铌酸锂的载流子调控和pn结
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
和集成电路相比,集成光路拥有着高速度、大容量和低损耗等特点。从集成光路的材料结构上看,单片型集成光路是人们所期望的。在实现相同功能时,单片型集成光路往往比混合型集成光路占据的体积更小,而且单片型集成光路制备起来更加容易,各种器件之间更加协调稳定。为了获得单片型集成光路,必须要有一种多功能的光学材料,而铌酸锂晶体正是这样的材料。
     铌酸锂晶体具有相当优异的光学和电学方面的性能,集电光、声光、热电、压电、光折变和非线性等效应于一身,可以制备出集成光路所需要的各种器件,如光波导、光开关、电光调制器、声光调制器、热电传感器、压电传感器、光参量振荡器、波分复用器和耦合器等等。为了制备出铌酸锂单片型集成光路,还缺少铌酸锂材料制备的激光器。
     我们知道pn结是一个半导体激光器的主要工作结构,因此,本论文的终极目标是制备出铌酸锂pn结,而且由于铌酸锂的禁带很宽,pn结发光的波长将位于紫外波段,这会对紫外激光二极管的发展提供一个新的途径。
     本论文的主要工作:我们以铌酸锂为主要材料的单片型或者是准单片型集成光路为目标。对于铌酸锂单片型集成光路,我们通过对铌酸锂载流子的调控寻找到了铌酸锂的p型材料,并通过各种镀膜技术生长了铌酸锂的同质pn结,pn结的I-V曲线测量显示出了良好的整流性能。考虑到铌酸锂晶体的导电性极差,我们又考虑了铌酸锂准单片型集成光路。在此集成光路中,高掺铁铌酸锂晶体显示出较好的导电性能,相比于不掺杂的同成分铌酸锂晶体,电导率可提高6个数量级,将高掺铁的铌酸锂晶体作为n型材料用激光分子束外延的方法将之生长到p型硅上,从而形成了铌酸锂/硅的异质pn结,此pn结也显示出了良好的整流性能。
     论文内容的安排如下:
     第一章,介绍了铌酸锂晶体的发展概况、结构特征、缺陷类型和占位、能带特征、载流子类型,以及集成光学的发展、特点和集成光路器件,简介了论文的主要目的和实验安排。
     第二章,介绍了导电类型检测方法,从中选出了最适合铌酸锂晶体的全息法;p型铌酸锂的制备,最终确定了3m01%掺锆铌酸锂晶体和热电氧化法处理的掺铁铌酸锂晶体具有p型的导电类型。
     第三章,分别用磁控溅射法、液相外延法和激光分子束外延法制备出了铌酸锂的同质结,并测量了这些同质结的伏安特性。
     第四章,高电导率铌酸锂的探寻,制备了导电性能大幅提高的高掺铁铌酸锂晶体;用激光分子束外延法制备出了铌酸锂/硅的异质结;对铌酸锂pn结的整流性能进行了测试。
     第五章,总结和展望,对本论文的工作进行总结,对今后的工作进行了展望。
Compared with electronic integrated circuits, photonic integrated circuits (PICs) exhibit higher speed, larger capacity, lower propagation loss, etc. From the point of view of material structure, monolithic PICs are more expected. Monolithic PICs are often smaller than hybrid PICs to achieve the same function and furthermore fabrication of monolithic PICs is much easier, various devices in monolithic PICs are much more harmonious and steady. In order to obtain monolithic PICs, a multifunctional optical material is essential. Fortunately, lithium niobate (LiNbO3) is such a material.
     LiNbO3has excellent optical and electrical properties, such as electro-optic effect, acousto-optic effect, pyroelectric effect, piezoelectric effect, photorefractive effect, nonlinear effect, etc. Most devices used in PICs can be prepared by LiNbO3crystal, such as optical waveguide, optical switch, electro-optical modulator, acousto-optic modulator, pyroelectric sensor, piezoelectric sensor, optical parametric oscillator, wavelength division multiplexer, coupler, etc. To fabricate monolithic PICs, the main obstacle is a lack of laser diode (LD) based on LiNbO3wafer.
     As we known that pn junction is the main structure of a semiconductor diode, so the main purpose of this thesis is to fabricate LiNbO3pn junction. Because of its wide energy gap, LiNbO3pn junction will emit an ultraviolet light. This is helpful for LD luminescence.
