掺钼铌酸锂系列晶体的生长及其光折变性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铌酸锂晶体是一种被广泛使用的人工晶体,它不仅具有电光、声光、弹光、光折变、压电、热释电效应等优良的物理特性,还具有自身机械性能稳定、易加工、耐高温、抗腐蚀、原材料来源丰富、价格低廉、易生长成大晶体的优点。同时,在铌酸锂晶体中掺入不同杂质后能呈现出各种各样的性能,使之在声倍频转换、表面滤波器、电光调制器、光波导、全息存储等方面有着广泛的应用。
     全息存储被认为是下一代光学存储技术之一,但是缺少一种理想的材料作为存储介质使其商业化。光折变全息存储广泛使用的掺铁铌酸锂晶体存在诸如光挥发性和慢响应等缺点。虽然铁锰双掺铌酸锂晶体可以实现非挥发存储,但慢响应仍然没有得到解决。另一方面,掺铁铌酸锂晶体只能在蓝绿光波段表现出优异的光折变性能,但是在紫外波段由于强吸收无法工作。此外,铌酸锂晶体虽然是一种很好的集成光学发展平台,但它一直被用作无源元件而非有源元件。制成有源元件的基础是制备p-n结,但最近的研究表明现有的掺杂铌酸锂晶体是n型而不是p型的,因此寻找一种p型的铌酸锂晶体至关重要。
     掺杂之后铌酸锂晶体具有多功能和多用途,但目前常用的掺杂离子的价态一般都低于+5价(Nb的价态),这些离子掺入之后占据晶格中的正常锂位形成一些缺陷,并且表现出与这些缺陷相关的性能。因此,一个至关重要的问题就会突显出来:如果掺杂离子的价态高于+5价(比如+6价的钼),那么铌酸锂晶体中会出现新的占位并形成新的缺陷而表现出新的性能吗?
     本论文主要研究单掺六价钼(LN:Mo)、双掺锆钼(LN:Zr,Mo)和镁钼(LN:Mg,Mo)铌酸锂晶体的光折变性能,并试图通过极化工艺的改变来调控晶体的光折变性能以及载流子类型以期待获得p型铌酸锂晶体,并对晶体中的缺陷结构及其与晶体性能的关系进行了研究。
     第一章,阐述了工作的背景、目的与意义。综述了铌酸锂晶体的基本结构、基本物理性质及其缺陷结构模型,并介绍了铌酸锂晶体的掺杂工程。
     第二章,系统地介绍了单掺钼、镁钼双掺和锆钼双掺铌酸锂晶体的生长及晶体的极化工艺。
     第三章,研究了LN:Mo晶体的光折变性能。实验结果表明,LN:Mo晶体可以实现从紫外至可见波段的全息存储。钼的最佳掺杂量为0.5mol%,此时晶体具有最快的响应速度和较好的饱和衍射效率。极化电流的增加可以提高LN:Mo晶体的光折变性能。尤其当极化电流达到145mA时,晶体在351nm处响应时间缩短到0.35秒,并保持了60%的饱和衍射效率,而在其他波段也都保持在秒的量级。X射线光电子能谱表明钼在晶体中以+4、+5和+6的价态存在。X射线单晶衍射精修结果表明Mo在晶体中占据铌位。因而LN:Mo晶体优异的光折变性能归因于Mo在晶体中不像其他掺杂元素占据锂位而是占据铌位,并形成新型缺陷MoNb+。
     第四章,研究了共掺入0.5mol%钼和不同掺杂量的镁或者锆铌酸锂晶体的光折变性能。研究结果表明,此晶体中依然可以实现全色存储。红外吸收谱表明当镁掺入6.5mo1%或者锆掺入2.5mol%时,掺杂量都达到了阈值。但是锆并不能提高LN:Mo晶体的光折变性能,而镁则可以进一步提高LN:Mo晶体的响应速度。当镁的掺杂量达到6.5mol%时,LN:Mg,Mo晶体在351nm、488nm、532nm和671nm的响应时间分别是0.22秒、0.32秒、0.37秒和1.2秒。这是目前仅有的可以在紫外至可见波段实现如此快速地全色存储的晶体。
     第五章,研究了极化条件对LN:Mo晶体光折变载流子类型的影响。实验结果表明,极化电流和极化时间的改变极大的影响着晶体的颜色和性能。当极化电流为70mA,极化时间为30分钟时,LN:Mo晶体在351nm处的主导载流子类型由电子型变为空穴型。
     第六章,总结了本论文的研究成果,并提出了掺钼铌酸锂晶体的进一步研究计划及应用前景。
Lithium niobate (LiNbO3, or LN) is one of the most used synthetic crystals. It not only has excellent physical properties such as electro-optic, acousto-optic, photorefractive, piezoelectric and thermal-optic effects, etc, but also has many advantages such as stable mechanical properties, easy processing, high temperature and corrosion resistant, abundant raw material source, low price, easy to grow large crystals, etc. Meanwhile, adding different dopants into LiNbO3can make it obtain various properties. Thereby it can be applied for surface acoustic wave filter, optical waveguide, electro-optical modulation, frequency conversion and holographic storage, etc.
