超短脉冲激光精密时—频域控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超短脉冲激光技术提供了高时间分辨率,高频率精度的测量手段,极大的提高了人类探索自然界规律的能力,成为探索、揭示微观世界规律的前沿科学与高新技术的基点和关键。本论文主要围绕超短脉冲激光的时-频域精密控制开展研究工作。在激光时域控制上,探索了锁模超短脉冲激光器的原理与结构,研制了超短脉冲飞秒光纤激光器,获得了超短脉冲激光源,为精密时-频域控制提供了种子源。在时域同步控制上,探索了基于非线性交叉相位调制的超短脉冲全光同步技术,完成了谐波锁模激光,多波长锁模激光,纳秒方波锁模激光与超短脉冲激光之间的同步,并研究了同步锁模超短脉冲激光应用于单光子频率上转换探测实验的相关问题。在激光频域控制上,研制了50 W平均输出功率载波包络偏移频率稳定的超短脉冲激光系统,为紫外光学频率梳的产生奠定了基础。
     本学位论文的主要成果包括:
     1.时域上,超短脉冲激光产生是开展精密时-频域控制的基础。基于激光锁模原理,首先完成了超短飞秒脉冲光纤激光器的研制工作。
     1)利用光纤内的非线性偏振旋转效应,完成了超短脉冲锁模掺铒光纤激光器的研制。当腔内的色散为负值时,激光腔内的脉冲光以孤子波方式运转,脉冲的峰值功率被限制,脉冲宽度较宽。当引入色散管理手段后,通过展宽脉冲锁模方式,获得了宽度为92 fs的超短脉冲激光输出。
     2)完成了非线性偏振旋转锁模掺镱光纤激光器的研制工作,提出了在腔内插入掺铒光纤方式提供附加饱和吸收的方案,有效的抑制了激光腔内的脉冲分裂,得到了41 fs单脉冲运转的超短脉冲激光输出。
     2.当不同波长的两束激光在同一光纤内传输时,由于交叉相位调制作用,一束光会使另一束光的非线性折射率发生变化,导致非线性偏振旋转。在此现象基础上,开展了时域上脉冲激光的精密同步工作。
     1)利用主-从模式的腔结构,完成了谐波锁模的掺铒光纤激光器与锁模Yb:GSO激光器的同步。同步激光器腔长失匹长度达14 mm,有效的抑制了外界扰动对同步系统的干扰。并且在腔长失匹较大的情况下,脉冲呈现堆积展宽现象。利用该现象可应用于超短脉冲整形,光参量啁啾脉冲放大等领域的工作。
     2)利用部分光谱放大和交叉相位调制技术完成了800 nm,1030 nm,1550 nm三波段飞秒超短脉冲激光同步。800 nm,1030 nm脉冲之间的时间抖动为0.55 fs,1030 nm,1550 nm脉冲之间的抖动为8.3 fs。
     3)利用长腔激光器中的峰值功率钳位效应,获得了脉冲宽度为5.5 ns的方波脉冲锁模掺铒光纤激光器。并利用交叉相位调制技术,以全光方式实现其与超短脉冲锁模掺镱光纤激光器的同步。同步激光器腔长最大失匹为2.6 mm,脉冲之间的时间抖动为4.3 ps。
     4)利用同步超短脉冲锁模掺铒、掺镱光纤激光器,完成了高速脉冲泵浦方式的单光子频率上转换探测实验,单光子转换效率达31.2%。
     3.在精密频域控制上,开展了高功率、高重复频率超短脉冲激光的载波包络偏移频率稳定工作。通过双包层光子晶体光纤放大技术,获得了50 W平均功率输出的超短脉冲激光。利用交叉参考的拍频方式,完成了超短脉冲的载波包络偏移频率探测,并通过锁相环电子反馈电路,实现了偏移频率的精密锁定。锁定后的开环偏移频率线宽为2.27 mHz,脉冲载波包络相位噪声为0.72 rad,对应的时间抖动为300 as。此项工作为今后开展紫外光学频率梳的研究奠定了基础。
Ultrashot pulse laser technology has provided us measurement tools of high time resolution and high frequency accuracy, with which we can improve our ability to explore the law of nature. Precise control of the ulrashort pulses in the time and frequency domain has become a crucial key to research the frontier science and leading technology. In this dissertation, theoretical and experimental investigation was given on this topic. In the time domain of ultrashort pulse generation, the theory and configuration of the mode-locked laser were detailed discussed, and then femtosecond fiber lasers were built to do the research on precise control of ulashort pulse. In the time domain of pulsed laser synchronization, harmonic mode-locked laser, multi-colour laser and square nanosecond laser were synchronized to a master ultrashort pulse laser. In addition, an application of the synchronized ulrashort pulses has been illustrated in the single photon upconversion detection system. In the precise control of frequency domain, a carrier-envelop offset frequency stabilized ultrashort pulse laser system with an average power up to 50 W has been developed, which lays a foundation for the generation of ultraviolet and extreme ultraviolet frequency combs.