     The main work of this dissertation can be decided to LiNbO3monolithic PICs and quasi-monolithic PICs. For the monolithic PICs, we try to fabricate p type LiNbO3by various dopants and oxidation, then grow the pn junctions by magnetron sputtering method, liquid phase epitaxial method and laser molecular beam epitaxial method. The pn junction shows good rectifying properties by measuring the current-voltage curve. Considering of the poor conductivity of LiNbO3crystal, we consider the quasi-monolithic PICs. Highly iron doped LiNbO3crystals show excellent conductive properties. Compared to the undoped congruent LiNbO3crystals, the conductivity can be improved by6orders of magnitude. We grow n-type high iron doped LiNbO3films on p-type silicon by laser molecular beam epitaxial method to form pn junctions. The pn junctions also show good rectifying properties.
     The content of this dissertation is arranged as follows:
     Chapter1introduces the development of LiNbO3, crystal structure, defect types and site occupation, energy band structure, carrier type, the development of integrated optics and integrated optical devices; we also give the main purpose of this thesis and experimental arrangement.
     Chapter2introduces the detection methods of conductive type. We find the holographic method is most suitable for LiNbO3crystal. Then we investigate p-type LiNbO3and finally find that3mol%zirconium doped LiNbO3crystal and iron doped LiNbO3crystals treated by thermo-electric oxidization are p-type ones.
     Chapter3, LiNbO3pn homojunctions are prepared by liquid phase epitaxy, magnetron sputtering and laser molecular beam epitaxy. Then the basic characteristics of these pn junctions are measured.
     Chapter4, we search for LiNbO3crystals with high conductivity. We grow highly iron doped LiNbO3crystals, its conductivity is6orders of magnitude than that of nominally pure one. Then we fabricate LiNbO3/Si heterojunction by laser molecular beam epitaxy. Properties of the pn junctions are investigated.
     Chapter5, summary and prospect, we summarize the work of this dissertation and prospect the futher work.
引文
[1]W. Zachariasen. Untersuchungen uber die Kristallstruktur von Sesquioxyden und Verbindungen ABO3. Norske Vidensk. Akad. Oslo, I. Mat. Naturv.,1928,4
    [2]B. T. Matthias, J. P. Remeika. Ferroelectricity in the Ilmenite structure. Phys. Rev.,1949,76: 1886-1887
    [3]A. A. Ballman. Growth of piezoelectric and ferroelectric materials by the Czochralski technique. J. Am. Ceram. Soc.,1965,48:112-113
    [4]J. R. Carruthers, G. E. Perterson, M. Grasso, et al. Nonstoichiometry and Crystal Growth of Lithium Niobate. J. Appl. Phys.,1971,42:1846-1851
    [5]孔勇发,许京军,张光寅等.多功能光电材料一铌酸锂晶体.北京:科学出版社,2005
    [6]王忠敏.铌酸锂晶体的发展简况.人工晶体学报.2002,31:173~175
    [7]Y. Kondo, T. Kukuda, Y. Yamashita, et al. An Increase of More Than 30% in the Electrooptic Coefficients of Fe-Doped and Ce-Doped Stoichiometric LiNbO3 Crystals. Jpn. J. Appl. Phys., 2000,39:1477-1480
    [8]K. Titamura, Y. Furukawa, T. Hatanaka, et al. in the Sixth International Symposium on Ferric Domains and Mesoscopic structures. Nanjing China,2000,115
    [9]A. Grisard, E. Lallier, K. Polgar, et al. Low electric field periodic poling of thick stoichiometric lithium niobate. Elec. Lett.,2000,36:1043-1044
    [10]L. Hesselink, S. S. Orlov, A. Liu, et al. Photorefractive Materials for Nonvolatile Volume Holographic Data Storage Science,1998,282:1089-1094
    [11]A. Ashkin, G. D. Boyd, J. M. Dziedzic, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. Lett.,1966,9:72-74
    [12]F. S. Chen, J. T. LaMacchia, D. B. Fraser. Holographic storage in lithium niobate. Appl. Phys. Lett.,1968,13:223-225
    [13]J. Zhong, J. Jin, Z. Wu. Meaurements of optically induced refractive-index damage of lithium niobate doped with different concentration of MgO. Proceeding of 11th International Quantum Electronic Conference, IEEE,1980,80:631
    [14]黄庆捷.K20助熔剂提拉法生长近化学计量比铌酸锂晶体研究:[硕士学位论文].山东:山东大学,2003
    [15]R. S. Weis, T. K. Gaylord. Lithium niobate:Summary of physical properties and crystal structure. Appl. Phys. A,1985,37:191-203
    [16]S. C. Abrahams, W. C. Hamilton, J. M. Reddy. Ferroelectric lithium niobate.5. Polycrystal X-ray diffraction study between 24° and 1200℃. J. Phys. Chem. Solids,1966,27:1019-1026
    [17]S. C. Abrahams, E. Buchler, W. C. Hamilton, et al. Ferroelectric lithium tantalite-Ⅲ. Temperature dependence of the structure in the ferroelectric phase and the para-electric structure at 940K. J. Phys. Chem. Solids,1973,34:521-532
    [18]H. Boysen, F. Altorfer. A neutron powder investigation of the high-temperature structure and phase transition in LiNbO3. Acta. Cryst.,1994,50:405-414
    [19]D. Xue, K. Kitamura. Crystallographic Modifications of Physical Properties of Lithium Niobate Crystals by Cation Location. J. Cryst. Growth,2003,249:507-513
    [20]S. C. Abrahams, P. Marsh. Defect structure dependence on composition in lithium niobate. Acta Crystallogr., Sect. B:Struct. Sci.1986,42:61-64.