     Holographic data storage promises to be one of the next generation storage technologies. Despite many efforts, it is not yet mature for commercial application because the ideal material is lacking. Although the widely used photorefractive holographic storage material, namely iron doped LiNbO3(LN:Fe), performs well in some respects, it is still too slow and volatile. Even if LiNbO3is doped with iron and manganese (LN:Fe,Mn) which solves the volatility problem, the material still responds very slowly. On the other hand, LN:Fe crystals only have excellent photorefraction in blue and green region, but in ultraviolet range only have strong absorption. Besides, LN is a platform of optical integrated circuits. However, LiNbO3practically always serves as a passive material. Until today there is rare report on active component based on LN. The main problem is the lack of p-type LN.
     The doped LiNbO3crystals have multi-function and versatility, but currently the valences of dopants are all below5+, which is the valence of Nb. These doped ions preferably occupy Li sites. Then a crucial question is arisen:if LiNbO3is doped with ions of valence6+or more, whether these ions may occupy Nb sites and thereby induce new effects?
     In this thesis, we studied on the photorefractive properties of LiNbO3doped with the hexavalent molybdenum ion Mo6+(LN:Mo), co-doped with zirconium ion (Zr4+) and molybdenum ion (LN:Zr, Mo) and co-doped with magnesium ion (Mg2+) and molybdenum ion (LN:Mg, Mo). And we intend to control the photorefractive properties of LN:Mo and obtain p-type LiNbO3by polarization technology. The structure of defects and the relationship of the defects and properties are also investigated.
     In chapter one, we introduced the basic structure, physical properties and defect structural models of lithium niobate crystals, then gave a brief view of the doping engineering.
     In chapter two, we grew LN:Mo, LN:Zr,Mo and LN:Mg,Mo crystals, the effect of polarization was also investigated.
     In chapter three, the photorefractive properties of Mo-doped crystals are studied. The experimental results show that LN:Mo allows for holographic storage from UV to the visible. The optimal doping concentration of LN:Mo crystal is0.5mol%, which has fastest respond and good saturated diffraction efficiency. The photorefractive properties of LN:Mo can be improved by the enhancement of polarization current. Especially, when the polarization current was enhanced to145mA, the response time of LN:Mo can be shortened to as small as0.35s with a still high saturation diffraction efficiency of about60%at351nm, while the response time is also in the order of second in visible range. The results of X-ray Photoelectron Spectroscopy show that the valences of the Mo ions were4+,5+and6+. The results of X-ray single crystal diffraction analysis show that the Mo6+ions occupy Nb-sites. The excellent photorefraction of LN:Mo can be attributed to Mo6+ions occupying regular Nb-sites and forming new defects of Mo+Nb.