     The detailed works in this dissertation include:
     1. Ultrashort pulse laser generation is the basis for preside control in the time and frequency domain. Based on the theoretical and experimental development of ultrashort pulse laser, femtosecond mode-locked fiber lasers have been accomplished.
     1) Mode-locked erbium-doped fiber laser has been realized with the nonlinear polarization rotation effect in fiber. When the net dispersion of the cavity is negative, the pulses are running like solitons. The peak power of the pulse is constrained and the pulse duration is relatively long. So, dispersion management is introduced and then the laser is mode-locked in the stretched-pulse way. With this technology, pulse duration of 92 fs has been obtained in the mode-locked erbium doped fiber laser.
     2) Wave-breaking free ytterbium doped fiber laser was realized by insertion of a piece of erbium-doped fiber in the cavity. The inserted erbium doped fiber acted as an additional saturable absorber to suppress intra-cavity wave-breaking. The pulse duration of the wave-breaking free mode-locked ytterbium doped fiber laser was measured to be 41 fs.
     2. When different wavelength lasers propagate in the fiber, the nonlinear refractive index of one laser will be changed by another through cross phase modulation. The change of nonlinear refractive index will lead to nonlinear polarization rotation. With this effect, the synchronization among pulsed lasers in the time domain was realized.
     1) With master-slave cavity configuration, harmonic mode-locked Er-fiber laser was synchronized to a passively mode-locked Yb:GSO laser with a mismatch length of 14 mm based on cross phase modulation. At large cavity mismatch length, the pulse duration was stretched which has a potential application in pulse shaping and optical parametric chirped pulse amplification.
     2) Synchronization was obtained among 3-color ultrashort pusles at 800 nm, 1030 nm,1550 nm based on fractional spectrum amplification and cross phase modulation. The timming jitters between 800 nm,1030 nm and 1030 nm,1550 nm were 0.55 fs and 8.3 fs respectively.
     3) Square 5.5 ns mode-locked laser was generated in the long cavity with peak power clapping effect. Then the square ns pulse was synchronized to an ultrashort pulse laser with an all optical way. The timming jitter of the two lasers was 4.3 ps with a maximum cavity mismatch length of 2.6 mm.
     4) High speed single photon frequency upconversion was achieved by synchronized mode-locked Er-fiber laser and Yb-fiber laser, the maximum conversion efficiency of the infrared single photons was 31.2%。
     3. In the precise control in frequency domain, high repetition and high power carrier-envelop offset frequency stabilized ultrashort pulse laser has been realized. Based on chirped pulse double clad fiber amplifier technology, an average output power of 50 W was obtained. The carrier-envelope offset frequency was detected by a cross-reference interferometer and locked by the electronic feed-back loops. The stabilized carrier-envelop offset frequency has an out of loop linewidth of 2.27 mHz. The phase noise between the carrier and envelop is 0.72 rad with the according timming jitter of 300 as. The average power of the carrier-envelop phase stabilized ulstrashort pulses in our experiment is five times larger than that has ever been reported in the world. This work opens a way for generating ultraviolet and extreme ultraviolet frequency combs in the future.
引文
1. T. Udem, R. Holzwarth, and T. W. Hansch, "Optical frequency metrology," Nature 416,233-237 (2002).
    2. P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, "Generation and detection of terahertz pulses from biased semiconductor antennas," J. Opt. Soc. Am. B,13, 2424-2436 (1996).
    3. C. L. Thomsen, D. Madsen, S. R. Keiding, J. Thogersen, and O. Christiansen, "Two-photon dissociation and ionization of liquid water studied by femtosecond transient absorption spectroscopy," J. Chem. Phys.110,3453-3462 (1999).
    4. H. N. Paulsen, K. M. Hilligsoe, J. Th(?)gersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett.28,1123-1125 (2003).