    [21]D. Xue, K. Kitamura. Effects of Li+ and Nb5+ Cations Sites on Macroscopic Properties of Lithium Niobate Crystals. J. Phys. Chem. Solids,2005,66:589-592
    [22]N. Iyi, K. Kitamura, F. Izumi, et al. Comparative Study of Defects Structures in Lithium Niobate with Different Compositions. J. Solid State Chem.,1992,101:340-352
    [23]R. Femandez-Ruiz, V. Bemudez. Determination of Li and Nb in Congruent Lithium Niobate by ICP-MS. Chem. Mater.,2004,16:3593-3596
    [24]A. V. Yatsenko, E. V. Ivanova, N. A. Sergeev. NMR Study of Intrinsic Defects in Congruent LiNbO3.1. "Unoverlapping" Defects. Physic B,1997,240:254-262
    [25]H. M. O'Bryan, P. K. Grllayher, C. D. Brandle. Optical methods to characterize the composition and homogeneity of lithium nio-bate single crystals. J. Am. Ceram. Soc.,1985, 68:493-496
    [26]B. C. Grambmair, W. Wersing, W. Koestltr. Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure. J. Cryst. Growth,1991,110:339-347
    [27]H. Fay, W. J. Alford, H. M. Dess. Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt-composition. Appl. Phys. Lett.,1968,12:89-92
    [28]P. Lerner, C. Legras, J. P. Dumas. Stoechiometric des monocristaux de metaniobate de lithium. J. Cryst. Growth.1968,34:231-235.
    [29]L. Kovacs, K. Polgar. Density Measurements on LiNbO3 Crystals Confirming Nb Substitution for Li. Cryst. Res. Technol.,1986,42:101-104
    [30]G. E. Peterson, A. Carnevale.93Nb NMR linewidths in nonstoichiometric lithium niobate. J. Chem. Phys.,1972,56:4848-4851
    [31]D. M. Smyth. Defects and transport in LiNbO3. Ferroelectries.1983,50:93-102
    [32]N. Zotov, H. Boysen, F. Frey, et al. Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction. J. Phys. Chem. Solids,1994,55: 145-152
    [33]A. P. Wikinson, A. K. Cheetham, R. H. Jarman. The defect structure of congruently melting lithium niobate. J. Appl. Phys.,1993,74:3080-3083
    [34]S. Kojima. Composition Variation of Optical Phonon Damping in Lithium Niobate Crystals. Jpn. J. Appl. Phys.,1993,32:4373-4376
    [35]J. Blumel, E. Born, T. Metzger. Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate. J. Phys. Chem. Solids,1994,55:589-593
    [36]李铭华,杨春晖,徐玉恒等.光折变晶体材料科学导论.北京:科学出版社,2003
    [37]D. F. Xue, K. Betzler, H. Hesse. Chemical bond analysis of the second-order nonlinear Optical behavior of Mg-doped lithium niobate. J. Phys. Condens. Matter,2000,12: 6245-6252
    [38]D. F. Xue, K. Betzler, H. Hesse. Chemical bond analysis of the second order nonlinear optical behavior of Zn-doped lithium niobate. Opt. Commun.,2000,182:167-173
    [39]T. Volk, M. Wohlecke, N. Rubinina. Optical-damage-resistant impurities (Mg, Zn, In, Se) in lithium niobate. Ferroelectries,1996,183:291-300
    [40]L. Razzari, P. Minzioni, I. Cristiani, et al. Photorefractivity of Hafnium-doped congruent lithium-niobate crystals. Appl. Phys. Lett.,2005,86:131914
    [41]Y. Kong, S. Liu, Y. Zhao, et al. Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate. Appl. Phys. Lett.,2007,91:081908
