常温2μm单纵模激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着全球气候环境的恶化,世界各国对大气风场数据的需求越来越迫切。相干多普勒激光测风雷达以其测风精度高,作用距离远等优点目前已逐渐成为远距离大气风场研究的有效工具。2μm固体激光器因其体积小,大气消光比低,人眼安全等优点目前已成为相干多普勒激光测风雷达的首选光源。
     与LD泵浦Tm,Ho双掺的2μm激光器相比,采用1.9μm单掺Tm激光器泵浦单掺Ho激光器的技术方案具有量子损耗低、热负载小和转换效率高等优点,易于在常温条件下实现高功率的2μm激光输出。本文从理论和实验两个方面对1.9μm激光泵浦的2.1μm Ho:YAG连续及调Q运行单纵模激光器进行了详细的研究。
     在理论上,首先建立了Ho:YAG环形腔激光器连续输出的准二能级速率方程以及低重频条件下主动调Q的速率方程。进而推导出了连续运转时激光输出功率与泵浦功率之间关系表达式,调Q输出单脉冲能量,脉冲宽度,峰值功率表达式。采用偏振态匹配理论对单块Ho:YAG半非平面环形腔进行了分析,并进行了实验,以Tm光纤激光器作为泵浦源,在泵浦功率为19.7W时,获得了最高功率6.3W、波长2090.6nm、温度调谐率-1.6GHz/℃、光束质量接近衍射极限单纵模连续激光输出。采用光纤延时自拍频方法测得单纵模激光输出的短期频率不稳定度随时间线性增长,线性增长率为270Hz/μs。以Ho:YAG非平面环形腔激光器为种子光,采用种子注入锁频技术,实现了常温下Ho:YAG环形腔单向运转,获得了重频110Hz、单脉冲能量11mJ、脉宽110ns、线宽4.2MHz、光束质量接近衍射极限的2.1μm单纵模脉冲激光输出。
With the deterioration of global climate and environment in recent years, there is growing demand for data on atmospheric wind field all over the world. The use of coherent Doppler lidar for remote measurements of atmospheric wind fields is receiving increasing consideration as a valuable tool for studies of atmospheric dynamics. 2μm solid-state lasers are the primary choice for coherent Doppler wind detection for eye-safe properties and efficient diode-pump operation.
     Direct laser pumping of the Ho quasi-two-level laser offers several advantages over the sensitized Tm–Ho system: low quantum defect, elimination of energy transfer, reduced upconversion losses, high extraction efficiency. The combined advantages make a 2.1μm laser capable of high-power scaling and high energy output in room temperature. The work discussed in the thesis covers two areas: the single longitudinal mode operation of Tm pumped Ho:YAG CW and Q-switched laser.
     First, theoretically established CW output quasi two-level rate equations model and the active Q-switched model at low repetition frequency of Ho:YAG ring laser. The relationship between CW output laser output power and pumped power, and the expression of single pulse energy, pulse width, peak power of Q-switched output were derived.The operation of the nonplanar ring osillator is analyzed using polarization match theory. Single frequency output powers up to 6.3W at the wavelength of 2090.6nm with temperature tuning rate of -1.6GHz /℃for 19.7W of pump power are demonstrated. The frequency instability linear growth rate of 270Hz/μs was measured with fiber delayed self-heterodyne method. Taking the nonpanar ring laser as the seed laser using the seed-injection locked technology, the undirectional operation of Ho:YAG ring laser was realized, and a single a pulse energy of 11mJ, pulse width of 110ns, linewidth of 4.2MHz with diffraction limited beam quality of the single longitudinal mode Q-switched operation was achieved.
引文
1 G. J. Koch, John,P. Deyst, Mark. E. Storm. Single-frequency Lasing of Monolithic Ho, Tm: YLF. Opt. Lett. 1993, 18(15): 1235-1237.
    2 G. J. Koch, R.E.Davis, A.N.Dharamsi, M.Petros and J.C. Mc Carthy. Differential Absorption Measurements of Atmospheric Water Vapor with A Coherent Lidar at 2050.532nm. Proceedings of Tenth Biennial Coherent Laser Radar Technology and Applications Conference. 1999: 69-71.
