半导体光放大器的光网络若干关键功能中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕半导体光放大器(SOA)在光网络中的光源、光交换节点、微波和光纤融合等三个关键功能中的应用展开研究,内容包括各种光纤环形激光器、全光时钟恢复技术、全光超宽带信号产生和调制技术等。概括全文,我们的研究成果和贡献主要包括以下几个方面:
     (1)提出并数值研究了一种使用强度调制器的损耗调制和SOA的非线性偏振旋转(NPR)效应的主、被动锁模光纤环形激光器;提出并实验研究了一种基于SOA的增益损耗调制和单端SOA的NPR效应的主、被动锁模光纤环形激光器;提出并实验研究了一种使用色散补偿光纤和光纤延时干涉仪的波长可切换的锁模光纤环形激光器,仅通过调节可调光延时线即可实现11个波长的依次切换。
     (2)提出并实验研究了一种使用SOA和法布里-珀罗半导体光放大器(FP-SOA)的L波段波长可调谐多波长锁模光纤激光器,可同时产生锁定在10 GHz的19个振荡波长,并且振荡波长带宽和信道间隔可以方便地调谐;提出并实验研究了一种包含两个SOA和一个双通马赫-曾德尔干涉仪(MZI)的多波长连续波光纤环形激光器,实现了稳定的82个波长同步振荡,在同等条件下比使用传统MZI的激光器产生的波长梳数目提高12个;提出并实验研究了一种包含双通MZI的波长可调谐、可切换的单纵模双波长掺铒光纤激光器,使用双通MZI提高了梳状滤波器的消光比,有效抑制模式竞争,并且可通过改变光纤跳线,实现激光器输出波长的切换。
     (3)提出并实验研究了使用保偏光纤环镜滤波器和一个SOA锁模光纤环形激光器实现20Gbit/s非归零-差分相移键控(NRZ-DPSK)数据的波长可调谐全光时钟恢复;提出并实验研究了使用基于单端SOA的NPR效应的锁模光纤环形激光器的全光时钟恢复机制,通过调整偏振控制器,可以使其工作在类似于饱和透射体的工作状态,实现脉冲振幅均衡的时钟输出。
     (4)提出并实验研究了一种基于多量子阱(MQW) FP-SOA主动滤波器和非线性偏振开关(SNPS)的单波长和多波长归零(RZ)数据全光时钟恢复的新方法;提出并实验研究了使用MQW FP-SOA主动滤波器和SNPS从NRZ和NRZ-DPSK调制格式数据中直接提取时钟,不需要增加任何额外的器件来进行数据格式转换或预处理;通过数值计算揭示了时钟脉冲振幅均衡度和FP-SOA端面反射率的关系,并实验研究了使用具有适当端面反射率的单个MQW FP-SOA从输入的单波长和多波长RZ调制格式数据中实现全光时钟恢复。
     (5)提出并实验研究了基于单个偏振干涉仪(PI)的光子超宽带脉冲产生方案,将暗RZ信号输入到单个PI中,通过调整PC,可获得一对极性相反的超宽带monocycle脉冲和一个超宽带doublet脉冲;提出并实验研究了使用SOA级联一个PI的光子超宽带高斯脉冲的产生和全光调制方案。通过调整偏振控制器,正、负极性的超宽带monocycle和doublet脉冲可全部获得。利用SOA-XGM效应和PI的微分功能,可实现超宽带信号的脉冲形状调制;提出并实验研究了一种基于SOA级联DWDM的光子超宽带产生和全光调制方案。改变探测光波长可产生正、负极性的超宽带monocycle和doublet高斯脉冲,可实现了多通道UWB信号产生和二进制相位编码的UWB信号产生。如果控制光信号本身包含信息,还可实现超宽带信号的脉冲幅度调制。
The application of semiconductor optical amplifier (SOA) for three key functions in optical communications networks are investgatated, including optical source, optical switching nodes, integration of microwave and fiber technologies. A variety of fiber ring laser, all-optical clock recovery techniques, and all-optical ultrawideband (UWB) signal generation and modulation techniques are presented and demonstrated. Our research achievements and contributions are summarized as following:
     (1) A novel actively and passively mode-locked SOA fiber ring laser was presented and demonstrated, where SOA provided cavity gain and introduced nonlinear polarization rotation (NPR), whereas, intensity modulator not only acted as modulator but also polarizer. A fiber-ring laser incorporating dual mode-locking mechanisms is also presented and demonstrated, where a multi-quantum well (MQW) SOA acts as active loss modulator and a reflective SOA introduce NPR and function as a saturable absorber. In addition, we also demonstrate a fiber ring laser with a segment of dispersion compensation fiber and a delayed interferometer with temperature control, which is able to switch eleven wavelengths one by one.
     (2) We present and demonstrate a multi-wavelength mode-locked fiber ring laser incorporating a SOA and a Fabry-Perot semiconductor optical amplifier (FP-SOA), which can generate 19 synchronized wavelength channels with the extinction ratio of about 21 dB, each mode-locked at 10 GHz. We also demonstrate a multi-wavelength SOA fiber ring laser with a dual-pass Mach-Zehnder interferometer (MZI) filter, a stable 82 wavelengths with a wavelength spacing of 40 GHz simultaneous oscillate is acquired. In addition, a wavelength tunable and switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser using a dual-pass MZI comb filter is also presented and demonstrated.
     (3) All-optical clock recovery (AOCR) from 20 Gbit/s nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signals are demonstrated experimentally by using a polarization-maintaining fiber loop mirror filter (PMF-LMF) and a SOA mode-locked fiber ring laser. In addition, we also report an AOCR technology with pulse-amplitude-equalization scheme using NPR of reflective SOA (RSOA).
     (4) We experimentally demonstrate a novel AOCR scheme for the RZ data with single-and multiwavelength. This scheme is mainly based on clock-like pulse generation from an active filter with a MQW FP-SOA and amplitude-equalization scheme with self-nonlinear polarization switching (SNPS). We also demonstrated the same scheme is used for AOCR from the input NRZ and NRZ-DPSK data without any preprocessing measures. In addition, we presented and demonstrated AOCR from the input RZ data with single-and multiwavelength, using a single MQW FP-SOA, without any additional amplitude equalization measure. The facets reflectivity of FP-SOA influence on amplitude equalization of recovered clock was numerically investigated.
