激光陀螺捷联姿态路谱测量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以军事科研任务“自行武器动态试验模拟设备”为背景,对基于机抖激光陀螺的捷联姿态谱测量系统进行了全面深入的理论和实验研究,并在此基础上研制出了自行武器路谱测量系统并投入使用。论文主要工作如下:
     1.对激光陀螺捷联姿态路谱测量系统的理论进行了系统的研究,得到了姿态路谱测量系统的理论描述模型和误差描述模型
     2.设计、研制了一套激光陀螺姿态路谱测量系统并应用于军事领域,包括系统结构设计、激光陀螺的选择和测试、激光陀螺安装基座的设计和仿真,激光陀螺信号处理电路的设计等。
     3.对捷联系统中的圆锥运动进行了深入的研究,并用经典圆锥运动对姿态算法的漂移进行了仿真计算;推导了机抖激光陀螺系统中二频圆锥误差的计算公式,为机抖激光陀螺构成的系统估计抖动圆锥误差提供了参考依据。
     4.根据系统误差方程,分析了系统的误差传播特性,推导出静基座条件下姿态测量误差与系统中各误差源之间的解析表达式,并进行了仿真分析。针对姿态谱测量系统在路谱测量中的典型应用,建立了系统的动态误差方程和Simulink仿真模型,并进行了全面的动态仿真分析。
     5.推导了基于三轴转台的用于标定系统中激光陀螺刻度因子误差和安装误差的公式。实验结果表明激光陀螺标度因数的误差优于1.5ppm,安装误差优于2.2″。
     6.对静基座条件下机抖激光陀螺捷联姿态路谱测量系统的初始对准方法进行了研究,并针对车载应用较多的最优两位置对准和测漂方法进行了理论和实验研究。实验结果表明路谱测量系统的水平对准精度优于12″,航向角对准精度优于1.2′,三个激光陀螺的常值漂移标定精度优于0.023′/hr。
     7.对所研制的姿态路谱测量系统进行了全面的性能测试包括静态性能测试、高低温测试、精度测试、角速度性能测试、车载动态测试以及工程实际应用等。结果表明所研制系统的合理性和理论模型的正确性,系统10min内的姿态测量精度达到22″。
Based on self-propelled weapon dynamical test simulation equipment for military scientific research, Strapdown Attitude&Heading Road-spectrum Measurement System (SAHRMS) has been theoretically and experimentally studied in this dissertation, which has been developed and brought into practical use. This dissertation has done the following work:
     1. Theory for SAHRMS has been systematically studied, and the mathematical model and error model for the system has been deduced.
     2. The SAHRMS, which includes mechanical designing, choosing and testing laser gyros, designing and simulating the mounting base, processing circuit for laser gyro signals, has been developed for military use.
     3. Conical motion in SAHRMS has been studied in detail and the drift of attitude algorithm has been simulated and calculated using the classical conical motion. Then the two frequencies conical error formulas of dither laser gyros system have been deduced. These provide reference for evaluation of dither conical error in dither laser gyros system.
     4. Error propagating characters for SAHRMS has been analyzed using system error model. Analytical expressions for attitude surveying error caused by different error sources has been deduced and simulated numerically. Dynamic error equations and Simulink model has been developed for the typical application of road spectrum measurement.
     5. The three-axis rotating platform calibration formulas of scale factor error and mounting error of laser gyro in SAHMS have been deduced. Experiments showed that the scale factor error of laser gyro was less than 1.5ppm and mounting error less than 2.2" .
     6. Initial alignment methods for SAHRMS based on dither laser gyros in static base condition have been studied. Then the optimal two-position alignment and drift measuring method, which is commonly used in land-based vehicles system, has been studied theoretically and experimentally. Experiments showed that the roll and pitch attitude alignment error was less than 12" , the yaw attitude alignment error was less than 1.2', and the drifts of the three gyros were less than 0.023°/hr.