    3 G. J. Koch, A. N. Dharamsi, C. M. Fitzgerald and J. C. Mc Carthy. Frequency Stabilization of A Ho, Tm:YLF Laser to Absorption Lines Of Carbon Dioxide. Appl. Opt. 2000, 39(21): 3664-3669.
    4 G. J. Koch, B. W.Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J.Yu, R. E. Davis. Coherent Differential Absorption LIDAR Measurements of CO2. Appl. Opt. 2004, 43(26): 5092-5099.
    5 G. J. Koch, M. Petros, J. Yu, and U. N. Singh. Precise Wavelength Control of a Single-frequency Pulsed Ho:Tm:YLF Laser. App. Opt. 2002, 41(9): 1718-1721.
    6 American National Standard for the Safe Use of Lasers Z136.1-1992. American National Standards Institute. Toledo, OH: The Laser Institute of America, 1992.
    7 P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, E. P. Chicklis. 50 mJ Q-switched 2.09μm holmium laser resonantly pumped by a diode-pumped 1.9 thulium laser. Opt. Lett. 2003, 28: 1016-1018
    8 Park Y K, Giuliani G, Byer R L. Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking. Opt. Lett. 1980, 5(3): 96 -98
    9 Alcock A J, Corkum P B, James D J. Selection of single, mode locked CO2 laser pulses by semiconductor reflection switching. Opt. Comm. 1976, 18:543-545
    10 Bigio I J, Slatkine M. Injection-locking unstable resonator excimer lasers. IEEE J. Quantum Electronics.1983, 19(9): 426-1436
    11 Zayhowski J J, Mooradian A. Frequency-modulated Nd:YAG microchip lasers. Opt. Lett.1989, 14(12): 618-620
    12 Russell M.Kurtz, Senior Member, Tanjit D. Pradhan, Nay Tun, Tin M. Aye, Gajendra D. Savant, Tomasz P. Jannson, and Larry G. deShazer. Multual. Injection Locking: A New Architecture for High-Power Solid-State Laser Arrays. IEEE. J. Quantum Electronic, 2005, 11(3): 578-586
    13 A. L. Schawlow and C. H. Townes. Infrared and optical masers. Phys. Rev. 1958, 112(6): 1940-1949
    14 T. H. Mainman. Stimulated optical radiation in ruby. Nature. 1960, 187(4736)493-494
    15 B. J. McMurtry and A. E. Siegman. Photomixing experiments with a ruby optical maser and a traveling-wave microwave phototube. Appl. Opt. 1962, 1(1): 51-53
    16 T. J. Kane and R. L. Byer. Monolithic unidirectional single-mode Nd:YAG laser. Opt. Lett. 1965, 10 (2): 65-67
    17 J. J. Zayhowski and A. Mooradian. Single-Frequency microchip Nd:YAG laser. Opt. Lett. 1989, 14(1): 24-26
    18 W. A. Clarkson, D. C. Hanna, D. S. Lovering and G. C. W. Jones. Acousto-optically induced unidirectional and single-frequency opration of Nd:glass ring laser based on the acousto-optic effect in the laser medium. Opt. Let. 1994, 19(24): 2059-2061
    19 J. J. Zayhowski. Q-switched operation of microchip lasers. Opt Lett. 1991, 16(8) 575-577
    20 J. J. Zayhowski and C. DillⅢ. Diode-pimped microchip lasers electrooptically Q-switched at high pilse repetition rates. Opt. Lett. 1992, 17(17): 1201-1203
    21 K. M. Baird, D. S. Smith, G. R. Hanes, and S. Tsunekane. Characteristics of a simple single-mode He-Ne laser. Appl. Opt. 1965, 4: 569-571
    22 Don G. Peterson and Amnon Yariv. Interferometry and laser control with solid Fabry-Perot etalons. Appl. Opt. 1966, 5: 985-991
    23 G. A. Massey, M. Kenneth Oshman and Russel Tang. Generation of single-frequency light using the FM laser. Appl. Phys. Lett. 1965, 6(1): 10-11