     (5) We proposed and demonstrated an all-optical polarity-and shape-switchable UWB Gaussian pulses generation scheme using a single polarization interferometer (PI) or a SOA cascaded by a PI. Moreover, if a NRZ control signal is introduced into the SOA, utilizing cross-gain modulation (XGM) effect of the SOA, all-optical modulation to UWB signals can be realized. We also present and demonstrate an all-optical UWB Gaussian pulses generation and modulation scheme using a SOA cascaded by a DWDM.
引文
[1]http://www.biancenR.cn/Network/zhbx/200806/10662.htm.
    [2]张劲松,陶智勇,韵湘,光波分复用技术.北京邮电大学出版社,2002.
    [3]张巍巍,锁模光纤激光器及其应用研究:[博士论文],光电子工程系,华中科技大学,2009.
    [4]谢世钟,陈明华,董毅,et al.光分组交换网络技术展望.清华大学学报(自然科学版).2002,42(7):855-859.
    [5]陈国杰,ROF系统中光学产生毫米波及相关技术的研究:[博士论文],光电子工程系,华中科技大学,2009.
    [6]Fermann M. E., Hofer M., Haberl F., et al. Additive-pulse compression mode locking of a neodymium fiber laser. Opt. Lett.1991,16(4):244-6.
    [7]Hofer M., Ober M. H., Haberl F., et al. Characterization of ultrashort pulse formation in passively mode-locked fiber lasers. IEEE J. Quantum, Electron.1992, 28(3):720-728.
    [8]Tamura K., Haus H. A., Ippen E. P. Self-starting additive pulse mode-locked erbium fibre ring laser. Electron. Lett.1992,28(24):2226-2228.
    [9]Noske D. U., Pandit N., Taylor J. R. Subpicosecond soliton pulse formation from self-mode-locked erbium fibre laser using intensity dependent polarisation rotation. Electron. Lett.1992,28(23):2185-2186.
    [10]Tamura K., Ippen E. P., Haus H. A., et al.77-Fs Pulse Generation From A Stretched-Pulse Mode-Locked All-Fiber Ring Laser. Opt. Lett.1993,18(13): 1080-1082.
    [11]Ilday F. O., Buckley J. R., Lim H., et al. Generation of 50-fs,5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser. Opt. Lett.2003,28(15):1365-1367.
    [12]Lim H., Ilday F. O., Wise F. W. Generation of 2-nJ pulses from a femtosecond ytterbium fiber laser. Opt. Lett.2003,28(8):660-662.
    [13]Resan B., Archundia L., Delfyett Jr P. J., et al. Dispersion-managed semiconductor mode-locked ring laser. Opt. Lett.2003,28(15):1371-1373.
    [14]Avdokhin A. V., Popov S. V., Taylor J. R. Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm. Opt. Express.2003,11(3):265-269.
    [15]Gong Y. D., Shum P., Tang D. Y., et al. Close spaced ultra-short bound solitons from DI-NOLM Figure-8 fiber laser. Opt. Commun.2003,220(4-6):297-302.
    [16]Albert A., Couderc V., Lefort L., et al. High-Energy Femtosecond Pulses From an Ytterbium-Doped Fiber Laser With a New Cavity Design. IEEE Photon. Technol. Lett.2004,16(2):416-418.
    [17]Chestnut D. A., Taylor J. R. Fiber Raman figure-of-eight lasers. CLEO.2004,96 A: 51-52.
    [18]Resan B., Archundia L., Delfyett Jr P. J. FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managed breathing-mode semiconductor mode-locked laser. IEEE Photon. Technol. Lett.2005,17(7): 1384-1386.
    [19]Chong A., Buckley J., Renninger W., et al. All-normal-dispersion femtosecond fiber laser. Opt. Express.2006,14(21).
    [20]Zhou S., Ouzounov D. G., Wise F. W. Passive harmonic mode-locking of a soliton Yb fiber laser at repetition rates to 1.5 GHz. Opt. Lett.2006,31(8):1041-1043.
    [21]Dianov E. M., Krylov A. A., Dvoyrin V. V., et al. Mode-locked Bi-doped fiber laser. J. Opt. Soc. Am. B.2007,24(8):1807-1808.
    [22]Schultz M., Prochnow O., Ruehl A., et al. Sub-60-fs ytterbium-doped fiber laser with a fiber-based dispersion compensation. Opt. Lett.2007,32(16):2372-2374.
    [23]Chen J., Sickler J. W., Fendel P., et al. Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication. Opt. Lett.2008,33(9):959-961.
    [24]Herda R., Okhotnikov O. G. Mode-locked Yb-doped fiber laser with external compression to 89 fs in normal dispersion fiber. Appl. Opt.2008,47(9):1182-1186.
    [25]Richardson D. J., Laming R. I., Payne D. N., et al. Selfstarting, passively modelocked erbium fibre ring laser based on the amplifying Sagnac switch. Electron. Lett.1991,27(6):542-544.
    [26]Fontana F., Grasso G., Manfredini N., et al. Generation of sequences of ultrashort pulses in erbium doped fibre single ring lasers. Electron. Lett.1992,28(14): 1291-1293.
    [27]Guy M. J., Noske D. U., Taylor J. R. Generation of femtosecond soliton pulses by passive mode locking of an ytterbium-erbium figure-of-eight fiber laser. Opt. Lett. 1993,18(17):1447-1449.
    [28]Yoshida E., Nakazawa M.80approx.200 GHz erbium doped fibre laser using a rational harmonic mode-locking technique. Electron. Lett.1996,32(15):1370-1372.
    [29]Shenping L., Caiyun L., Chan K. T. Rational harmonic active and passive modelocking in a figure-of-eight fibre laser. Electron. Lett.1998,34(4):375-376.
    [30]Abedin K. S., Hyodo M., Onodera N.154 GHz polarisation-maintaining dispersion-managed actively modelocked fibre ring laser. Electron. Lett.2000, 36(14):1185-1186.
    [31]Nakazawa M., Yoshida E., Tamura K. 10GHz,2ps regeneratively and harmonically FM mode-locked erbium fibre ring laser. Electron. Lett.1996,32(14):1285-1287.
    [32]Yang S., Ponomarev E. A., Bao X.80-GHz pulse generation from a repetition-rate-doubled FM mode-locking fiber laser. IEEE Photon. Technol. Lett. 2005,17(2):300-302.
    [33]Schroder J., Coen S., Vanholsbeeck F., et al. Passively mode-locked Raman fiber laser with 100 GHz repetition rate. Opt. Lett.2006,31(23):3489-3491.