     7. Performance of the system developed in this dissertation has been tested comprehensively, including static performance, performance of temperature, accuracy, and angular rate, dynamic performance of land-based system and general performance for practical application. Experiments showed the reasonableness of the system and the validity of the theoretical model. The attitude measuring accuracy in 10 minutes achieved 22" .
引文
[1]顾颖玲,许江宁,卞鸿巍.陀螺随机漂移误差模型建模方法研究[J].海军工程大学学报,1:80-82,2003
    [2]邢艳丽.捷联惯性系统关键技术研究[D].哈尔滨工程大学硕士学位论文
    [3]江树生.捷联惯性导航系统中陀螺仪信号的数据采集及处理技术研究[D].哈尔滨工程大学硕士学位论文
    [4]袁信等.导航原理[M].北京:航空工业出版社,1993
    [5]张树侠,孙静.捷联式惯性导航系统[M].北京:国防工业出版社,1992
    [6]张树侠,闫威.激光陀螺捷联系统安装误差的标定[J].中国惯性技术学报,8(1),2000
    [7]郭秀中.惯导系统陀螺仪理论[M].北京:国防工业出版社,1996
    [8]高伯龙,李树棠.激光陀螺[M].长沙:国防科技大学出版社,1984
    [9]张卫东.激光陀螺捷联惯导系统自标定技术研究[D].国防科技大学工学硕士论文,2000.3
    [10]谢元平.机械抖动激光陀螺鉴相解调与稳频技术的研究[D].国防科技大学工学博士论文,2000.5
    [11]万德钧,房建成.惯性导航初始对准[M].南京:东南大学出版社,1998.12
    [12]秦永元,张洪钱,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.11
    [13]D.R.Daniel,P.Johnson,Frequency Domain Analysis for RLG System Design,Navigation,Vol 34,No 3,1987:179-189
    [14]吴美平.陆用激光陀螺捷联惯导系统误差补偿技术研究[D].国防科技大学工学博士论文,2000.3
    [15]聂水茹.高动态环境下捷联惯导的优化算法研究[D].西北工业大学硕士学位论文.2003
    [16]陈熙源.捷联陀螺漂移测试、建模与补偿研究[D].南京:东南大学博士论文
    [17]林玉荣,邓正隆.激光陀螺捷联惯导系统中惯性器件误差的系统级标定[J].哈尔滨工业大学学报,33(2):112-115,2001
    [18]熊智,刘建业,林雪原,曾庆化.激光陀螺捷联惯性导航系统中惯性器件误差补偿技术[J].上海交通大学学报,37(11):1795-1799,2003
    [19]吴峻,陈熙源,万德钧.建立惯性仪表安装误差数学模型的理论研究[J].中国惯性技术学报,12(4):47-50,2004
    [20]D.H.Titterton,J.L.Weston.Strapdown Inertial Navigation Technology[M].Peter Peregrinus Ltd.,on behalf of the Institution of Electrical Engineers,London,United Kingdom,1997
    [21][俄]B.B.谢列金,P.M.库库利耶夫.激光陀螺及其应用[M].北京:航空工业出版社,1992
    [22]《液体弹道导弹与运载火箭》系列编辑委员会.惯性器件(上、下册)[M].北京:中国宇航出版社,1993年11月
    [23]陈哲编著.捷联惯导系统原理[M].北京:宇航出版社,1986
    [24]章燕申著.高精度导航系统[M].北京:中国宇航出版社,2005年9月
    [25]王宇.机抖激光陀螺捷联惯导系统的初步探索[D].国防科技大学工学博士论文,2005.10
    [26]秦永元编著.惯性导航[M].北京:科学出版社,2006年5月
    [27]王晓睿,谢玲,杜丽辉,陈家斌.捷联式惯导系统动态误差特性研究[J].火力与指挥控制,27(1):110-13,2002
    [28]孟庆福,黄德鸣.惯性测量系统误差分析[J].哈尔滨船舶工程学院学报,13(3):310-319,1989
    [29]吴文启,杨壮志,梁加林.动态约束下的惯性姿态测量系统分析[J].中国惯性技术学报,10(3):31-38,2002
    [30]郑谔,李德明.捷联惯导系统的误差传播和误差分配方法[R].中国国防科学技术报告,中国航空研究院,1987
    [31]张树侠,凌明祥,王利存.舰载导弹捷联系统姿态及初始对准算法的研究[J].中国惯性技术学报,6(3):29-34,1998
    [32]韦锡华,杨晓东.基于最优控制的四元数数据误差传播捷联矩阵算法分析[J].中国惯性技术学报,2003,11(2)25-28
    [33]练军想,杨壮志.基于MATLAB/Simulink的捷联惯性导航仿真[J].电脑开发与应用,16(4):82-83,2003
    [34]余洁,杨平.基于Simulink的海底捷联惯性导航系统数学仿真[J].计算机仿真,21(10):8-11.2004
    [35]薛祖瑞.关于捷联惯导系统圆锥误差的诠释[J].中国惯性技术学报,8(4):46-50,2000
    [36]Using Simulink,Mathworks.SIMULINK,2001
    [37]GPSoftNav:http://www.gpsoftnav.com
    [38]C.Eck,J.Chapuis,and H.P.Geering.Software supported design and evaluation of low-cost navigation units[C],in Proceeding of 8th Stpeterbury International Conference on Integrated Navigation Systems,pp 163-172,2001
    [39]Richard Giroux,Dr.Barrie Leach,Rene Jr.Landry,Richard Gourdeau.Validation and Performance Evaluation of a Simulink Inertial Navigation System Simulator[R].14th Symposium on Navigation of the Canadian Navigation Society,Canada,April 28-30,2003