    24 H. Kogelnik and C. K. N. Patel. Mode suppression and single frequency operation in gaseous optical masers. Proceedings of the IRE. 1962, 50: 2365-2366
    25 S. A. Cillins and G. R. White. Interferometer laser mode selector. Appl. Opt. 1963, 2(4): 448-449
    26 R. A. McFarlane, W. R. Bennet and W. E. Lamb. Single mode tuning dip in the power output of an He-Ne optical masers. Appl. Phys. Lett. 1963, 2(10): 189-190
    27 C. L. Tang, H. Statz and G. deMars. Regular spiking and single-mode operation of ruby laser. Appl. Phys. Lett. 1963, 2(11): 222-224
    28 C. L. Tang, H. Statz and G. deMars. Spectral output and spiking behavior of solid-state lasers. Appl. Phys. 1963, 34(8), 2289-2295
    29 V. Evtuhov and A. E. Siegman. A“twisted-mode”technique for obtaining axially uniform energy density in a laser cavity. Appl. Phys. Lett. 1963, 2(10): 189-190
    30 H. G. Danielmeyer and W. G. Nilsen. Spontaneous single-frequency output froma spatially homogeneous Nd:YAG laser. Appl. Phys. Lett. 1970, 16(3): 124-126
    31 H. G. Danielmeyer and E. H. Turner. Electro-optic elimination of spatial hole burning in laers. Appl. Phys. Lett. 1970, 17(12): 519-521
    32 J. Koch, J. P. Deyst, M. E. Storm. Single-frequency Lasing of Monolithic Ho,Tm:YLF. Opt. Lett. 1993, 18, (15): 1235~1237
    33 Jun Izawa, Hayato Nakajima, Hiroshi Hara, Yoshinori Arimoto. A Tunable and Longitudinal Mode Oscillation of A Tm,Ho:YLF Microchip Laser Using an External Etalon. Opt. Commun. 2000, 180: 137~140
    34 W.Henderson and C.P.Hale. Tunable Single-longitudinal-mode Diode Laser Pumped Tm:Ho:YAG Laser. Appl. Opt. 1990, 29(12): 1716~1717
    35 I.F.Elder and M.J.P.Payne. Single Frequency Diode-pumped Tm,Ho:YLF Laser. Electronics Letters. 1998, 34(3): 284~285
    36 K.Scholle, E.Heumann and G. Huber. Single Mode Tm and Tm,Ho:LuAG Lasers for LIDAR Applications. Laser Phys. Lett. 2004, 1(6): 285~290
    37 T.Yokozawa, J.Izawa, and H.Hara. Mode Control of A Tm:YLF Microchip Laser by A Multiple Resonator. Opt. Commun. 1998, 145: 98~100
    38 C.Nagasawa, D.Sakaizawa, H.Hara, K.Mizutani. Lasing Characteristics of A CW Tm,Ho:YLF Double Cavity Microchip Laser. Opt. Commun. 2004, 234(1-6): 301~304
    39 T. J. Kane,R. L. Byer,and B. K. Zhou. Monolithic single-mode Nd:YAG ring laser. CLEO’84.USA, Digest, WM3, 1984: 114-116
    40 T. J. Kane and R. L. Byer. Solid-state nonplanar internally reflecting ring laser. U. S. Patent 4 578 793, 1986
    41 I Freitag and C. Svelto. Room-temperature Tm:YAG ring laser with 150mW single-frequency output power at 2.02μm. Electron. Lett. 1999, 35(2): 152-153
    42 M. Hercher. Single-mode operation of a Q-switch ruby laser. Appl. Phys. Lett. 1965, 7(2): 39-41
    43 W. R. Soffer. Giant pulse laser operation by a passive, reversibly bleachable absorber. Appl. Phys. 1964, 35: 2551
    44 M. Hercher. Single-mode operation of a Q-Switched Ruby Laser. Appl. Phys. Lett. 1965, 7(2): 39-41
    45 W. R. Sooy. The natural selection of mode in a passive Q-switched laser. Appl. Phys. Lett. 1965, 7(2): 36-37
    46 Y. C. Chen, S. Li, K. K. Lee and S. Zhou. Self-stabilized single-longitudinal- mode operation in a self-Q-switched Cr,Nd:YAG laser. Opt. Lett. 1993, 18(17): 1418-1419