    [34]Endo M., Ghosh G., Tanaka Y., Stable generation of ultrashort tunable pulses using a soliton fiber laser, IEEE Nonlinear Optics:Materials, Fundamentals and Applications-Conference Proceedings,1998,60-62.
    [35]Papakyriakopoulos T., Vlachos K., Hatziefremidis A., et al.20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser. Opt. Lett.1999, 24(17):1209-1211.
    [36]Tamura K. R., Nakazawa M. Femtosecond soliton generation over a 32-nm wavelength range using a dispersion-flattened dispersion-decreasing fiber. IEEE Photon. Technol. Lett.1999,11(3):319-321.
    [37]Zoiros K., Vlachos K., Stathopoulos T., et al.,40 GHz mode-locked SOA fiber ring laser with 20 nm tuning range, Conference on Optical Fiber Communication, Technical Digest Series,2000,254-256.
    [38]Abedin K. S., Hyodo M., Onodera N. Active stabilization of a higher-order mode-locked fiber laser operating at a pulse-repetition rate of 154 GHz. Opt. Lett. 2001,26(3):151-153.
    [39]Lin G. R., Chiu I. H.,10 GHz dark-optical-comb injection-mode-locked semiconductor optical amplifier fiber laser with 400 fs and 30 nm tunable pulses, 2006 Optical Fiber Communication Conference, and the 2006 National Fiber Optic Engineers Conference,2006,1636543.
    [40]An H. L., Lin X. Z., Pun E. Y. B., et al. Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter. Opt. Commun.1999,169(1-6):159-165.
    [41]Kim S. K., Chu M. J., Lee D. H., et al. Wideband multiwavelength erbium-doped fiber ring laser. Optical Fiber Communication Conference.2000,8 Ⅰ ThA3-1-3.
    [42]Bumki Min P. K., Namkyoo Park. Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber. IEEE Photon. Technol. Lett.2001,13(12):1352-1354.
    [43]Pleros N., Bintjas C., Kalyvas M., et al. Multiwavelength and power equalized SOA laser sources. IEEE Photon. Technol. Lett.2002,14(5):693-695.
    [44]Han Y. G., Kim C. S., Kang J. U., et al. Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings. IEEE Photon. Technol. Lett. 2003,15(13):383-385.
    [45]Tong F. W., Jin W., Wang D. N., et al. Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm. Electron. Lett.2004,40(10):594-595.
    [46]Chen H. X. Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier. Opt. Lett.2005,30(6):619-621.
    [47]Feng X., Tam H.-y., Wai P. K. A. Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation. Opt. Express.2006, 14(18):8205-8210.
    [48]Moon D. S., Kim B. H., Lin A., et al. Tunable multi-wavelength SOA fiber laser based on a Sagnac loop mirror using an elliptical core side-hole fiber. Opt. Express. 2007,15(13):8371-8376.
    [49]Zhang Z. X., Xu K., Wu J., et al. Two Different Operation Regimes of Fiber Laser Based on Nonlinear Polarization Rotation:Passive Mode-Locking and Multiwavelength Emission. IEEE Photon. Technol. Lett.2008,20(12):979-981.
    [50]Luo A.-P., Luo Z.-C., Xu W.-C. Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer. Opt. Lett.2009,34(14):2135-2137.
    [51]Lou J. W., Carruthers T. F., Currie M. Mode-locked multiple-wavelength erbium-doped fiber laser in a sigma configuration. IEEE Photon. Technol. Lett.2002, 14(3):281-283.
    [52]Hayashi R., Yamashita S., Saida T., Multiwavelength, Actively Mode-Locked Polarization Maintaining Fiber Laser at 10 GHz, Conference on Optical Fiber Communication, Technical Digest Series,2003,239-240.
    [53]Lou J. W., Carruthers T. F., Currie M.4 ×10 GHz Mode-Locked Multiple-Wavelength Fiber Laser. IEEE Photon. Technol. Lett.2004,16(1):51-53.
    [54]Dong H., Zhu G., Wang Q., et al. Stabilization of simultaneous mode locked operation at two wavelengths. Opt. Express.2004,12(18):4297-4302.
    [55]Yang J. L., Tjin S. C., Ngo N. Q., et al. Double-ring cavity configuration of actively mode-locked multi-wavelength fiber laser with equally tunable wavelength spacing. Applied Physics B:Lasers and Optics.2005,80(4-5):445-448.
    [56]Gong Y. D., Tang M., Shum P., et al. Dual-wavelength 10-GHz actively mode-locked erbium fiber laser incorporating highly nonlinear fibers. IEEE Photon. Technol. Lett.2005,17(12):2547-2549.
    . [57] Tang M., Tian X. L., Shum P., et al. Four-wave mixing assisted self-stable 4×10 GHz actively mode-locked Erbium fiber ring laser. Opt. Express.2006, 14(5):1726-1730.
    [58]Pan S. L., Lou C. Y. Analysis of gain competition, suppression in multiwavelength actively mode-locked erbium-doped fiber lasers incorporating a highly nonlinear fiber. IEEE J. Quantum, Electron.2008,44(3):245-253.
    [59]Hernandez-Cordero J., Chen L. R., Rochette M. Multirate and Dual-Wavelength Semiconductor Fiber Laser. IEEE Photon. Technol. Lett.2009,21(12):808-810.
    [60]Takara H., Kawanishi S., Saruwatari M., et al. Multiwavelength birefringent-cavity mode-locked fibre laser. Electron. Lett.1992,28(25):2274-2275.
    [61]Li S., Chan K. T., Liu Y., et al. Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings. IEEE Photon. Technol. Lett.1998,10(12):1712-1714.
    [62]Pan S., Lou C. Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation. IEEE Photonics Technology Letters.2006,18(13):1451-1453.
    [63]Zhang W. W., Sun J. Q., Wang J., et al. Multiwavelength mode-locked fiber-ring laser based on reflective semiconductor optical amplifiers. IEEE Photon. Technol. Lett.2007,19(19):1418-1420.
    [64]Papakyriakopoulos T., Stavdas A., Protonotarios E. N., et al.10 x 10 GHz simultaneously modelocked multiwavelength fibre ring laser. Electron. Lett.1999, 35(9):717-718.
    [65]Vlachos K., Zoiros K., Houbavlis T., et al.10 x 30 GHz pulse train generation from semiconductor amplifier fiber ring laser. IEEE Photon. Technol. Lett.2000,12(1): 25-27.