    [42]H. Wang, J. Wen, J. Li. Photoinduced hole carriers and enhanced resistance to photorefraction in Mg-doped LiNbO3 crystals. Appl. Phys. Lett.,1990,57:344-345
    [43]A. Kling, C. Valdrez, J. G. Marques. Incorporation of tungsten in lithium niobate by diffusion. Nucl. Instrum. Methods Phys. Res., Sect. B,2002,190:524-527
    [44]G. Corradi, A. V. Chadwick, A. R. West, et al. On the substitution site of Cr and Fe in LiNbO3:An EXAFS study. Radiat. Eff. Defects Solids,1995,134:219-222
    [45]M. Vila, A. D. Bernabe, C. Prieto. EXAFS determination of the Nd3+ lattice position in Nd: LiNbO3:influence of lithium niobate stoichiometry and Mg2+ and Zn2+ co-doping. J. Alloys Compd.,2001,323:331-335
    [46]G. Malovichko, V. Grachev, E. Kokanyan, et al. EPR, NMR and ENDOR study of intrinsic and extrinsic defects in disordered and regularly ordered lithium niobate crystals. Ferroelectrics,2000,239:1227-1236
    [47]V. G. Grachev, G. I. Malovichko, V. V. Troitski. Investigation of the charge compensation mechanisms of Cr3+ ions in LiNbO3 by EPR and ENDOR methods. Sov. Phys. solid State, 1987,29:349-350
    [48]孔勇发,许京军,张光寅等.多功能光电材料一铌酸锂晶体.北京:科学出版社,2005,46~47
    [49]何娅丽.掺杂铌酸锂晶体的缺陷和性质研究:[硕士学位论文].大连:大连理工大学,2007
    [50]M. Didomenico, S. H. Wemple. Oxygen-octahedra ferroelectrics. I. theory of electro-optical and nonlinear optical effects. J. Appl. Phys.,1969,40:720-734
    [51]孔勇发,许京军,张光寅等.多功能光电材料一铌酸锂晶体.北京:科学出版社,2005,50
    [52]K. A. Kam, J. H. Henkel, H. C. Hwang. Band structure and spontaneous polarization of ferroelectric LiNbO3. J. Chem. Phys.,1978,69:1949-1951
    [53]S. Kase, K. Ohi. Optical absorption and interband Faraday rotation in LiTaO3 and LiNbO3. Ferroelectrics,1974,8:419-420
    [54]M. G. Clark, F. J. Disalvo, A. M. Glass, et al. Electronic structure and optical index damage of iron-doped lithium niobate. J. Chem. Phys.,1973,59:6209-6219
    [55]A. Hordvik, H. Schlossberg. Luminescence from LiNbO3. Appl. Phys. Lett.,1972,20: 197-199
    [56]刘思敏,张光寅,荣放等.固液同成分点组分的LiNbO3晶体吸收边的异常紫移.物理学报,1985,34:275-279
    [57]刘思敏,张光寅,郭建斌等.不同组分的LiNbO3晶体的吸收边研究.物理学报,1986,35:1357-1363
    [58]D. Redfield, W. J. Burke. Optical absorption edge of LiNbO3. J. Appl. Phys.,1974,45: 4566-4571
    [59]H. A. Weakliem, D. Redfield. Optical properties of SrTiO3 and LiNbO3. RCA Rev.,1975,36: 149-162
    [60]R. Orlowski, E. Kraetzig. Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals. Solid State Commun.,1978,27: 1351-1354
    [61]S. E. Miller. Integrated optics:An introduction. Bell Syst.Tech. J.,1969,48:205969
    [62]西原浩,春名正光,栖原敏明著,梁瑞明译.集成光路.北京:科学出版社,2004,2-3
    [63]王红.光无源器件技术发展综述.光通信技术,2001,25,193-195
    [64]卢山鹰.干涉型铌酸锂基集成光开关研究:[博士学位论文].浙江:浙江大学,2004
    [65]西原浩,春名正光,栖原敏明著,梁瑞明译.集成光路.北京:科学出版社,2004,5-6
    [66]韦文生,张春熹.硅基光电集成材料及器件的研究进展.材料导报,2003,17,31-35
    [67]G. L. Yip, J. Nikolopoulos. Characterisation of proton-exchanged and annealed proton-exchanged planar waveguides in z-cut LiNbO3. IEE Proceedings-J,1991,138: 389-392
    [68]A. Yamada, H. Tamada, M. Saitoh. Liquid phase epitaxial growth of LiNbO3 thin film using Li2O-B2O3 flux system. J. Cryst. Growth,1993,132:48-60.