    47 J. J. Zayhowski,“microchip lasers (tutorial),”in Conference on Lasers and Electro-Optics, vol. 11 of 1997 OSA Technical Digest Series, 354-355 (Optical Society of America, 1997)
    48 D. A. Draegert. Efficient single longitudinal mode Nd:YAG laser. IEEE. J. Quantum Electronics. 1972, 8: 235-239
    49 A. J. Egorov, V. V. korobkin and R. V. Servo. Single frequency Q-switched neodymium laser. IEEE. J. Quantum Electronics. 1975, 5: 291-293
    50 D. C. hanna, B. Luther-Davies, H. N. Rutt and R. C. Smith. A two-step Q-switching technique for producing high power in a single longitudinal mode. Opto-Electronics 1971, 3: 163-169
    51 D. C. hanna, B. Luther-Davies, and R. C. Smith. single longitudinal mode selection of high power actively Q-switched lasers. Opto-Electronics. 1972, 4: 249-256
    52 C. Bollig, W. A. Clarkson and D. C. Hanna. Stable high-repetition-rate single-frequency Q-switched operation by feedback suppression of relaxation oscillation. Opt. Lett. 1995, 20: 1383-1385
    53 H. G. Danielmeyer. Stablized efficient single frequency Nd:YAG laser. IEEE. J. Quantum Electronics. 1970, 6: 101
    54 D. C. Hanna, B. Luther-Davies and R. C. Smith. Single longitudinal mode selection of high power actively Q-switch laser. Opto-electronics. 1972, 4: 249
    55 A. I. Egorov, V. V. Korobkin and R. V. Serov. single frequency Q-switch neodymium laser. IEEE. J. Quantum Electronics, 1975, 5: 291
    56 Y. K. Park, G. Giuliani and R. L. Byer. Stable single-axial-mode operation of an unstable-resonator Nd:YAG oscillator by injection locking. Opt. Lett. 1980, 5(3): 96-98
    57 Y. K. PARK, G. GIULIANI and ROBERT L. BYER. single axial mode operation of a Q-switched Nd:YAG oscillator by injection seeding. IEEE. J. Quantum Electronics, 1984, 20: 117-125
    58 Larry A. Rahn. Feedback stabilization of an injection-seeded Nd:YAG laser. Appl. Opt. 1985, 24: 940-942
    59 Randal L. Schmitt and Larry A. Rahn. Diode-laser-pumped Nd:YAG laser injection seeding system. Appl. Opt. vol. 25: 629-633
    60 Straesser Alexander, Waltinger Thomas, Ostermeyer, Martin. Injection seeded frequency stabilized Nd:YAG ring oscillator following a Pound-Drever-Hall scheme. Appl. Opt. 2007, 64: 8358-8363
    61 Jirong Yu, Upendra N. Singh, Norman P. Barnes and Mulugeta Petros. 125-mJ diode-pumped injection-seeded Ho,Tm:YLF laser. Opt. Lett. 1998, 23: 780-782
    62 Grady J. Koch, Jeffrey Y. Beyon, Bruce W. Barnes, Mulugeta Petros, Jirong Yu.High energy 2 um Doppler lidar for wind measurements. Optical Engineering, 2007, 46: 116201
    63 Chunqing Gao, Zhifeng Lin, Mingwei Gao, Yunshan Zhang, Lingni Zhu, Ran Wang and Yan Zheng. Single-frequency operation of diode-pumped 2μm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser. Appl. Opt. 2009, 49: 2841-2844
    64 S. M. Hannon, S. W. Henderson, J. A. Thomson, and P. Gatt. Autonomous lidar wind field sensor: performance predictions. Proc. SPIE. 1996, 2832: 76–91
    65 C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A.M.Weickmann. High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Ocean. Technol. 2001, 18: 376
    66 P. Brockman, B. C. Barker, G. J. Koch, D. P. C. Nguyen, and C. L. Britt. Coherent pulsed lidar sensing of wake vortex position and strength, winds and turbulence in airport terminal areas. Proc. 10th Biennial Coherent Laser Radar Technologies and Applications Conf. 1999, 1999: 12–15