    [40]The Language of Technical Computing[M].Mathworks,2004
    [41]J.E.Ryan.Sensitivity Study of Strapdown Inertial Sensor in High Performance Applications[R],AD-A100825/9
    [42]JAE WEON CHOI,State Space Modeling of Random Drift Rate in High-Precision Gyro[J].IEEE Transactions on Aerospace and electronics system,27(3):1138-1146,1996
    [43]Goshen-Meskin D,Bar-itzhack I Y.Unified approach to inertial navigation system for modeling[J],Journal of Guide,Control and Dynamics,15(3):648-653,1992
    [44]Bar-itzhack I Y,Control theoretic approach to inertial navigation system[J],Journal of Guide,Control and Dynamics,11(3):237-245,1988
    [45]YEON Fun,JIANG Yu,PING Lin.Error Analysis of Quaternion Transform[J].IEEE Transactions on Aerospace and electronics system,27(4):634-639,1991
    [46]MIAO Ling-juan,LIU Xiao-guang,LAN Chun-yun,DAI Ya-ping,Derivation of Nonlinear Error Equations of Strapdown Inertial Navigation System Using Quaternion[C],SICE,2002,Aug5-7,Osaka
    [47]DOHYOUNG Chung,JANG Gyu Lee,CHAN Gook Park,HEUNG Won Park,Strapdown INS Error Model for Multiposition Alignment[J],IEEE Transactions on Aerospace and electronics
    [48]Shibata Minoru.Error Analysis Strapdown Inertial Navigation Using Quaternions[J], Guidance, 1986,9(3):37-381
    [49]Friedlan B. Analysis strap down navigation using quaternions[J], IEEE transactions on AES, 14(5): 764-768,1978
    [50]Xiaoying Kong, INS algorithm using quaternion model for low cost IMU[J], Robotics and Autonomous Systems 46,221-246,2004
    [51]Loren W. Richardson. Ring laser gyro application for high accuracy pointing and tracking in space[J]. 0-8194-1525-l/94,SPIE Vol. 2221:101-115
    [52]S.Woolven and D.B.Reid. IMU noise evaluation for attitude determination and stabilization in ground and airborne applications[J]. 0-7803-1435-2/94,1994 IEEE:817-822
    [53] IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gyros[J].IEEE Std 647-1995
    [54]Grewal, M.S. Application of Kalman filtering to the calibration and alignment of inertial naviization systems[J]. Proceedings of the 20th Conference on Decision and Control, 1990
    [55]Camberlein, L., Mazzananti. F. Calibration Technology for Laser Gyro Strapdown Inertial Navigation Systems[J]. Symposium Gyro Technology, Stuttgart, Germany,1985
    [56] Mark, J., Tazartes, D., Hiby, T. Fast Orthogonal Calibration of A Ring Laser Strapdown System[J]. Symposium Gyro Technology, Stuttgart, Germany, 1987s
    [57]Goshen-Meskin, D., Bar-Itzhack, I.Y. A Unified Approach to Inertial Navigation System Error Modeling[J]. Journal of Guidance Control and Dynamics, 1992,15(3)
    [58]Samer, S.S. and Gunnarsson, K.T. Automatic Alignment and Calibration of An Inertial Navigation System[J]. IEEE PIANS'94,
    [59]Lee, J.G, Park, C.G, Park, H.W. Multiposition Alignment of Strapdown Inertial Navigation System[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(4).