    [69]Y. Watanabe, D. Sawamura, M. Okano. Evolution of the memory effect of the current through ferroelectric p/p and p/n heterostructures. Solid State Ionics,1998,108:109-115
    [70]D. Hunter, K. Lord, T. M. Williams, et al. Junction characteristics of SrTiO3 or BaTiO3 on p-Si (100) heterostructures. Appl. Phys. Lett.,2006,89:092102
    [71]L. Hao, Q. Xue, X. Gao, et al. Forward tunneling effect and metal-insulator transition in the BaTiO3 film/Si n-n heterojunction. Appl. Phys. Lett.,2007,91:212105
    [72]H. Yang, H. M. Luo, H. Wang, et al. Rectifying current-voltage characteristics of BiFeO3/Nb-doped SrTiO3 heterojunction. Appl. Phys. Lett.,2008,92:102113
    [73]S. M. Guo, Y. G. Zhao, C. M. Xiong, et al. Rectifying Ⅰ-Ⅴ characteristic of LiNbO3/ Nb-doped SrTiO3 heterojunction. Appl. Phys. Lett.,2006,89:223506
    [74]S. M. Guo, Y. G. Zhao, C. M. Xiong, et al. Current-voltage characteristics of LiNbO3/La0.69Ca0.31MnO3 heterojunction and its tenability. Appl. Phys. Lett.,2007,91: 143509
    [75]L. Hao, Y. Liu, J. Zhu, et al. Rectifying the Current-Voltage Characteristics of a LiNbO3 Film/GaN Heterojunction. Chin. Phys. Lett.,2011,28:107703
    [1]H. Yanagi, T. Hase, S. Ibuki, et al. Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure. Appl. Phys. Lett.,2001,78:1583-1585
    [2]H. Yanagi, K. Ueda, H. Ohta, et al. Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure. Solid State Commun., 2002,121:15-17
    [3]S. Sheng, G. Fang, C. Li, et al. p-type transparent conducting oxides, phys. Stat. Sol. (a),2006, 203:1891-1900
    [4]S. Narushima, H. Mizoguchi, K. Shimizu, et al. A p-type Amorphous Oxide Semiconductor and Room Temperature Fabrication of Amorphous Oxide p-n Heterojunction Diodes. Adv. Mater.,2003,15:1409-1413
    [5]D. L. Staebler, J. J. Amodei. Coupled-Wave Analysis of Holographic Storage in LiNbO3. J. Appl. Phys.,1972,43:1042-1049
    [6]H. Kogelnik. Coupled wave theory for thick hologram gratings. Bell System Tech. J.1969,48: 2909-2947
    [7]孔勇发.抗光折变系列掺杂铌酸锂晶体:[硕士学位论文].天津:南开大学,1994
    [8]高国祥.铌酸锂晶体低温光折变性质研究:[博士学位论文].天津:南开大学,2006
    [9]H. Wang, J. K. Wen, J. Li, et al. Photoinduced hole carriers and enhanced resistance to photorefraction in Mg-doped LiNbO3. Appl. Phys. Lett.,1990,57:344-345
    [10]R. Orlowski, E. Kraetzig. Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals. Solid State Commun.,1978,27: 1351-1354
    [11]D. W. Vahey. A nonlinear coupled-wave theory of holographic storage in ferroelectric materials. J. Appl. Phys.,1975,46:3510-3515
    [12]M. Falk, K. Buse. Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals. Appl. Phys. B,2005,81:853-855
    [13]刘思敏,郭儒,许京军.光折变非线性光学及其应用.北京:科学出版社,2004
    [14]乔海军.紫外光折变与相关弱光非线性光学效应及其应用的研究:[博士学位论文].天津:南开大学,2003
    [15]F. Laeri, R. Jungen, G. Angelow, et al. Photorefraction in the ultraviolet:Materials and effects. Appl. Phys. B,1995,61:351-360
    [16]R. Jungen, G. Angelow, F. Laeri, et al. Efficient Ultraviolet Photorefraction in LiNbO3. Appl. Phys. A,1992,55:101-103
    [17]J. Xu, G. Zhang, F. Li, et al. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals. Opt. Lett.,2000,25:129-131
    [18]F. Liu, Y. Kong, W. Li, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals. Opt. Lett.,2010,35:10-12
    [19]Y. Kong, S. Liu, Y. Zhao, et al. Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate. Appl. Phys. Lett.,2007,91:081908
    [20]E. P. Kokanyan, L. Razzari, I. Cristiani, et al. Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals, Appl. Phys. Lett.,2004,84: 1880-1882