    67 Anderson. S G. Confocal Laser Microscopes See a Wider Field of Application. Laser focus World. 1994, 30(1):83~86
    68 M. Jani, N. Barnes, K. Murray, D. Hart, G. Quarles, and V. Castillo. Diode-Pumped Ho:Tm:LuLiF4 Laser at Room Temperature. IEEE. J. Quantum Electronics. 1997, 33: 112
    69 U. N. Singh, Jirong Yu and Mulugeta Petros. Injecetion-seeded, Room-temperature, Diode-pumped Ho: Tm: YLF Laser with Output Energy of 600mJ at 10Hz. Advanced Solid-State Lasers of OSA. 1998, 19: 194~196
    70 Jirong Yu, Singh U. N. , Barnes N. P. , et al. An All Solid-state 2-μm Laser System for Space Coherent Wind Lidar. Proceedings of the IEEE. 2000, 3(3): 27~33
    71 Songsheng Chen, Jirong Yu, Mulugeta Petros, Upendra N. Singh, Yingxin Bai. A Double-pass Tm: Ho: YLF Amplifier at 2.05μm for Space-borne Eye-safe Coherent Doppler Wind Lidar and CO2 Differential Absorption Lidar(DIAL). Proceedings of SPIE.2003, 4893: 217~221
    72 Michael J. Kavaya, Jirong Yu, Grady J. Koch, Bo Trieu, Farzin Amzajerdian, Upendra N. Singh. Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Prototype for Field and Airborne Validation. Proceedings of the Sixth Annual NASA Earth Science Technology Conference, June 27th-29th, at the University of Maryland Inn and Conference Center in College Park, MD (2006)
    73 M. Petros, J. Yu, S. Chen, U. Singh, B. Walsh, Y. Bai, and N. Barnes. Diode pumped 135 mJ Ho:Tm:LuLiF Oscillator. Advanced Solid-State Photonics. TOPS 2003, 83: 309
    74 S.R.Bowman and B.J.Feldman. Demonstration and Analysis of A Holmium Quasi-two Level Laser. SPIE. 1992, 1627: 46-54
    75 LK.Razumoua, A.M.Tkashuk, Luminescence and energy transfer in Tm doped crystal. J. Luminescence. 1998, 72: 969-970
    76 C. Kieleck, A. Hirth. Investigations of A Q-switched Ho:YAG Laser Intracavity -pumped by A Diode-pumped Tm:YLF Laser. SPIE. 2004, 5460: 56-63
    77 N. P. Barnes, B. M. Walsh. Tm:Glass Laser Pumping A Ho:YAG Laser. SPIE. 2003,4893:176-182
    78 D.Y Shen, W.A.Clarkson,.3.7-Watt Single-frequency CW Ho:YAG Ring Laser End-pumped by A Cladding-pumped Tm-doped Silica Fibre Laser. OSA Trends in Optics and Photonics Series.2004, 94: 362-366
    79 Yingxin Bai, Jirong Yu, Paul Petzar, M. Petros, Songsheng Chen, Bo Trieu, Hyung Lee, U. Singh. Single longitudinal Mode, High repetition rate, Q-switched Ho:YLF laser for remote sening. 2009 OSA/CLEO/IQEC
    80 B. M. Walsh. Review of Tm and Ho Materials: Spectropy and Lasers. Laser Physics. 2009, 19: 555-566
    81 S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson. High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG. Proc. SPIE. 2008, 6871, 68710R
    82 Thomas J. Kane, Tracy S. Kubo. Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG. 1990/OSA/ASSL 1990: 136-139
    83石顺祥,过巳吉.光电子技术及其应用.电子科技大学出版社, 1994
    84 Mohan Vaidyanathan and Dennis K. Killanger. 1994 Intrapulse temporal and wavelength shifts of a high-power 2.1-μm Ho:YAG laser and their potential influence on atmospheric lidar measurements. Appl. Opt. 1994, 33: 7747-7753
    85 Siegman. Lasers. University Science Books. 1986
    86 M. W. Phillips, Coherent Technologies Inc. Lafayette, Colorado, USA, private communications (1997)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700