    [66]Yao J., Yao J., Deng Z. Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise. Opt. Express.2004,12(19):4529-4534.
    [67]Deng Z., Yao J., Dual-wavelength passively mode-locked fiber ring laser, Canadian Conference on Electrical and Computer Engineering,2004,0849-0852.
    [68]Yao J., Yao J., Deng Z., et al. Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-based phase modulator in the laser cavity. J. Lightw. Technol.2005,23(8):2484-2490.
    [69]Cao H., Chen L. R., Magne J., et al. Tunable 4×10 GHz optically modelocked semiconductor fibre laser. Electron. Lett.2005,41(13):730-732.
    [70]Gong Y. D., Tian X. L., Tang M., et al. Generation of dual wavelength ultrashort pulse outputs from a passive mode locked fiber ring laser. Opt. Commun.2006, 265(2):628-631.
    [71]Yang H. L., C.Tjin S., Ngo N. Q. Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings. Opt. Fib. Technol.2007,13(3):267-270.
    [72]Chen L. R., Cheng A. L. K., Shu C., et al.46 x 2.5 GHz mode-locked erbium-doped fiber laser with 25-GHz spacing. IEEE Photon. Technol. Lett.2007,19(23): 1871-1873.
    [73]O'Riordan C., Connelly M. J., Evans I., et al., Actively Mode-locked Multiwavelength Fibre Ring Laser Incorporating a Lyot Filter, Hybrid Gain Medium and Birefringence Compensated LiNbO3 Modulator, ICTON 2007,248-251.
    [74]Peng G. H., Chi Y. C., Lin G. R. DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring. Opt. Express.2008,16(17):13405-13413.
    [75]Liu J., Yao J. P., Yao J., et al. Single-longitudinal-mode multiwavelength fiber ring laser. IEEE Photon. Technol. Lett.2004,16(4):1020-1022.
    [76]Chen X. F., Yao J. P., Deng Z. C. Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser. Opt. Lett.2005,30(16):2068-2070.
    [77]Chen G. J., Huang D. X., Zhang X. L., et al. Photonic generation of a microwave signal by incorporating a delay interferometer and a saturable absorber. Opt. Lett. 2008,33(6):554-556.
    [78]Pan S., Zhao X., Lou C. Switchable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser incorporating a semiconductor optical amplifier. Opt. Lett.2008,33(8):764-766.
    [79]Pan S., Yao J. Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-finesse ring filter. Opt. Express.2009,17(14):12167-12173.
    [80]Pan S. L., Yao J. P. A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation. Opt. Express.2009,17(7):5414-5419.
    [81]Jinno M., Matsumoto T. Optical Tank Circuits Used for All-Optical Timing Recovery. IEEE J. Quantum, Electron.1992 28(4):895-900.
    [82]Butler D. L., Wey J. S., Chbat M. W., et al. Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering. Opt. Lett. 1995,20(6):560-562.
    [83]Johnson C., Demarest K., Allen C., et al. Multiwavelength all-optical clock recovery. IEEE Photon. Technol. Lett.1999,11(7):895-897.
    [84]Mathason B. K., Delfyett P. J. Pulsed injection locking dynamics of passively mode-locked external-cavity semiconductor laser systems for all-optical clock recovery. J. Lightw. Technol.2000,18(8):1111-1120.
    [85]Mao W. M., Al-Mumin M., Wang X. H., et al. All-optical enhancement of clock and clock-to-data suppression ratio of NRZ data. IEEE Photon. Technol. Lett.2001, 13(3):239-241.
    [86]Mikhailov V., Bayvel P. All-optical multiwavelength clock recovery using integrated semiconductor amplifier array module. Electron. Lett.2001,37(4): 232-234.
    [87]Wen Y. J., Liu H. F., Novak D. Optical signal generation at millimeter-wave repetition rates using semiconductor lasers with pulsed subharmonic optical injection. IEEE J. Quantum, Electron.2001,37(9):1183-1193.
    [88]Mao W. M., Li Y. H., Al-Mumin M., et al. All-optical clock recovery from RZ-format data by using a two-section gain-coupled DFB laser. J. Lightw. Technol. 2002,20(9):1705-1714.
    [89]Kim C., Kim I., Li X., et al. All-optical clock recovery of NRZ data at 40 Gbit/s using Fabry-Perot filter and two-section gain-coupled DFB laser. Electron. Lett. 2003,39(20):1456-1458.
    [90]Contestabile G., Errico A. D., Presi M., et al.40-GHz all-optical clock extraction using a semiconductor-assisted fabry-Pe´rot filter. IEEE Photon. Technol. Lett.2004,16(11):2523-2525.
    [91]Li X. X., Kim C., Li G. F. All-optical passive clock extraction of 40 Gbit/s NRZ data using narrow-band filtering. Opt. Express.2004,12(14):3196-3203.
    [92]Tangdiongga E., Turkiewicz J. P., Khoe G. D., et al. Clock recovery by a fiber ring laser employing a linear optical amplifier. IEEE Photon. Technol. Lett.2004,16(2): 611-613.
    [93]Yang Y. M., Wen Y. J., Nirmalathas A., et al. Optical clock recovery at line rates via injection locking of a long cavity Fabry-Perot laser diode. IEEE Photon. Technol. Lett.2004,16(6):1561-1563.
    [94]Bakopoulos P., Tsiokos D., Zouraraki O., et al. Compact all-optical packet clock and data recovery circuit using generic integrated MZI switches. Opt. Express.2005, 13(17):6401-6406.
    [95]Kim I., Kim C., LiKamWa P. L., et al. Dynamics of all-optical clock recovery using two-section index-and gain-coupled DFB lasers. J. Lightw. Technol.2005,23(4): 1704-1712.
    [96]Kehayas E., Stampoulidis L., Avramopoulos H., et al.40 Gb/s all-optical packet clock recovery with ultrafast lock-in time and low inter-packet guardbands. Opt. Express.2005,13(2):475-480.
    [97]Renaudier J., Lavigne B., Jourdran M., et al. First demonstration of all-optical clock recovery at 40 GHz with standard-compliant jitter characteristics based on a quantum-dots self-pulsating semiconductor laser. ECOC 2005,31st European Conference.2005,6(6):31-32.