    5. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh resolution optical coherence tomography using continuum generation in a air-silica microstructure optical fiber," Opt. Lett. 26,608-610 (2001).
    6. P. Weigl, A. Kasenbacher, and K. Werelius, "Dental applications," Top. App. Phys. 96,167-185 (2004).
    7. D. Breitling, C. Fohl, F. Dausinger, T. Kononenko, and V. Konov, "Drilling of metals," Top. App. Phys.96,131-154 (2004).
    8. M. Nakazawa, "Ultrafast mode-locked fiber lasers for high-speed OTDM transmission and related topics," J. Opt. Fiber Commun. Rep.2,462-496 (2005).
    9. R. L. Fork, B. L. Green, and C. V. Shank, "Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking," Appl. Phys. Lett.38,671-673 (1981).
    10. E. Desurvire, J. R. Simpson, and P. C. Becker, "High-gain erbium-doped traveling-wave fiber amplifier," Opt. Lett.12,888-890 (1987).
    11. K. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett.18,1080-1082 (1993).
    12. D. Y. Tang and L. M. Zhao, "Generation of 47-fs pulses directly from an erbium-doped fiber laser," Opt. Lett.32,41-43 (2007).
    13. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Opt. Express 11,3550-3554 (2003).
    14. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett.32,2408-2410 (2007).
    15. A. Stolow and D. M. Jonas, "Multidimensional Snapshots of Chemical Dynamics," Science 305,1575-1577 (2004).
    16. E. O. Potma, D. J. Jones, J. X. Cheng, X. S. Xie, and J. Ye, "High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers," Opt. Lett.27,1168-1170 (2002).
    17. A. Yu, X. Ye, D. Ionascu, W. Cao, and P. M. Champion, "Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range," Rev. Sci. Instrum.76,114301 (2005).
    18. X. Gu, Y. Li, H. Pan, E Wu, and H. Zeng, "High-speed single-photon frequency upconversion with synchronous pump pulses," IEEE J. Sel. Topics Quantum Electron.15,1748-1752(2009).
    19. G. Seifert, T. Patzlaff, and H. Graener, "Observation of low-frequency Raman and Kerr effect contributions in picosecond infrared pump probe experiments," Vib. Spectrosc.23,219-230 (2000).
    20. K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, "Study of coherent folded acoustic phonons in semiconductor superlattices by pump-probe technique," Physica B 263-264,48-50, (1999).
    21. I. Malajovich, J. M. Kikkawa, and D. D. Awschalom, "Coherent transfer of spin through a semiconductor heterointerface," Phys. Rev. Lett.84,1015-1018 (2000).
    22. B. Golubovic and M. K. Reed, "All-solid-state generation of 100-kHz tunable mid-infrared 50-fs pulses in type I and type II AgGaS2," Opt. Lett.23,1760-1762 (1998).
    23. J. V. Rudd, R. J. Law, T. S. Luk, and S. M. Cameron, "High-power optical parametric chirped-pulse amplifier system with a 1.55 μm signal and a 1.064 μm pump," Opt. Lett.30,1974-1976 (2005).
    24. J. Rauschenberger, T. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, "Control of the frequency comb from a modelocked Erbium-doped fiber laser," Opt. Express 10, 1404-1410(2002).
    25. S. Xu, H. Zhai, K. Wu, Y. Peng, J. Wu, and H. Zeng, "Accurate all-optical synchronization of 1064 nm pulses with 794 nm femtosecond pulses for optical parametric chirped pulse amplification," Opt. Express 14,2487-2496 (2006).
    26. Z. Wei, Y. Kobayashi, Z. Zhang, and K. Torizuka, "Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr.forsterite lasers," Opt. Lett.26,1806-1808 (2001).
    27. A. Bartels, S. A. Diddams, T. M. Ramond, and L. Hollberg, "Mode-locked laser pulse trains with subfemtosecond timing jitter synchronized to an optical reference oscillator," Opt Lett.28,663-665 (2003).
    28. T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, "Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation," Opt. Lett.28,947-949 (2003).
    29. A. Leitenstorfer, C. Furst, and A. Laubereau, "Widely tunable two-color mode-locked Ti:sapphire laser with pulse jitter of less than 2 fs," Opt. Lett.20,916-918 (1995).
    30. M. Rusu, R. Herda, and O. G. Okhotnikov, "Passively synchronized erbium (1550-nm) and ytterbium (1040-nm) mode-locked fiber lasers sharing a cavity," Opt. Lett.29,2246-2248 (2004).