     In chapter four, we studied the photorefractive properties of LN co-doped with0.5mol%Mo and Zr or Mg. The experimental results show that LN:Mg,Mo and LN:Zr,Mo also allows for holographic storage from UV to the visible. The OH-spectra exhibit that6.5mol%Mg and2.5mol%Zr have exceed their thresholds in LN:Mo crystals. It is interesting that ZrO2cannot improve the photorefraction of LN:Mo even when its concentration is above the threshold. However, when the. concentration of MgO is6.5mol%, a very short photorefractive response time of0.22s,0.33s,0.37s and1.2s for351,488,532and671nm was obtained, respectively. Up to now, it is the only report that can realize holographic storage from UV to the visible with so fast response speed.
     In chapter five, the influence of the polarization condition on the type of photorefractive carriers in LN:Mo crystals were investigated. The experimental results showed that the color and properties of LN:Mo crystals were greatly influenced by the polarization current and polarization time. If LN:Mo crystal was polarized with the current of70mA for30minutes, the main carriers can be transformed from electrons to holes at351nm.
     In chapter six, we summaried the work of this dissertation, and gave an outlook of the further research on molybdelem doped LiNbO3was also presented.
引文
[1]Arizmendi L. Photonic applications of lithium niobate crystals. Physica status solidi (a), 2004,201 (2):253-283
    [2]http://www.nature.com/cgi-taf/gateway.taf?g=3&file=/materials/month/articles/m0210316.ht ml
    [3]Ashkin A, Boyd G D, Dziedzic J M et al. Optical-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Applied Physics Letters,1966,9 (1):72-74
    [4]Chen F S, Lamacchia J T, Fraser D B. Time resolved measurements of electron number density and electron temperature using laser interferometry at 337 μm wavelength. Applied Physics Letters,1968,13 (7):223-225
    [5]Queisser H J, Haller E E. Defects in semiconductors:some fatal, some vital. Science,1998, 281:945-950
    [6]D. Kip. Invited paper:photorefractive waveguides in oxide crystals:fabrication, properties, and applications. Applied Physics B,1998,67 (2):131-150
    [7]Phillips W, Amodei J J, Staebler D L. Optical and holographic storage properties of transition metal doped lithium niobate. RCA Review,1972,33 (1):94-109
    [8]McMillen D K, Hudson T D, Wagner J, et al. Holographic recording in specially doped lithium niobate crystals. Optics Express,1998,2 (12):491-502
    [9]Zhong G G, Jian J, Wu Z. Measurement of optically induced refractive index damage in lithium niobate doped with different concentrations of MgO. Journal of the Optical Society of America,1980,70 (6):631-635
    [10]Volk T R, Pryalkin V J, Rubinina M M. Optical-damage-resistant LiNbO3:Zn crystal, Optics Letters,1990,15 (18):996-998
    [11]Kong Y F, Wen J K, Wang H. New doped lithium niobate crystal with high resistance to photorefraction-LiNb03:In. Applied Physics Letters,1995,66 (3):280-282
    [12]Kokanyan E P, Razzari L, Cristiani I, et al. Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals. Applied Physics Letters,2004, 84(11):1880-1882
    [13]Kong Y F, Liu S G, Zhao Y J, et al. Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate, Applied Physics Letters,2007,91 (8):081908
    [14]Byer H R, Young J F, Feigelson R S. Growth of High-Quality LiNbO3 Crystals from the Congruent Melt. Journal of Applied Physics,1970,41 (6):2320-2325
    [15]Bryan H R, Grllayher P K, Brandle C D. Congruent Composition and Li-Rich Phase Boundary of LiNbO3. Journal of the American Ceramic Society,1985,68 (9):493-496