    [21]S. Li, S. Liu, Y. Kong, et al. The optical damage resistance and absorption spectra of LiNbO3: Hf crystals. J. Phys.:Condens. Matter,2006,18:3527-3534
    [22]Y. Kong, S. Wu, S. Liu, et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals. Appl. Phys. Lett.,2008,92:251107
    [23]P. Lerner, C. Legras, J. P. Dumas. Stoechiometrie des monocristaux de metaniobate de lithium. J. Cryst. Growth,1968,3-4:231-235
    [24]H. Kurz, E. Kratzig, W. Keune, et al. Photorefractive centers in LiNbO3, studied by optical-, Mossbauer- and EPR-methods. Appl. Phys.,1977,12:335-368
    [25]M. G. Clark, F. J. Disalvo, A. M. Glass, et al. Electronic structure and optical index damage of iron-doped lithium niobate. J. Chem. Phys.,1973,59:6209-6219
    [26]S. Gronenborn, B. Sturman, M. Falk, et al. Ultraslow Shock Waves of Electron Density in LiNbO3 Crystals. Phys. Rev. Lett.,2008,101:116601
    [27]D. P. Birnie Ⅲ. Analysis of diffusion in lithium niobate. J. Mater. Sci.,1993,28:302-315
    [28]S. Gronenborn, B. Sturman, M. Falk, et al'. Ultraslow Shock Waves of Electron Density in LiNbO3 Crystals. Phys. Rev. Lett.,2008,101:116601
    [29]M. Falk, J. Japs, T. Woike, et al. Charge transport in highly iron-doped oxidized lithium niobate single crystals. Appl. Phys. B,2007,87:119-122
    [30]M. Falk, T. Woike, K. Buse. Charge compensation mechanism for thermo-electric oxidization of lithium niobate crystals. J. Appl. Phys.,2007,102:063529
    [31]K. Brands, M. Falk, D. Haertle, et al. Impedance spectroscopy of iron-doped lithium niobate crystals. Appl. Phys. B,2008,91:279-281
    [32]F. Jermann, J. Otten. Light-induced charge transport in LiNbO3:Fe at high light intensities. J. Opt. Soc. Am. B,1993,10:2085-2092
    [1]R. R. Thomson, S. Campbell, I. J. Blewett, et al. Optical waveguide fabrication in z-cut lithium niobate (LiNbO3) using femtosecond pulses in the low repetition rate regime. Appl. Phys. Lett.,2006,88:111109
    [2]F. Chen, M. Stepic, C. E. Riiter, et al. Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays. Opt. Express,2005,13:4314-4324
    [3]L. Chanvillard, P. Aschieri, P. Baldi, et al. Soft proton exchange on periodically poled LiNbO3:A simple waveguide fabrication process for highly efficient nonlinear interactions. Appl. Phys. Lett.,2000,76:1089-1091
    [4]Y. N. Korkishko, V. A. Fedorov, O. Y. Feoktistova. LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange. J. Lightwave Technol.,2000,18:562-568
    [5]Y. N. Korkishkoa, V. A. Fedorova, S. M. Kostritskiia, et al. Proton exchanged LiNbO3 and LiTaO3 optical waveguides and integrated optic devices. Microelectron. Eng.,2003,69: 228-236
    [6]C. Becker, T. Oesselke, J. Pandavenes, et al. Advanced Ti:Er.LiNbO3 Waveguide Lasers. IEEE J. Sel. Top. Quantum Electron.,2000,6:101-113
    [7]D. Y. Zang, C. S. Tsai. Titanium-indiffused proton-exchanged waveguide lenses in LiNbO3 for optical information processing. Appl. Opt.,1986,25:2264-2271
    [8]A. M. Radojevic, R. M. Osgood, M. Levy. Zeroth-Order Half-Wave Plates of LiNbO3 for Integrated Optics Applications at 1.55 μm. IEEE Photonics Technol. Lett.,2000,12: 1653-1655
    [9]F. Lucchi, D. Janner, M. Belmonte, et al. Very low voltage single drive domain inverted LiNbO3 integrated electro-optic modulator. Opt. Express,2007,15:10739-10743
    [10]D. Yudistira, D. Janner, S. Benchabane, et al. Integrated acousto-optic polarization converter in a ZX-cut LiNbO3 waveguide superlattice. Opt. Lett.,2009,34:3205-3207