    [98]Yang Jing W., Chang-Joong C., Hai Feng L. Time-domain polarization interleaving of signal to allow polarization-insensitive all-optical clock recovery. IEEE Photon. Technol. Lett.2005,17(6):1304-1306.
    [99]Contestabile G., Presi M., Calabretta N., et al. All-optical clock recovery for NRZ-DPSK signals. IEEE Photon. Technol. Lett.2006,18(23):2544-2546.
    [100]Juraj S., Carsten B., Stefan B., et al., Novel Concept for All-Optical Clock Recovery from NRZ Format PRBS Data Streams, Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,2006, OThS6.
    [101]Yu Y., Zhang X. L., Huang D. X. All-optical clock recovery from NRZ-DPSK signal. IEEE Photon. Technol. Lett.2006,18(22):2356-2358.
    [102]Arahira S., Ogawa Y. Polarization-insensitive all-optical 160-Gb/s clock recovery with a monolithic passively mode-locked laser diode in polarization-diversity configuration. IEEE J. Quantum, Electron.2007,43(12):1204-1210.
    [103]Fu S. N., Tang M., Zhong W. D., et al. All-Optical NRZ-DPSK Clock Recovery Using Chromatic-Dispersion-Induced Clock Tone. IEEE Photon. Technol. Lett. 2007,19(12):925-927.
    [104]Koch B. R., Barton J. S., Masanovic M., et al. Monolithic mode-locked laser and optical amplifier for regenerative pulsed optical clock recovery. IEEE Photon. Technol. Lett.2007,19(9-12):641-643.
    [105]Presi M., Calabretta N., Contestabile G., et al. Wide dynamic range all-optical clock and data recovery from preamble-free NRZ-DPSK packets. IEEE Photon. Technol. Lett.2007,19(6):372-374.
    [106]Pudo D., Depa M., Chen L. R. Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect. J. Lightw. Technol.2007, 25(10):2898-2903.
    [107]Roncin V., Lobo S., Bramerie L., et al. System characterization of a passive 40 Gb/s All Optical Clock Recovery ahead of the receiver. Opt. Express.2007,15(10): 6003-6009.
    [108]Yu Y., Zhang X. L., Zhou E. B., et al. All-optical clock recovery from NRZ signals at different bit rates via preprocessing by an optical filter. IEEE Photon. Technol. Lett.2007,19(24):2039-2041.
    [109]Brian R. K., Alexander W. F., Henrik N. P., et al., All-Optical Clock Recovery with Retiming and Reshaping Using a Silicon Evanescent Mode Locked Ring Laser, Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,2008, OMN1.
    [110]Chen L. R., Cartledge J. C. Mode-locking in a semiconductor fiber laser using cross-absorption modulation in an electroabsorption modulator and application to all-optical clock recovery. J. Lightw. Technol.2008,26(5-8):799-806.
    [111]Contestabile G., Proietti R., Calabretta N., et al. Simultaneous demodulation and clock-recovery of 40-gb/s NRZ-DPSK signals using a multiwavelength Gaussian filter. IEEE Photon. Technol. Lett.2008,20(9-12):791-793.
    [112]Fernandez A., Chao L., Chi J. W. D. All-optical clock recovery and pulse reshaping using semiconductor optical amplifier and dispersion compensating fiber in a ring cavity. IEEE Photon. Technol. Lett.2008,20(13):1148-1150.
    [113]Fu S. N., Zhong W. D., Tang M., et al. All-optical NRZ-DPSK clock recovery using linearly chirped fiber Bragg grating induced clock tone. Opt. Fib. Technol.2008,14: 222-226.
    [114]Spyropoulou M., Pleros N., Papadimitriou G., et al. A High-Speed Multiwavelength Clock Recovery Scheme for Optical Packets. IEEE Photon. Technol. Lett.2008, 20(24):2147-2149.
    [115]Wang W. R., Yu J. L., Zhang A. X., et al. Investigation of a rate-selectable all-optical packet clock recovery system. IEEE Photon. Technol. Lett.2008,20(7): 466-468.
    [116]Arahira S., Takahashi H., Nakamura K., et al. Polarization-, Wavelength-, and Filter-Free All-Optical Clock Recovery in a Passively Mode-Locked Laser Diode With Orthogonally Pumped Polarization-Diversity Configuration. IEEE J. Quantum, Electron.2009,45(5):476-487.
    [117]Oxenloe L., Goez-Agis F., Ware C., et al.640-Gbit/s Data Transmission and Clock Recovery Using an Ultrafast Periodically Poled Lithium Niobate Device. J. Lightwave Technol.2009,27(3):205-213.
    [118]Pan S. L., Yao J. P. A Frequency-Doubling Optoelectronic Oscillator Using a Polarization Modulator. IEEE Photon. Technol. Lett.2009,21(13):929-931.
    [119]Tang X., Cartledge J. C., Shen A., et al. Low-timing-jitter all-optical clock recovery for 40 Gbits/s RZ-DPSK and NRZ-DPSK signals using a passively mode-locked quantum-dot Fabry-Perot semiconductor laser. Opt. Lett.2009,34(7):899-901.
    [120]Wang F., Yu Y., Huang X., et al. Single and Multiwavelength All-Optical Clock Recovery Using Fabry-Perot Semiconductor Optical Amplifier. IEEE Photon. Technol. Lett.2009,21(16):1109-1111.
    [121]Yao J. P., Zeng F., Wang Q. Photonic generation of ultrawideband signals. J. Lightw. Technol.2007,25(11):3219-3235.
    [122]Ishida H., Araki K. Design and analysis of UWB bandpass filter with ring filter. IEEE MTT-S Int. Tech. Dig.2004,3:1307-1310.
    [123]Zhu L., Sun S., Menzel W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microw. Wireless Compon. Lett.2005,15(11): 796-798,.
    [124]Lin W. P., Chen J. Y. Implementation of a new ultrawide-band impulse system. IEEE Photon. Technol. Lett.2005,17(11):2418-2420.
    [125]Zeng F., Yao J. P. Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator. IEEE Photon. Technol. Lett.2006,18(19):2062-2064.
    [126]Lin W. P., Chen Y. C. Design of a new optical impulse radio system for ultra-wideband wireless communications. IEEE J. Select. Topics Quantum Electron. 2006,12(4):882-887.
    [127]Wang Q., Zeng F., Blais S., et al. Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier. Opt. Lett.2006, 31(21):3083-3085.
    [128]Zeng F., Yao J. P. An approach to ultrawideband pulse generation and distribution over optical fiber. IEEE Photon. Technol. Lett.2006,18(7):823-825.