    [16]Grambmair B C, Wersing W, Koestltr W. Properties of undoped and MgO-doped LiNbO3; correlation to the defect structure. Journal of Crystal Growth,1991,110 (3):339-347
    [17]Didomenico M, Wemple S H. Oxygen-octahedra ferroelectrics. I. theory of electro-optical and nonlinear optical effects. Journal of Applied Physics,1969,40 (2):720-734
    [18]孔勇发,许京军,张光寅,刘思敏,陆琦.多功能光电材料—铌酸锂晶体.北京:科学出版社,2005
    [19]Kam K A, Henkel J H, Hwang H C. Band structure and spontaneous polarization of ferroelectric LiNbO3. Journal of Chemistry Physics,1978,69 (5):1949-1951
    [20]Clark M G, Disalvo F J, Glass A M, et al. Electronic structure and optical index damage of iron-doped lithium niobate. Journal of Chemistry Physics,1973,59 (12):6209-6219
    [21]Kase S, Ohi K. Optical absorption and interband Faraday rotation in LiTaO3 and LiNbO3. Ferroelectrics,1974,8 (1-2):419-420
    [22]Hordvik A, Schlossberg H. Luminescence from LiNbO3 [rel. to optical index damage]. Applied Physics Letters,1972,20 (5):197-199
    [23]Redfield D, Burke W J. Optical absorption edge of LiNbO3. Journal of Applied Physics, 1974,45 (10):4566-4571
    [24]Weakliem H A, Redfield D. Optical properties of SrTiO3 and LiNbO3. RCA Review,1975, 36 (1):149-162
    [25]刘思敏,张光寅,荣放等.固液同成分点组分的LiNbO3晶体吸收边的异常紫移.物理学报,1985,Vol.34(2):275-279
    [26]刘思敏,张光寅,郭建斌等.不同组分的LiNbO3晶体的吸收边研究.物理学报,1986,Vol.35(10):1357-1363
    [27]Fay H, Alford W J, Dess H M. Dependence Of Second-Harmonic Phase-Matching Temperature In LiNbO3 Crystals On Melt Composition. Applied Physics Letters,1968,12 (3):89-92
    [28]Lerner P, Legras C, Dumas J P. Stoechiometrie des monocristaux de metaniobate de lithium. Journal of Crystal Growth,1968,3:231-235
    [29]Kovacs L, Polgar K, Density measurements on LiNbO3 crystals confirming Nb substitution for Li. Crystal Research Technology,1986,21 (6):K101-K104
    [30]Iyi N, Kitamura K, Izumi F, et al. Comparative study of defect structures in lithium niobate with different compositions. Journal of Solid State Chemistry,1992,101 (2):340-352
    [31]Peterson G E, Carnevale A.93Nb NMR Linewidths in Nonstoichiometric Lithium Niobate. Journal of Chemical Physics,1972,56 (10):4848-4851
    [32]Abrahams S C, Marsh P. Defect structure dependence on composition in lithium niobate. Acta Crystallographica Section B:Structural Science,1986,42 (1):61-68
    [33]Wilkinson A P, Cheetham A K, Jarman R H. The defect structure of congruently melting lithium niobate. Journal of Applied Physics,1993,74 (5):3080-3083
    [34]Zotov N, Boysen H, Frey F, et al. Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction. Journal of Physics and Chemistry of Solids,1994,55 (2):145-152
    [35]Blumel J, Born E, Metzger T. Solid state NMR study supporting the lithium vacancy defect model in congruent lithium niobate. Journal of Physics and Chemistry of Solids,1994,55 (7): 589-593
    [36]Kojima S. Composition Variation of Optical Phonon Damping in Lithium Niobate Crystals. Japanese Journal of Applied Physics,1993,32 (9S):4373-4376
    [37]Safaryan F P, Feigelson R S, Petrosyan A M. An approach to the defect structure analysis of lithium niobate single crystals. Journal of Applied Physics,1999,85 (12):8079-8082
    [38]Schirmer O, Von der Linde D. Two-photon-and x-ray-induced Nb4+ and O- small polarons in LiNbO3. Applied Physics Letters,1978,33 (1):35-38
    [39]Fraust B, Muller H, Schirmer O F. Free small polarons in LiNbO3. Ferroelectrics,1994, 153:297-302