    [11]Z. Song, L. Liu, H. Ren, et al. Electro-optic bypass-exchange switch integrated in a single LiNbO3 crystal. J. Opt. A:Pure Appl. Opt.,2004,6:229-234
    [12]I. Suarez, P. L. Pernas, G. Lifante. Integrated electro-optic Mach-Zehnder modulator fabricated by vapour Zn-diffusion in LiNbO3. Microwave Opt. Technol. Lett.,2007,49: 1194-1196
    [13]黄章勇.光纤通信用光电子器件制作工艺基础.北京:北京邮电大学出版社,2005.87-88
    [14]王海丽,徐军,赵广军.液相外延法制备LiNbO3薄膜的研究和进展.人工晶体学报,2003,32:196~203
    [15]A. Yamada, H. Tamada, M. Saitoh. Liquid phase epitaxial growth of LiNbO3 thin film using Li2O-B2O3 flux system. J. Crystal Growth,1993,132:48-60
    [16]T. Hibiya, H. Suzuki, I. Yonenaga, et al. Liquid Phase Epitaxial Growth and Characterization of LiNbO3 Single Crystal Films. J. Crystal Growth,1994,144:213-217
    [17]肖罗生.铌酸锂晶体异质结构制备和性能研究:[硕士学位论文].天津:南开大学,2007
    [18]姜银方.现代表面工程技术.北京:化学工业出版社,2006.159-160
    [19]张其瑞.高温超导电性.浙江:浙江大学出版社,1992.461-462
    [20]G. Griffel, S. Ruschin, N. Croitoru. Linear electro-optic effect in sputtered polycrystalline LiNbO3 films. Appl. Phys. Lett.,1989,54:1385-1388
    [21]殷之文.电介质物理学.北京:科学出版社,2003
    [22]M. Ishihara, T. Nakamura, F. Kokai, et al. Preparation of ANI and LiNbO3 thin films on diamond substrates by sputtering method. Diamond Relat. Mater.,2002,11:408-412
    [23]M. Ishihara, T. Nakamura, F. Kokai. Preparation of lithium niobate thin films on diamond-coated silicon substrate for surface acoustic devices. Diamond Relat. Mater.,2003, 12:1809-1813
    [24]N. Fujimura, M. Kakinoki, H. Tsuboi, et al. LiNbO3 film with a new epitaxial orientation on R-cut sapphire. J. Appl. Phys.,1994,75:2169-2176
    [25]孔勇发,许京军,张光寅,刘思敏,陆琦.多功能光电材料一铌酸锂晶体.北京:科学出版社,2005
    [26]J. T. Cheung, et al. in Proceedings of Infrared Information Symposia (Detecter Speial Group, Boulder, CO,1983)
    [27]J. T. Cheung, G. Niizawa, J. Moyle, et al. HgTe and CdTe epitaxial layers and HgTe-CdTe superlattices grown by laser molecular beam epitaxy. J. Vac. Sci. Technol., A,1986,4: 2086-2090
    [28]J. T. Cheung, J. Madden. Growth of HgCdTe epilayers with any predesigned compositional profile by laser molecular beam epitaxy. J. Vac. Sci. Technol., B,1987,5:705-708
    [29]M. Kanai, T. Kawai, S. Kawai. Atomic layer and unit cell layer growth of (Ca,Sr)CuO2 thin film by laser molecular beam epitaxy. Appl. Phys. Lett.,1991,58:771-773
    [30]J. Klein. Epitaktische Heterostrukturen aus dotierten Manganaten. PhD Thesis, University of Cologne,2001
    [31]United States Patent. Patent Number:4721854. Quadrupole Mass Spectrometer. Peter H. Dawson,1988
    [32]郭海中.钙钛矿氧化物材料的LMBE制备与物性研究:[博士学位论文].北京:中科院物理所,2005
    [1]A. Yamada, H. Tamada, M. Saitoh. Liquid phase epitaxial growth of LiNbO3 thin film using Li2O-B2O3 flux system. J. Cryst. Growth,1993,132:48-60
    [2]Z. Ye, J. He, L. Ye, et al. Highly c-axis oriented LiNbO3 thin film grown on SiO2/Si substrates by pulsed laser deposition, Mater. Lett.,2002,55:265-268
    [3]X. L. Guo, W. S. Hu, Z. G. Liu, et al. In-situ poling of lithium niobate films on silicon wafer by applying a low electric field during pulsed laser deposition. Mater. Sci. Eng., B,1998,53: 278-283
    [4]W. Hu, Z. Liu, Y. Lu, et al. Pulsed-laser deposition and optical properties of completely (001) textured optical waveguiding LiNbO3 films upon SiO2/Si substrates. Opt. Lett.,1996,21: 946-948
    [5]X. Wang, Z. Ye, B. Zhao. Growth and optical properties of completely c-axis orientated LiNbO3 films deposited by pulsed laser deposition. Solid State Commun.2007,142:694-697