    [129]Chen H., Chen M., Qiu C., et al. UWB monocycle pulse generation by optical polarisation time delay method. Electron. Lett.2007,43(9):542-543.
    [130]Chen H. W., Chen M. H., Qiu C. Y., et al. A novel composite method for ultra-wideband doublet pulses generation. IEEE Photon. Technol. Lett.2007, 19(21-24):2021-2023.
    [131]Dong J. J., Zhang X. L., Xu J., et al. All-optical ultrawideband monocycle generation utilizing gain saturation of a dark return-to-zero signal in a semiconductor optical amplifier. Opt. Lett.2007,32(15):2158-2160.
    [132]Dong J. J., Zhang X. L., Xu J., et al. Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier. Opt. Lett.2007,32(10): 1223-1225.
    [133]Wang C., Zeng F., Yao J. P. All-fiber ultrawideband pulse generation based on spectral-shaping and dispersion-induced frequency-to-time conversion. IEEE Photon. Technol. Lett.2007,19(3):137-139.
    [134]Abtahi M., Magne J., Mirshafiei M., et al. Generation of power-efficient FCC-compliant UWB waveforms using FBGs:Analysis and experiment. J. Lightw. Technol.2008,26(5):628-635.
    [135]Chen H., Chen M., Wang T., et al. Methods for Ultra-Wideband Pulse Generation Based on Optical Cross-Polarization Modulation. J. Lightwave Technol.2008, 26(15):2492-2499.
    [136]Dai Y. T., Yao J. P. Optical Generation of Binary Phase-Coded Direct-Sequence UWB Signals Using a Multichannel Chirped Fiber Bragg Grating. J. Lightw. Technol.2008,26(15):2513-2520.
    [137]Dong J. J., Zhang X. L., Xu J., et al. High Order Ultrawideband Pulse Generation from NRZ-DPSK Signals. OFC.2008, Joint Poster Session Ⅱ:JThA.
    [138]Huang H., Xu K., Li J., et al. UWB Pulse Generation and Distribution Using a NOLM Based Optical Switch. J. Lightwave Technol.2008,26(15):2635-2640.
    [139]Li J. Q., Xu K., Huang H., et al., Photonic Pulse Generation and Modulation for Ultra-Wideband-over-Fiber Applications, Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,2008, OThD3.
    [140]Ou P., Zhang Y., Zhang C. X. Optical generation of binary-phase-coded, direct-sequence ultra-wideband signals by polarization modulation and FBG-based multi-channel frequency discriminator. Opt. Express.2008,16(7):5130-5135.
    [141]Ben Ezra Y., Haridim M., Lembrikov B. I., et al. Proposal for All-Optical Generation of Ultra-Wideband. Impulse Radio Signals in Mach-Zehnder Interferometer With Quantum-Dot Optical Amplifier. IEEE Photon. Technol. Lett. 2008,20(7):484-486.
    [142]Torres-Company V., Prince K., Monroy I. T. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion. Opt. Lett.2008,33(3):222-224.
    [143]Gibbon T. B., Xianbin Y., Monroy I. T. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection. IEEE Photon. Technol. Lett.2009,21(15):1060-1062.
    [144]Li J., Kuo B. P. P., Wong K. K. Y. Ultra-Wideband Pulse Generation Based on Cross-Gain Modulation in Fiber Optical Parametric Amplifier. IEEE Photon. Technol. Lett.2009,21(1-4):212-214.
    [145]Mu H. Q., Yao J. P. Polarity-and Shape-Switchable UWB Pulse Generation Based on a Photonic Microwave Delay-Line Filter With a Negative Tap Coefficient. IEEE Photon. Technol. Lett.2009,21(17):1253-1255.
    [146]Pan S. L., Yao J. P. Switchable UWB pulse generation using a phase modulator and a reconfigurable asymmetric Mach-Zehnder interferometer. Opt. Lett.2009,34(2): 160-162.
    [147]Pan S. L., Yao J. P. Optical generation of polarity-and shape-switchable ultrawideband pulses using a chirped intensity modulator and a first-order asymmetric Mach-Zehnder interferometer. Opt. Lett.2009,34(9):1312-1314.
    [148]Yu X. B., Gibbon T. B., Pawlik M., et al. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser. Opt. Express.2009,17(12): 9680-9687.
    [149]Zhang W. W., Sun J. Q., Wang J., et al. Ultra-Wideband Pulse Train Generation Based on Turbo-Switch Structures. IEEE Photon. Technol. Lett.2009,21(5): 271-273.
    [150]Zhou E. B., Yu X. B., Zhang X. L., et al. Photonic generation of ultrawideband monocycle and doublet pulses by using a semiconductor-optical-amplifier-based wavelength converter. Opt. Lett.2009,34(9):1336-1338.
    [151]Hu Z., Sun J., Shao J., et al. Filter-Free Optically Switchable and Tunable Ultrawideband Monocycle Generation Based on Wavelength Conversion and Fiber Dispersion. IEEE Photon. Technol. Lett.2010,22(1):42-44.
    [152]Wang J., Sun J. All-Optical Ultrawideband Monocycle Generation Using Quadratic Nonlinear Interaction Seeded by Dark Pulses. IEEE Photon. Technol. Lett.2010,. 22(3):140-142.
    [153]Gadi E., Do Quantum Dots or Quantum Wire Based Devices Offer a Practical Advantage in Producing Semiconductor Optical Amplifiers over Conventional 2-D Active Media, Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference,2007, OWP5.
    [154]Cai W., Marchetti M. C., Lax M. Nonequilibrium electron-phonon scattering in semiconductor heterojunctions. Physical Review B.1986,34(12):8573.
    [155]Jones G., O'Reilly E. P. Improved performance of long-wavelength strained bulk-like semiconductor lasers. IEEE J. Quantum Electron.1993,29(5):1344-1354.
    [156]Thijs P. J. A., Dongen T. V. High quantum efficiency, high power, modulation doped GaInAs strained-layer quantum well laser diodes emitting at 1.5μm. Electron. Lett.1989,25(25):1735-1737.
    [157]周恩波,半导体光放大器超快动态特性的研究:[博士论文],光电子工程系,华中科技大学,2009.
    [158]Akiyama T., Shimoyama T., Kuwatsuka H., et al., Gain nonlinearity and ultrafast carrier dynamics in quantum dot optical amplifiers,25th European Conference on Optical Communication. ECOC'99 Conference,1999,76-7.