    31. D. Yoshitomi, Y. Kobayashi, M. Kakehata, H. Takada, and K. Torizuka, "Ultralow-jitter passive timing stabilization of a mode-locked Er-doped fiber laser by injection of an optical pulse train," Opt. Lett.31,3243-3245 (2006).
    32. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288,635-639 (2000).
    33. T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, "Long-term carrier-envelope phase coherence," Opt. Lett.27,1436-1438 (2002).
    34. T. Fuji, J. Rauschenberger, A. Apolonski, V. S. Yakovlev, G Tempea, T. Udem, C. Gohle, T. W. Hansch, W. Lehnert, M. Scherer, and F. Krausz, "Monolithic carrier-envelope phase-stabilization scheme," Opt. Lett.30,332-334 (2005).
    35. J. Rauschenberger, T. Fuji, M. Hentschel, A. J. Verhoef, T. Udem, C. Gohle, T. W. Hansch, and F. Krausz, "Carrier-envelope phase-stabilized amplifier system," Laser Phys. Lett.3,37-42 (2006).
    36. B. R. Washburn, S. A. Diddams, and N. R. Newbury, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett.29,250-252 (2004).
    37. B. R. Washburn, R. W. Fox, W. C. Swann, N. R. Newbury, J. W. Nicholson, K. Feder, and P. S. Westbrook, "Fiber-laser-based frequency comb with a tunable repetition rate," Opt. Express 12,4999-5004 (2004).
    38. T. R. Schibli, K. Minoshima, F. L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, "Frequency metrology with a turnkey all-fiber system," Opt. Lett.29,2467-2469 (2004).
    39. J. Peng, H. Ahn, R. H. Shu, H. C. Chu, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
    40. R. Paschotta, A. Schlatter, S. C. Zeller, H. R. Telle and U. Keller, "Optical phase noise and carrier-envelope offset noise of mode-locked lasers," Appl. Phys. B 82, 265-273 (2006).
    41. T. M. Fortier, A. Bartels, and S. A. Diddams, "Octave-spanning Ti:sapphire laser with a repetition rate> 1GHz for optical frequency measurements and comparisons," Opt. Lett.31,1011-1013 (2006).
    42. A. Bartels, R. Gebs, M. S. Kirchner, and S. A. Diddams, "Spectrally resolved optical frequency comb from a self-referenced 5 GHz femtosecond laser," Opt. Lett.32,2553-2555 (2007).
    43. L. Chen, A. J. Benedick, J. R. Birge, M. Y. Sander, and F. Kartner, "Octave-spanning, dual-output 2.166 GHz Ti:sapphire laser," Opt. Express 16,20699-20705 (2008).
    44. A. Bartels, D. Heinecke, and S. A. Diddams, "Passively mode-locked 10 GHz femtosecond Ti:sapphire laser," Opt. Lett.33,1905-1907 (2008).
    45. K. L. Corwin, I. Thomann, T. Dennis, R. W. Fox, W. Swann, E. A. Curtis, C. W. Oates, G. Wilpers, A. Bartels, S. L. Gilbert, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, "Absolute-frequency measurements with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser," Opt. Lett.29,397-399 (2004).
    46. L. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond-laser comb used for absolute optical frequency measurements," IEEE J. Sel. Topics Quantum Electron.9,1066-1071 (2003).
    47. T. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D. Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg, "Absolute frequency measurements of the Hg+ and Ca optical clock transitions with a femtosecond laser" Phys. Rev. Lett.86,4996-4999 (2001).
    48. J. Stenger, C. Tamm, N. Haverkamp, S. Weyers, and H. R. Telle, "Absolute frequency measurement of the 435.5-nm 171Yb+-clock transition with a Kerr-lens mode-locked femtosecond laser," Opt. Lett.26,1589-1591 (2001).
    49. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, "Phase-Coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity," Phys. Rev. Lett.94,193201 (2005).
    50. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hansch, "A frequency comb in the extreme ultraviolet," Nature 436,234-237 (2005).
    51. A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D. R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krauszl, T. W. Hansch, and T. Udem, "High harmonic frequency combs for high resolution spectroscopy," Phys. Rev. Lett.100,253901 (2008).
    52. I. Hartl, T. R. Schibli, A. Marcinkevicius, D. C. Yost, D. D. Hudson, M. E. Fermann, and J. Ye, "Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×1014 W/cm2 peak intensity at 136 MHz," Opt. Lett.32,2870-2872 (2007).