    [40]Ketchum J L, Sweeney K L, Halliburton L E, et al. Vacuum annealing effects in lithium niobate. Physics Letters A,1983,94 (9):450-453
    [41]Hesselink L, Orlov S S, Liu A, et al. Photorefractive materials for nonvolatile volume holographic data storage. Science,1998,282 (5391):1089-1094
    [42]Phillips W, Amodei J J, Staebler D L. Optical and holographic storage properties of transition metal doped Lithium Niobate. RCA Review,1972,33 (7):94-109
    [43]Zhong G G, Jin J, Wu Z K. Measurements of optically induced refractive index damage of lithium niobate doped with different concentrations of MgO. Proceeding of 11th International Quantum Electronic Conference, IEEE Cat. (Optical Society of America, Washington, D.C.), 1980,80:631
    [44]Bryan D A, Gerson R, Tomaschke H E. Increased optical damage resistance in lithium niobate. Applied Physics Letters,1984,44 (9):847-849
    [45]Wen J, Wang L, Tang Y, et al. Enhanced resistance to photorefraction and photovoltaic effect in Li-rich LiNbO3:Mg crystals. Applied Physics Letters,1988,53:260-262
    [46]Furukawa Y, Kitamura K, Takekawa S, et al. Stoichiometric Mg:LiNbO3 as an effectivematerial for nonlinear optics. Optics Letters,1998,23 (24):1892-1894
    [47]孔勇发,李兵,陈云琳等.掺镁铌酸锂晶体抗光折变微观机理研究.红外与毫米波学报,2003,Vol.22(1):40-44
    [48]仲跻国,徐观峰,王廷福等.高掺镁铌酸锂晶体的生长和倍频性能.物理学报,1983,Vol.32(6):795-798
    [49]Bryan D A, Rice R R, Gerson R, et al. Magnesium-doped lithium niobate for higher optical-power applications. Optical Engineering,1985,24 (1):138-143
    [50]Polgar K, Kovacs L, Foldvari I, et al. Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals. Solid State Communications,1986,59 (6):375-379
    [51]Iyi N, Kitamura K, Yajima Y, et al. Defects structure model of MgO-doped LiNbO3. Journal of Solid State Chemistry,1995,118 (1):148-152
    [52]Liu J, Zhang W, Zhang G. Defect chemistry analysis of the defect structure in Mg-doped LiNbO3 crystals. Physica status solidi (a),1996,156 (2):285-291
    [53]Volk T R, Pryalkin V J, Rubinina M M. Optical-damage-resistant LiNbO3:Zn crystal, Optics Letters,1990,15 (18):996-998
    [54]Yamamoto J K, Kitamura K, Iyi N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3. Applied Physics Letters,1992,61 (18):2156-2158
    [55]Li S Q, Liu S G, Kong Y F, et al. The optical damage resistance and absorption spectra of LiNbO3:Hf crystals. Journal of Physics:Condensed Matter,2006,18 (9):3527-3534
    [56]Liu F C, Kong Y F, Li W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals, Optics Letters,2010,35 (1):10-12
    [57]Wang L Z, Liu S G, Kong Y F, et al. Increased optical-damage resistance in tin-doped lithium niobate, Optics Letters,2010,356 (2):883-885
    [58]Zhang G Y, Xu J J, Liu S M, et al, Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe,Mg crystals, Procdeeings of SPIE,1995,2529:14-17
    [59]Zhang G Y, Sun Q, Xu J J, et al. Fanning:noise-free double doped photorefractive LiNbO3 crystals used for 3D storage. Procdeeings of SPIE,1996,2849:151:-154
    [60]Guo Y, Liao Y, Cao L, et al. Improvement of photorefractive properties and holographic applications of lithium niobate crystal. Optics Express,2004,12 (22):5556-5561
    [61]Yan W, Cai H, Kong Y, et al. Investigations of the light-induced scattering varied with HfO2 codoping in LiNbO3:Fe crystals. Applied Physics Letters,2007,90 (21):1984-1986
    [62]Kong Y F, Wu S Q, Liu S G, et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals. Applied Physics Letters,2008,92 (25):1064-1068
    [63]Psaltis D, Mok F. Holographic memories. Scientific America,1995,273 (5):70-76.