    [159]Sugawara M., Hatori N., Ishida M., et al. Recent progress in self-assembled quantum-dot optical devices for optical telecommunication:Temperature-insensitive 10 Gb s-1 directly modulated lasers and 40 Gb s-1 signal-regenerative amplifiers. Journal of Physics D:Applied Physics.2005,38(13):2126-2134.
    [160]Van Der Poel M., Mrk J., Somers A., et al. Ultrafast gain and index dynamics of quantum dash structures emitting at 1.55 m. Applied Physics Letters.2006,89(8): 081102-1-081102-3.
    [161]Dommers S., Temnov V. V., Woggon U., et al. Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Appl. Phy. Lett.2007,90(3):033508-1-033508-3.
    [162]Saruwatari M. All-optical signal processing for terabit/second optical transmission. IEEE J. Select. Topics Quantum Electron.2000,6(6):1363-1374.
    [163]Wang J., Maitra A., Poulton C. G., et al. Temporal Dynamics of the Alpha Factor in Semiconductor Optical Amplifiers. J. Lightwave Technol.2007,25(3):891-900.
    [164]黄黎蓉,半导体光放大器偏振相关性及其宽谱特性研究:[博士论文],光电子工程系,华中科技大学,2005.
    [165]董建绩,基于半导体光放大器和光学滤波器的高速全光信号处理:[博士论文],光电子工程系,华中科技大学,2008.
    [166]Lee H. J., Sohn M., Kim K., et al. Wavelength dependent performance of a wavelength converter based on cross-gain modulation and birefringence of a semiconductor optical amplifier. IEEE Photon. Technol. Lett.1999,11(2):185-187.
    [167]Aizawa T., Ravikumar K. G., Suzaki S., et al. Polarization-independent quantum-confined Stark effect in an InGaAs/InP tensile-strained quantum well. IEEE J. Quantum, Electron.1994,30(2):585-592.
    [168]Patrick D. M., Ellis A. D., Davies D. A. O., et al. Demultiplexing using polarisation rotation in a semiconductor laser amplifier. Electron. Lett.1994,30(4):341-342.
    [169]Soto H., Erasme D., Guekos G.5-Gb/s XOR optical gate based on cross-polarization modulation in semiconductor optical amplifiers. IEEE Photon. Technol. Lett.2001, 13(4):335-337.
    [170]Agrawal G. P., Olsson N. A. Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum, Electron.1989, 25(11):2297-2306.
    [171]Willatzen M., Uskov A., Mork J., et al. Nonlinear gain suppression in semiconductor lasers due to carrier heating. IEEE Photon. Technol. Lett.1991,3(7):606-609
    [172]Mecozzi A., Mork J. Saturation induced by picosecond pulses in semiconductor optical amplifiers. J. Opt. Soc. Am. B.1997,14(4):761-770.
    [173]Tan P. W., Ghafouri-Shiraz H. Sub-picosecond gain dynamic in highly index-guided tapered-waveguide laser diode optical amplifiers IEE Proceedings-Optoelectronics, 1999,146(2):83-88.
    [174]Tang J. M., Spencer P. S., Rees P., et al. Pump-power dependence of transparency characteristics in semiconductor optical amplifiers. IEEE J. Quantum, Electron.2000 36(12):1462-1467.
    [175]Connelly M. J. Wideband semiconductor optical amplifier steady-state numerical model. IEEE J. Quantum, Electron.2001,37(3):439-447.
    [176]Yang X., Lenstra D., Khoe G. D., et al. Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier. Opt. Commun.2003, 223(1-3):169-179.
    [177]Hsieh J. T., Gong P. M., Lee S. L., et al. Improved dynamic characteristics on four-wave mixing wavelength conversion in light-holding SOAs. IEEE J. Select. Topics Quantum Electron.2004,10(5):1187-1196.
    [178]Connelly M. J. Wide-Band Steady-State Numerical Model and Parameter Extraction of a Tensile-Strained Bulk Semiconductor Optical Amplifier. IEEE J. Quantum, Electron.2007,43(1):47-56.
    [179]Li Y. H., Lou C. Y., Wu J., et al. Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser. Photonics Technology Letters, IEEE.1998,10(9):1250-1252.
    [180]Li Z. H., Lou C. Y., Chan K. T., et al. Theoretical and experimental study of pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser. IEEE J. Quantum, Electron.2001,37(1):33-37.
    [181]Yang X., Li Z., Tangdiongga E., et al. Sub-picosecond pulse generation employing an SOA-based nonlinear polarization switch in a ring cavity. Optics Express.2004, 12(11):2448-2453.
    [182]Dorren H. J. S., Lenstra D., Liu Y., et al. Nonlinear polarization rotation in semiconductor optical amplifiers:Theory and application to all-optical flip-flop memories. IEEE J. Quantum, Electron.2003,39(1):141-148.
    [183]Pillai B. S. G., Premaratne M., Abramson D., et al. Analytical characterization of optical pulse propagation in polarization-sensitive semiconductor optical amplifiers. IEEE J. Quantum, Electron.2006,42(10):1062-1077.
    [184]Wang F., Zhang X. L., Dong J. J. A novel actively and passively mode-locked semiconductor optical amplifier fiber ring laser. Opt. Commun.2008,281(10): 2868-2873.
    [185]Wang F., Zhang X. L., Dong J. J., et al. A fiber-ring laser incorporating dual mode-locking mechanism. Optics and Laser Technology.2009,41(1):85-88.
    [186]Huang Y. L., Li J., Tong Z. R., et al. High extinction ratio comb filters based on dual-pass Mach-Zehnder interferometer. Acta Optica Sinica.2003,23(12):1429-32.
    [187]Fu S. G., Si L. B., Guo Z. C., et al. Switchable multiwavelength ytterbium-doped double-clad fiber laser based on a multimode fiber grating. Applied Optics.2007, 46(17):3579-3582.
    [188]Peng P. C., Lin J. H., Chi S. Generation of wavelength-tunable optical pulses using a linear-cavity fiber laser scheme with a Fabry-Perot laser diode. IEEE Photon. Technol. Lett.2004,16(4):1023-1025.
    [189]Liu H. L., Tam H. Y., Chung W. H., et al. Wavelength-switchable La-codoped bismuth-based erbium-doped fiber ring laser. IEEE Photon. Technol. Lett.2005, 17(5):986-988.