    53. D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, "Vacuum-ultraviolet frequency combs from below-threshold harmonics," Nature Physics 5,815-820 (2009).
    54. U. Morgner, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G Fujimoto, and E. P. Ippen, "Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser," Opt. Lett.24,411-413 (1999).
    55. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. M. Genoud, U. Keller, V. Scheuer, G Angelow, and T. Tschudi, "Semiconductor saturable-absorber mirror-assisted Kerr lens modelocked Ti:sapphire laser producing pulses in the two-cycle regime," Opt. Lett.24,631-633 (1999).
    56. E. Snitzer, "Optical maser action of Nd+3 in a barium crown glass," Phys. Rev. Lett.7,444-446(1961).
    57. C. J. Koester and E. Snitzer, "Amplification in a fiber laser," Appl. Opt.3,1182-1186(1964).
    58. J. Y. Allain, M. Monerie, and H. Poignant, "High-efficiency CW thulium-sensitised holmium-doped fluoride fibre laser operating at 2.04 μm," Electron. Lett.27,1513-1515(1991).
    59. D. C. Hanna, I. M. Jauncey, R. M. Percival, I. R. Perry, R. G. Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, "Continuous-wave oscillation of a monomode thulium-doped fibre laser," Electron. Lett.24,1222-1223 (1988).
    60. D. C. Hanna, R. M. Percival, I. R. Perry, R. G Smart, P. J. Suni, J. E. Townsend, and A. C. Tropper, "Continuous-wave oscillation of a monomode ytterbium-doped fibre laser," Electron. Lett.24,1111-1113 (1988).
    61. Y. Durteste, M. Monerie, J. Y. Allain, and H. Poignant, "Amplification and lasing at 1.3μm in praseodymium-doped fluorozirconate fibres," Electron. Lett.27, 626-628 (1991).
    62. X. Zhou, D. Yoshitomi, Y. Kobayashi, and K. Torizuka, "Generation of 28-fs pulses from a mode-locked ytterbium fiber oscillator," Opt. Express 16,7055-7059 (2008).
    63. T. F. Carruthers and I. N. Duling III, "10-GHz,1.3-ps erbium fiber laser employing soliton pulse shortening," Opt. Lett.21,1927-1929 (1996).
    64. G Zhu and N. K. Dutta, "Eighth-order rational harmonic mode-locked fiber laser with amplitude-equalized output operating at 80 Gbits/s," Opt. Lett.30,2212-2214 (2005).
    65. M. Guina, N. Xiang, and O. G Okhotnikov, "Stretched-pulse fiber lasers based on semiconductor saturable absorbers," Appl. Phys. B 74, S193-S200 (2002).
    66. M. E. Fermann, M. Hofer, F. Haberl, A. J. Schmidt, and L. Turi, "Additive pulse compression mode locking of a neodymium fiber laser," Opt. Lett.16,244-246 (1991).
    67. B. C. Collings, K. Bergman, and W. H. Knox, "Stable multigigahertz pulse-train formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser," Opt. Lett.23,123-125 (1998).
    68. I. N. Duling Ⅲ, "Subpicosecond all-fibre erbium laser," Electron. Lett.27,544-545 (1991).
    69. M. E. Fermann, "Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber," Opt. Lett.18,894-896 (1993).
    70. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma. "Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode," Opt. Lett.22,1344-1346 (1997).
    71. K. Kikuchi, "Highly sensitive interferometric autocorrelator using Si avalanche photodiode as two-photon absorber," Electron. Lett.34,123-125 (1998).
    72. J. C. Diels and W. Rudolph, "Ultrashort laser pulse phenomena (Second Edition)," Chapter 9,457-489 (2006).
    73. K. Tamura, E. Yoshida, E. Yamada, and M. Nakazawa, "Generation of a 0.5 W average power train of femtosecond pulses at 10 GHz in the 1.55 μm region," Electron. Lett.32,835-836 (1996).
    74. K. Tamura, E. Yoshida, and M. Nakazawa, "Generation of 10 GHz pulse trains at 16 wavelengths by spectrally slicing a high power femtosecond source," Electron. Lett.32,1691-1693 (1996).
    75. K. W. Holman, D. D. Hudson, J. Ye and D. J. Jones, "Remote transfer of a high-stability and ultralow-jitter timing signal," Opt. Lett.30,1225-1227 (2005).