    [6]X. Wang, Z. Ye, G. Li, et al. Influence of substrate temperature on the growth and optical waveguide properties of oriented LiNbO3 thin films. J. Cryst. Growth,2007,306:62-67
    [7]Y. Zhang, C. Li, S. Zhu, et al. Optical and spectral characteristics of highly c-axis oriented Nd: LiNbO3 film on SiO2/Si substrate by PLD. J. Phys. D:Appl. Phys.,2007,40:1442-1446
    [8]A. M. Glass, D. von der Linde, T. J. Negran. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett.,1974,25:233-235
    [9]R. Williams. Becquerel Photovoltaic Effect in Binary Compounds. J. Chem. Phys.,1960,32: 1505-1514
    [10]M. A. Green. Photovoltaic principles. Physica E.,2002,14:11-17
    [11]A. G. Chynoweth. Surface Space-Charge Layers in Barium Titanate. Phys. Rev.,1956,102: 705-714
    [12]F. S. Chen. Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3. J. Appl. Phys.,1969,40:3389-3396
    [13]G. Chanussot. Physical models for the photoferroelectric phenomena. Ferroelectrics,1978, 20:37-50
    [14]钟维烈.铁电体物理学.北京:科学出版社,1998
    [15]J. M. Ziman. Principles of The Theory of Solids. Cambridge University Press, Cambridge, 1979,275
    [16]刘思敏,郭儒,许京军等.光折变非线性光学及其应用.北京:科学出版社,2003
    [17]M. Nakamura, S. Takekawa, Y. Liu, et al. Photovoltaic effect and photoconductivity in Sc-doped near-stoichiometric LiNbO3 crystals. Opt. Mater.,2008,31:280-283
    [18]李云奇.真空镀膜技术与设备.辽宁:东北工学院出版社,1989.
    [19]S. B. Ogale, R. Nawathey-Dikshit, S. J. Dikshit, et al. Pulsed laser deposition of stoichiometric LiNbO3 thin films by using O2 and Ar gas mixtures as ambients. J. Appl. Phys. 1992,71:5718-5720
    [20]J. A. Chaos, J. Gonzalo, C. N. Afonso, et al. Growth of stoichiometric and textured LiNbO3 films on Si by pulsed laser deposition. Appl. Phys. A,2001,72:705-710
    [21]X. Wang, Z. Ye, G. Wu, et al. Growth of textured LiNbO3 thin film on Si (111) substrate by pulsed laser deposition. Mater. Lett.,2005,59:2994-2997
    [22]M. Haruna, H. Ishizuki, J. Tsutsumi, et al. Characterization of LiNbO3 Optical-Waveguide Film Grown on Sapphire by ArF Excimer Laser Ablation. Jpn. J. Appl. Phys.,1995,34: 6084-6091
    [23]G. H. Lee, B. C. Shin, B. H. Min. Effect of deposition flux on surface roughness of LiNbO3 thin film grown on sapphire substrate by pulsed laser deposition. Mater. Sci. Eng., B,2002,95: 137-140
    [24]G. C. Budakoti, R. S. Rawat. Enhancement in crystalline quality of LiNbO3 films by slow annealing at low temperatures. J. Cryst. Growth,2008,310:4205-4208
    [25]X. Yang, X. L. Wu, Z. Y. Zhang. Cylindroid rigid-wall simulation of the influence of gas pressure in pulsed laser deposition of LiNbO3 films.2003,82:619-621
    [26]A. Novikov. Experimental measurement of work function in doped silicon surfaces. Solid-State Electron.,2010,54:8-13
    [27]B. G. Streetman, S. Banerjee. Solid State electronic Devices. New Jersey:Prentice Hall,2000, 524.
    [28]L. Z. Hao, Y. J. Liu, J. Zhu, et al. Rectifying the Current-Voltage Characteristics of a LiNbO3 Film/GaN Heterojunction. Chin. Phys. Lett.,2011,28:107703
    [29]S. M. Guo, Y. G. Zhao, C. M. Xiong, et al. Rectifying I-V characteristic of LiNbO3 /Nb-doped SrTiO3 heterojunction. Appl. Phys. Lett.2006,89:223506
    [30]L. Hesselink, S. S. Orlov, A. Liu, et al. Storage Photorefractive Materials for Nonvolatile Volume Holographic Data. Science,1998,282:1089-1094

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700