonics.com/.
    [166]http://www.pioptics.com/.
    [167]http://www.tricombj.com/.
    [168]http://www.synetoptics.com/index.asp.
    [169]http://www.bandweaver.com/.
    [170]M.波恩,E.沃耳夫.光学原理(上、下)[M].北京:电子工业出版社,2008.
    [171]赵凯华,钟锡华.光学(上、下)[M].北京:北京大学出版社,2008.
    [172]D.T.Neilson.Tolerance of optical interconnections to misalignment[J],Applied Optics,1999,38:2282-2290.
    [173]张桂菊.应用于高温高压测量的非本征型光纤法布里-珀罗传感器系统研究[D],2005.
    [174]Y.Jiang,C.Tang.Fourier transform white-light interferometry based spatial frequency-division multiplexing of extrinsic Fabry-Perot interferometric sensors[J],Review of Scientific Instruments,2008,79:106105-106103.
    [175]Yi Jiang.Fourier-transform phase comparator for the measurement of extrinsic Fabry-Perot interferometric sensors[J],Microwave and Optical Technology Letters,2008,50:2621-2625.
    [176]P.W.France.Optical Fibre Lasers and Amplifiers[M]:CRC Press,1991.
    [177]C.R.Giles,E.Desurvire.Modeling erbium-doped fiber amplifiers[J],Lightwave Technology,Journal of,1991,9:271-283.
    [178]W.J.Miniscalco.Erbium-doped glasses for fiber amplifiers at 1500 nm[J],Lightwave Technology,Journal of,1991,9:234-250.
    [179]E.Desurvire.Erbium-doped Fiber Amplifiers[M].New York:John Wiley,1994.
    [180]C.B.Layne,W.H.Lowdermilk,M.J.Weber.Multiphonon relaxation of rare-earth ions in oxide glasses[J],Physical Review B,1977,16:10.
    [181]R.S.Quimby,W.J.Miniscalco,B.A.Thompson.Upconversion and 980-nm excited-state absorption in erbium-doped glass,SPIE,Boston,MA,USA 1993,pp.50-57.
    [182]沈柯.关于超荧光[J],中国激光,1981,9:545-550.
    [183]曹昌祺.超荧光的基本概念—多原子的合作自发辐射[J],1988.
    [184]M.J.Weber.Science and technology of laser glass[J],Journal of Non-Crystalline Solids,1990,123:208-222.
    [185]L.A.Wang,C.D.Chen.Stable and broadband Er-doped superfluorescent fibre sources using double-pass backward configuration[J],Electronics Letters,1996,32:1815-1817.
    [186]http://knology.chinaccm.com/phrase-2006051611380300447.html.
    [187]郭小东,乔学光.一种波段高功率掺饵光纤宽带光源[J],Chinese Journal Of Lasers,2005,32:609-612.
    [188]http://www.wavelengthreferences.com/.
    [189]H.Xiao.Self-Calibrated Interferometric/Intensity-Based Fiber Optic Pressure Sensors[D].Virginia:Virginia Polytechnic Institute and State University,2000.
    [190]Z.Wang.Self-Calibrated Interferometric/Intensity Based Fiber Optic Temperature Sensors[D].Virginia:Virginia Polytechnic Institute and State University,2000.
    [191]A.Othonos.Fiber Bragg gratings[J],Review of Scientific Instruments,1997,68:4309-4341.
    [192]H.S.Choi,A.Cantrelle,C.Bergeron,et al.Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores,SPIE,Philadelphia,PA,USA 2004,pp.337-344.
    [193]A.Wang,H.Xiao,J.Wang,et al.Self-calibrated interferometric-intensity-based optical fiber sensors[J],Journal Of Lightwave Technology,2001,19:1495-1501.
    [194]A.F.Guillermet.The pressure dependence of the expansivity and of the Anderson-Grueneisen parameter in the Murnaghan approximation[J],Journal of Physics and Chemistry of Solids,1986,47:605-607.
    [195]H.S.Choi,A.Cantrelle,C.Bergeron,et al.Minimization of temperature cross-sensitivity of EFPI pressure sensor for oil and gas exploration and production applications in well bores[J],Fiber Optic Sensor Technology and Applications Ⅲ,2004,5589:337-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700