    76. S. M. Foreman, K. W. Holman, D. D. Hudson, D. J. Jones, and J. Ye, "Remote transfer of ultrastable frequency references via fiber networks," Rev. Sci. Instrum. 78,021101(2007).
    77. W. C. Swann and N. R Newbury, "Frequency-resolved coherent lidar using a femtosecond fiber laser," Opt. Lett.31,826-828 (2006).
    78. A. B. Grudinin and S. Gray,"Passive harmonic mode locking in soliton fiber lasers," J. Opt. Soc. Am. B 14,144-154 (1997).
    79. F.O. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G Clark, "Generation of 50-fs,5-nJ pulses at 1.03μm from a wave-breaking-free fiber laser," Opt. Lett. 28,1365-1367(2003).
    80. F. O. Ilday, J. R. Buckley, W. G Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett.92,213902 (2004).
    81. J. Buckley, A. Chong, S. Zhou, W. Renninger, and F. W. Wise, "Stabilization of high-energy femtosecond ytterbium fiber lasers by use of a frequency filter," J. Opt. Soc. Am. B 24,1803-1806 (2007).
    82. R. H. Stolen and A. Ashkin, "Optical Kerr effect in glass waveguide," Appl. Phys. Lett.20,294-296 (1973).
    83. W. Li, Q. Hao, H. Zhai, H. Zeng, W. Lu, G. Zhao, L. Zheng, L. Su, and J. Xu, "Diode-pumped Yb:GSO femtosecond laser," Opt. Express 15, 2354-2359 (2007).
    84. Y. Chen, J. Jiang, and D. J. Jones, "Remote distribution of a mode-locked pulse train with sub 40-as jitter," Opt. Express 14,12134-12144 (2006).
    85. V. J. Matsas, T. P. Newson and M. N. Zervas, "Self-starting passively mode-locked fiber ring laser exploiting nonlinear polarization switching," Opt. Commun.92,61-66(1992).
    86. M. A. Albota and F. N. C. Wong, "Efficient single-photon counting at 1.55 μm by means of frequency upconversion," Opt. Lett.29,1449-1451 (2004).
    87. K. Wilson and M. Enoch, "Optical communication for deep space missions," IEEE Commun. Mag.38,134-139 (2000).
    88. G Wu, L. Xu, J. Chen, Y. Li, X. Gu, E Wu, and H. Zeng,"Fiber-coupled near-infrared single-photon spectrum analyzer based on a InGaAs/InP avalanche photodiode single-photon detector," J. Mod. Opt.56,296-298 (2009).
    89. H. Pan and H. Zeng, "Efficient and stable single-photon counting at 1.55 μm by intracavity frequency upconversion," Opt. Lett.31,793-795 (2006).
    90. H. Pan, H. Dong, and H. Zeng, "Efficient single-photon counting at 1.55 μm by intracavity frequency upconversion in a unidirectional ring laser," Appl. Phys. Lett.89,191108(2006).
    91. M. Kourogi, K. Nakagawa, and M. Ohtsu, "Wide-span optical frequency comb generator for accurate optical frequency difference measurement," IEEE J. Quantum Electron.,29,2693-2701 (1993).
    92. K. Kitayama, "Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation," J. Lightwave Technol.16,969-976 (1998).
    93. J. Ye, L. Ma, T. Daly, and J. L. Hall,"Highly selective terahertz optical frequency comb generator," Opt. Lett.22,301-303 (1997).
    94. N. C. Wong, "Optical frequency division using an optical parametric oscillator," Opt. Lett.15,1129-1131(1990).
    95. G Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in ultrashort pulse generation:pushing the limits in linear and nonlinear optics," Science 286,1507-1512 (1999).
    96. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, "Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser," Opt. Lett. 18,977-979(1993).
    97. P. Dietrich, F. Krausz, and P. B. Corkum, "Determining the absolute carrier phase of a few-cycle laser pulse," Opt. Lett.25,16-18 (2000).
    98. C. G Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, "Phase matching of high-order harmonics in hollow waveguides," Phys. Rev. Lett.83,2187-2190 (1999).
    99. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hansch, "Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser," Phys. Rev. Lett.82,3568-3571 (1999).
    100. S. A. Diddams, D. J. Jones, L. Ma, S. T. Cundiff, and J. L. Hall, "Optical frequency measurement across a 104-THz gap with a femtosecond laser frequency comb," Opt. Lett.25,186-188 (2000).