    [64]Haw. M. The light fantastic. Nature,2003,422:556-558
    [65]Dhar L, Curtis K, Facke T. Holographic data storage coming of age. Nature Photonics,2008, 2:403-405
    [66]Hellemans A. Holograms can store terabytes, but where? Science,1999,286 (5444): 1502-1504
    [67]Buse K, Adibi A, Psaltis D. Non-volatile holographic torage in doubly doped lithium niobate crystals. Nature,1998,393 (6686):665-668
    [68]Pei Z D, Hu Q, Kong Y F, et al. Investigation on p-type lithium niobate crystals, AIP Advances.2011,1 (3):032171
    [1]Zhong G G, Jin J, Wu Z K. Measurements of optically induced refractive index damage of lithium niobate doped with different concentrations of MgO. Proceeding of 11th International Quantum Electronic Conference, IEEE Cat. (Optical Society of America, Washington, D.C.), 1980,80:631
    [2]Matthias B T, Remeika J P. Ferroelectricity in the ilmenite structure. Physical Review,1949, 76:1886-1887
    [3]Ballman A A. The growth of piezoelectric and ferroelectric materials by the Czochralski technique. Journal of the America Ceramic Society,1965,48 (2):112-113
    [4]Nassau K, Levinstein H J, Loiacomo G M. The domain structure and etching of ferroelectric lithium niobate. Applied Physics Letters,1965,6 (11):228-234
    [5]Nassau K, Levinstein H J. Ferroelectric behavior of lithium niobate. Applied Physics Letters, 1965,7 (3):69-70
    [6]Nassau K, Levinstein H J, Loiacomo G M. Ferroelectric lithium niobate.1. Growth, domain structure, dislocations and etching. Journal of Physics and Chemistry of Solids,1966,27 (7): 983-988
    [7]Nassau K, Levinstein H J, Loiacomo G M. G. Ferroelectric lithium niobate.2. Preparation of single domain crystals. Journal of Physics and Chemistry of Solids,1966,27 (7):989-996
    [8]Ballman A A, Levinstein H J, Capio C D, et al. Curie Temperature and Birefringence Variation in Ferroelectric Lithium Metatantalate as a Function of Melt Stoichiometry. Journal of the American Ceramic Society,1967,50:657-659
    [9]Niizeki N, Yamada T, Toyoda H. J. Growth Ridges, Etched Hillocks, and Crystal Structure of Lithium Niobate. Applied Physics,1967,6:318-320
    [10]Prokhorov A M, Kuz'minov Yu S. Physics and Chemistry of Crystalline Lithium Niobate. General Physics Institute, USSR Academy of Sciences, Moscow,1978
    [11]Garmasch V M, Zinkina T P, Lazareva V V. Cryst. Growth (Moscow:Nauka),1972,9: 149-151
    [12]Tsinzerling L G, Proc. Moscow Inst. Steel and Alloys,1976,88:108-110
    [13]Nosova I V. Investigation of the Mechanical Properties of Crystal Having the Structure of Pseudo-ilmenite:phD Thesis (Moscow:Institute of Steel and Alloys),1977,184-187
    [14]孙军,孔勇发,李兵等.等径控制系统的改进及在光学级铌酸锂生长中的应用.人工晶体学报,2004,Vol.33(3):305-309
    [15]Kogelnik H, Coupled Wave Theory for Thick Hologram Gratings, Bell Syst. Tech. J.,1969, 48 (9):2909-2912
    [16]孔勇发,许京军,张光寅,刘思敏,陆琦.多功能光电材料—铌酸锂晶体.北京:科学出版社,2005
    [1]刘思敏,郭儒,许京军.光折变非线性光学及其应用.北京:科学出版社,2004
    [2]Kukhtarev N V, Markov V B, Odulov S G, et al. Holographic storage in electrooptic crystals. II. beam coupling—light amplification. Ferroelectrics,1978,22 (1):961-964
    [3]Kukhtarev N V, Markov V B, Odulov S G, et al. Holographic storage in electrooptic crystals. i. steady state. Ferroelectrics,1978,22 (1):949-960
    [4]Prokhorov A, Kuzminov Y S. Physics and Chemistry of Crystalline of Lithium Niobate. Adam Hilger,1990