    [190]Lee Y. W., Kim H. T., Jung J., et al. Wavelength-switchable flat-top fiber comb filter based on a Solc type birefringence combination. Opt. Express.2005,13(3): 1039-1048.
    [191]Lee Y. W., Lee B. Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element. IEEE Photon. Technol. Lett.2003, 15(6):795-797.
    [192]Hu S., Zhan L., Song Y. J., et al. Switchable multiwavelength erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror. IEEE Photon. Technol. Lett.2005,17(7):1387-1389.
    [193]Lee K. L., Shu C. Switching-wavelength pulse source constructed from a dispersion-managed SOA fiber ring laser. IEEE Photon. Technol. Lett.2003,15(4): 513-515.
    [194]Wang F., Zhang X.-L., Dong J.-J., et al. Eleven-wavelength switchable fiber ring laser with a dispersion compensation fiber and a delayed interferometer. Opt. Commun.2008,281(23):5842-5845.
    [195]Park N., Wysocki P. F.24-line multiwavelength operation of erbium-doped fiber-ring laser. IEEE Photon. Technol. Lett.1996,8(11):1459-61.
    [196]Han Y. G., Lee J. H., Lee S. B., et al. Novel Multiwavelength Erbium-Doped Fiber and Raman Fiber Ring Lasers With Continuous Wavelength Spacing Tunability at Room Temperature. J. Lightwave Technol.2007,25(8):2219-2225.
    [197]Dong H., Zhu G., Wang Q., et al. Multiwavelength fiber ring laser source based on a delayed interferometer. IEEE Photon. Technol. Lett.2005,17(2):303-305.
    [198]Sun Z., Rozhin A. G., Wang F., et al. L-band ultrafast fiber laser mode locked by carbon nanotubes. Appl. Phy. Lett.2008,93(6):061114.
    [199]Sun G. Y., Moon D. S., Lin A. X., et al. Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror. Opt. Express.2008,16(6):3652-3658.
    [200]Lee H. H., Lannone P. P., Reichmann K. C., et al. A C/L-band gain-clamped SOA-Raman hybrid amplifier for CWDM access networks. IEEE Photon. Technol. Lett.2008,20(3):196-198.
    [201]Wang F., Zhang X. L., Xu E. M., et al. Tunable 19×10 GHz L-band FP-SOA based multi-wavelength mode-locked fiber laser. Opt. Commun.2010,283(7):1434-1437.
    [202]Wang F., Zhang X. L., Yu Y., et al.82-channel multi-wavelength comb generation in a SOA fiber ring laser. Optics and Laser Technology.2010,42(2):285-288.
    [203]Lin Y. C., Peng G. H., Lin G. R. Compression of 200GHz DWDM channelized TDM pulsed carrier from optically modelocking WRC-FPLD Fiber Ring at 10 GHz. Opt. Express.2009,17(7):5526-5532.
    [204]黄勇林,董兴法.双通Mach-Zehnder干涉仪滤波器研究.激光杂志.2006,27(6):47-48.
    [205]Wang F., Yu Y., Huang X., et al. All-optical clock recovery of 20 Gbit/s NRZ-DPSK signals using polarization-maintaining fiber loop mirror filter and semiconductor optical amplifier fiber ring laser. Opt. Commun.2009,282(12): 2292-2296.
    [206]Vlachos K., Theophilopoulos G., Hatziefremidis A., et al.30 Gb/s all-optical clock recovery circuit. IEEE Photon. Technol. Lett.2000,12(6):705-707.
    [207]Wang F., Zhang X. L., Dong J. J., et al., Amplitude-equalized clock recovery using nonlinear polarization rotation in a semiconductor optical amplifier,2008 Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS,2008, JWA27.
    [208]Wang X., Zhang X. L. Generation of modified duobinary return-to-zero format using polarization-maintaining fiber loop mirror. Chin. Opt. Lett.2007,5(2):69-70.
    [209]Roncin V., O'Hare A., Lobo S., et al. Multi-data-rate system performance of a 40-GHz all-optical clock recovery based on a quantum-dot fabry-perot laser. IEEE Photon. Technol. Lett.2007,19(19):1409-1411.
    [210]Wang F., Yu Y., Huang X., et al. Single and multiwavelength all-optical clock recovery using fabry-perot semiconductor optical amplifier. IEEE Photon. Technol. Lett.2009,21(16):1109-1111.
    [211]Xu C., Liu X., Mollenauer L. F., et al. Comparison of return-tozero differential phase-shift keying and on-off keying in long-haul dispersion managed transmission. IEEE Photon. Technol. Lett.2003,15(4):617-619.
    [212]Wang F., Zhang X. L., Xu E. M., et al., A novel all-optical clock recovery scheme, OSA/ACP,2009, TuX3.
    [213]Calabretta N., Liu Y., Huijskens F. M., et al. Optical signal processing based on self-induced polarization rotation in a semiconductor optical amplifier. J. Ligthw. Technol.2004,22(2):372-381.
    [214]Peng G. H., Chi Y. C., Lin G. R. DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonantcavity Fabry-Perot laser diode based fiber ring. Opt. Express.2008,16(17):13405-13413.
    [215]Commission F. C. Revision of Part 15 of the Commission's Rules Regarding Ultra-Wideband Transmission Systems.2002:Tech. Rep., ET-Docket 98-153, FCC02-48.
    [216]Chou J., Han Y., Jalali B. Adaptive RF-photonic arbitrary waveform generator. IEEE Photon. Technol. Lett.2003,15(4):581-583.
    [217]Chen H. W., Wang T. L., Li M., et al. Optically tunable multiband UWB pulse generation. Opt. Express.2008,16(10):7447-7452.
    [218]Li J. Q., Fu S. N., Xu K., et al. Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator. Opt. Lett.2008,33(3):288-290.
    [219]Ghavami M., Michael L. B., Haruyama S., et al. A novel UWB pulse shape modulation system.4th International Symposium on Wireless Personal Multimedia Communications.2001:105-120.
    [220]Huang H., Xu K., Li J. Q., et al., All-optical UWB pulse generation and pulse shape modulation based on XPM in NOLM, Conference on Optical Fiber Communications/National Fiber Optic Engineers Conference,2008, JThA70.
    [221]Wang F., Zhang X. L. Ultrawideband signals generation using a delay interferometer. Front. Optoelectron. China.2009, DOI:10.1007/s 12200-009-0069-x.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700