    101. R. J. Jones, J. C. Diels, J. Jasapara, and W. Rudolph, "Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity," Opt. Commun.175,409-418 (2000).
    102. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter and U. Keller, "Carrier-envelope offset phase control:A novel concept for absolute optical frequency measurement and ultrashort pulse generation," Appl. Phys. B 69,327-332 (1999).
    103. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. Hansch, and F. Krausz, "Controlling the phase evolution of few-cycle light pulses," Phys. Rev. Lett.85,740-743 (2000).
    104. R. Ell, U. Morgner, F. X. KAArtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett.26,373-375 (2001).
    105. U. Morgner, R. Ell, G. Metzler,T. R. Schibli, F. X. Kartner, J. G. Fujimoto, H. A. Haus, and E. P. Ippen, "Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime," Phys. Rev. Lett.86,5462-5465 (2001).
    106. T. M. Fortier, D. J. Jones, and S. T. Cundiff, "Phase stabilization of an octave-spanning Ti:sapphire laser," Opt. Lett.28,2198-2200 (2003).
    107. F. X. Kartner, U. Morgner, R. Ell, T. Schibli, J. G. Fujimoto, E. P. Ippen, V, Scheuer, and G. Angelow, T. Tschudi, "Ultrabroadband double-chirped mirror pairs for generation of octave spectra," J. Opt. Soc. Am. B 18,882-885 (2001).
    108. M. Fischer, N. Kolachevsky, M. Zimmermann, R. Holzwarth, T. Udem, and T. W. Hansch, "New limits on the drift of fundamental constants from laboratory measurements," Phys. Rev. Lett.92,230802 (2004).
    109. J. G. Eden, "High-order harmonic generation and other intense optical field-matter interactions:review of recent experimental and theoretical advances," Prog. Quantum Electron.28,197-246 (2004).
    110. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, "High-resolution spectroscopy with a femtosecond laser frequency comb," Opt. Lett.30, 1734-1736 (2005).
    111. S. T. Cundiff and J. Ye, "Colloquium:Femtosecond optical frequency combs," Rev. Mod. Phys.75,325-340 (2003).
    112. J. Seres, E. Seres, A. J. Verhoef, G Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann and F. Krausz, "Laser technology:Source of coherent kiloelectronvolt X-rays," Nature 433,596 (2005).
    113. A. Baltuka, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature 421, 611-615(2003).
    114. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, M. J. Marcinkevicius, M. E. Fermann, and J. Ye, "Optical frequency comb with submillihertz linewidth and more than 10 W average power," Nature Photonics 2,355-359 (2008).
    115. M. D. Perry, T. Ditmire, and B. C. Stuart, "Self-phase modulation in chirped-pulse amplification," Opt. Lett.19,2149-2151 (1994).
    116. D. Strickland and G Mourou, "Compression of amplified chirped optical pulses," Opt. Commun.56,219-221 (1985).
    117. R. A. Baumgartner and R. L. Byer, "Optical parametric amplification," IEEE J. Quantum Electron.15,432-444 (2003).
    118. V. V. Lozhkarev, G I. Freidman, V. N. Ginzburg, E. V. Katin, E. A. Khazanov, A. V. Kirsanov, G. A. Luchinin, A. N. Malshakov, M. A. Martyanov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, I. V. Yakovlev, S. G Garanin, S. A. Sukharev, N. N. Rukavishnikov, A. V. Charukhchev, R. R. Gerke, and V. E. Yashin, "200 TW 45 fs laser based on optical parametric chirped pulse amplification," Opt. Express 14,446-454 (2006).
    119. J. W. Nicholson, A. D. Yablon, P. S. Westbrook, K. S. Feder, and M. F. Yan, "High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation," Opt. Express 12,3025-3034 (2004).
    120. F. Roser, J. Rothhard, B. Ortac, A. Liem, O. Schmidt, T. Schreiber, J. Limpert, and A. Tunnermann, "131 W 220 fs fiber laser system," Opt. Lett.30,2754-2756 (2005).
    121. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tunnermann,"Femtosecond fiber CPA system emitting 830 W average output power," Opt. Lett.35,94-96 (2010).
    122. S. Witte, R. T. zinkstok, W. Hogervorst, and K. S.E. Eikema, "Control and precise measurement of carrier-envelope phase dynamics," Appl. Phys. B 78,5-12 (2004).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700