    [5]Kogelnik H, Coupled Wave Theory for Thick Hologram Gratings, Bell System Technichal Journal,1969,48 (9):2909-2912
    [6]Devries J E, Yao H C, Baird R J, et al. Characterization of molybdenum-platinum catalysts supported on y-alumina by X-ray photoelectron spectroscopy, Journal of Catalysis,1983,84 (1):8-14
    [7]Grim S O, Matienzo L J, X-ray photoelectron spectroscopy of inorganic and organometallic compounds of molybdenum, Inorganic Chemistry,1975,14 (5):1014-1018
    [8]McMillen D K, Hudson T D, Wagner J, et al. Holographic recording in specially doped lithium niobate crystals, Optics Express,1998,2(12):491-502
    [9]Phillips W, Amodei J J, Staebler D L. Optical and holographic storage properties of transition metal doped Lithium Niobate. RCA Review,1972,33 (1):94-109
    [10]Hesselink L, Orlov S S, Liu A, et al. Photorefractive materials for nonvolatile volume holographic data storage. Science,1998,282 (5391):1089-1094
    [11]Polgar K, Peter A, Kovacs L, et al. Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method. Journal of Crystal Growth,1997,177 (3-4):211-216
    [12]Li X C, Kong Y F, Liu H D, et al. Origin of the generally defined absorption edge of non-stoichiometric lithium niobate crystals, Solid State Communications,2007,141 (3):113-116
    [13]Zhang T, Wang B, Ling F, et al. Growth and optical property of Mg, Fe co-doped near-stoichiometric LiNbO3 crystal. Materials Chemistry and Physics,2004,83 (2-3): 350-353
    [14]Liu F C, Kong Y F, Li W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals. Optics Letters,2010,35 (1):10-12
    [15]Herth P, Granzow T, Schaniel D, et al. Evidence for light-induced hole polarons in LiNbO3, Physics Review Letters,2005,95 (6):067404
    [16]Schirmer F, Imlau M, Merschjann C, et al. Topical review:electron small polarons and bipolarons in LiNbO3, Journal of Physics:Condensed Matter,2009,21(12):123201
    [17]Akhmadullin I Sh, Golenishchev-Kutuzov V A, Migachev S A. Electronic structure of deep centers in LiNbO3. Physics of the Solid State,1998,40 (6):1012-1018
    [1]Zhang G Y, Xu J J, Liu S M, et al. Study of resistance against photorefractive light-induced scattering in LiNbO3:Fe,Mg crystals, Proceedings of SPIE,1995,2529:14-17
    [2]Kong Y F, Wu S Q, Liu S G, et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals. Applied Physics Letters,2008,92 (25):1064-1068
    [3]Zhong G G, Jin J, Wu Z K. Measurements of optically induced refractive index damage of lithium niobate doped with different concentrations of MgO. Proceeding of 11th International Quantum Electronic Conference, IEEE Cat. (Optical Society of America, Washington, D.C.), 1980,80:631
    [4]Kong Y F, Liu S G, Zhao Y J, et al. Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate, Applied Physics Letters,2007,91 (8):081908
    [5]Xin F F, Zhang G Q, Bo F, et al. Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals. Journal of Applied Physics,2010,107,033113
    [6]Bryan D A, Gerson R, Tomaschke H E. Increased optical damage resistance in lithium niobate. Applied Physics Letters,1984,44 (9):847-849
    [7]Volk T R, Pryalkin V I, Rubinina N M. Optical-damage-resistant LiNbO3:Zn crystal. Optics Letters,1990,15 (18):996-998
    [8]Kong Y F, Wen J, Wang H. New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In. Applied Physics Letters,1995,66 (3):280-282
    [9]Shimamura S, Watanabe Y, Sota T, et al. A defect structure model of LiNbO3:Sc2O3, Journal of Physics:Condensed Matter,1996,8 (37):6825-6832
    [10]Kokanyan E P, Razzari L, Cristiani I, et al. Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals. Applied Physics Letters,2004, 84(11):1880-1882
    [11]Li S Q, Liu S G, Kong Y F, et al. The optical damage resistance and absorption spectra of LiNbO3:Hf crystals. Journal of Physics:Condensed Matter,2006,18 (9):3527-3534
    [12]Kong Y F, Deng J C, Zhang W L, et al. OH- absorption spectra in doped lithium niobate crystals, Physics Letters A,1994,196:128-132
    [13]Kong Y F, Zhang W L, Chen X J, et al. OH- absorption spectra of pure lithium niobate crystals, Journal of Physics:Condensed Matter,1999,11 (1):2139-2143
    [14]Grim S O, Matienzo L J, X-ray photoelectron spectroscopy of inorganic and organometallic compounds of molybdenum, Inorganic Chemistry,1975,14 (5):1014-1018
    [15]Liu F C, Kong Y F, Li W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals. Optics Letters,2010,35 (1):10-12
    [16]Hesselink L, Orlov S S, Liu A, et al. Photorefractive materials for nonvolatile volume holographic data storage. Science,1998,282 (5391):1089-1094
    [1]西原浩,春名正光,栖原敏明.集成光路.北京:科学出版社,2004
    [2]Wang H, Wen J K, Li, J et al. Photoinduced hole carriers and enhanced resistance to photorefraction in Mg-doped LiNbO3. Applied Physics Letters,1990,57(4):344-345
    [3]Pei Z D, Hu Q, Kong Y F, et al. Investigation on p-type lithium niobate crystals, AIP Advances.2011,1(3):032171
    [4]Falk M, Buse K. Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals. Applied Physics B,2005,81 (6):853-855
    [5]Orlowski R, Kraetzig E. Holographic method for the determination of photo-induced electron and hole transport in electro-optic crystals. Solid State Communications,1978,27 (12):1351-1354
    [6]Kraetzig E, Orlowski R, LiTaO3 as Holographic Storage Material. Applied Physics,1978,15: 133-136
    [7]Jungen R, Angelow G, Laeri F, et al. Efficient Ultraviolet Photorefraction in Applied Physics A,1992,55 (1):101-103
    [8]Laeri F, Jungen R, Angelow G,et al. Photorefraction in the ultraviolet:Materials and effects. Applied Physics B 1995,61 (4):351-360
    [9]Xu J J, Zhang G Q, Li F F, et al. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals. Optics Letters,2000,25 (2):129-131
    [10]Qiao H J, Xu J J, Zhang G Q, et al. Ultraviolet photorefractive features in doped lithium niobate crystals. Physical Review B,2004,70 (9):094101
    [11]Liu F C, Kong Y F, Li W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals. Optics Letters,2010,35 (1):10-12
    [12]胡茜,铌酸锂晶体载流子的调控及其pn结的制备:[硕士学位论文].天津:南开大学,2009
    [13]刘思敏,郭儒,许京军.光折变非线性光学及其应用.北京:科学出版社,2004
    [14]Yeh P, Two-wave mixing in nonlinear media. IEEE Journal of quantum electronics,1989,25 (3):484-519
    [1]Mok F, Psaltis D. Holographic Memories. Scientific American,1995,273:70-76
    [2]Mok F H. Angle-multiplexed storage of 5000 holograms in lithium niobate. Optics Letters, 1993,18(11):915-917
    [3]Tao S, Selviah D R, Midwinter J E. Spatioangular multiplexed storage of 750 holograms in an Fe:LiNbO3 crystal. Optics Letters,1993,18(11):912-914
    [4]Yeh P. Fundamental limit of the speed of photorefractive effect and its impact on device applications and material research. Applied Optics,1987,26(4):602-604

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700