    [60] Savage, P.G Strapdown Inertial Navigation Integration Algorithm Designs Part 1:Attitude Algorithms[J]. Journal of Guidance Control and Dynamics, Vol.21, No. 1 January-February, 1998.
    [61] Savage, P.G Strapdown Inertial Navigation Integration Algorithm Designs Part 2:Velocity and Position Algorithms[J]. Journal of Guidance Control and Dynamics,Vol.21, No.1 January-February, 1998.
    [62]M.S.Gremal. Optimal Selection of Trajectories for Parameter Estimation in Dynamical Systems[J]. Processing IEEE Conference Decision and Control, Dec. 10,1982
    [63]M.S.Grawel. Relationships Between Identifiability and Input Selection[J]. Processing IEEE Conference Decision and Control, Dec. 10,1975
    [64]R.K.Mehra. Optimal Input Signals for Parameter Estimation in Dynamic Systems,Survey and New Results. IEEE Transaction Automatic and Control, No. 6, Dec. 1974
    [65]Eduardo Nebot, Hugh Durrant-Whyte. Inertial Calibration and Alignment of Low Cost Inertial Navigation Units[J]. Journal of Robotics Systems, Vol. 16,No.2, February 1999
    [66]D.H.Titterton and J.L.Weston. Strapdown Inertial Navigation Technology[J]. Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers, London, 1997
    [67] Averil B.Chatfield. Fundamentals of High Accuracy Inertial Navigation[J]. American Institute of Aeronautics and Astronautics, Inc.
    [68] Varan Puri.Tightly Coupled GPS-Gyro Integration for Spacecraft Attitude Determination[J].IEEE19970912 060
    [69]Djafar k. Mynbaev.ERRORS OF AN INERTIAL NAVIGATION UNIT CAUSED BY RING LASER GYROS ERRORS[J].IEEE 1994 0-7803-1435-2/94
    [70]Dr.S.Vathsal.Estimation of Circular Error Probability of Strapped Down Inertial Navigation System by Propagation of Error Covariance Matrix[J]. IECON'91,IEEE1991 CH2976-9/91/0000-1127
    [71] Robert G. Majure.Demonstration of A Ring Laser Gyro System for Pointing and Stabilization Application[J].IEEE 1990 CH2811-8/90/0000/0219
    [72]Yaakov Oshman ,F.Landis Markley. Minamal-Parameter Attitude Matrix Estimation from Vector Observations [J]. Amerrican Institute of Aeronautics and Astronautics,AIAA-97-3451
    [73]Donald B.Reid. Description of the Milstar Attitude Determination System.AACC19970-7803-3832-4/97
    [74] Donald B.Reid. Calibration of the Milstar Attitude Determination System.AACC1997 0-7803-3832-4/97
    [75]Shogo Tanaka.Automatic Measurement of Ship's Attitude by the Use of Servo-Type Accelelerometers[J].IEEE 1992 92CH3179-9/92
    [76]Kwangjin Kim,Tae Gyoo Lee.Analysis of the Two-Frequency Coning Motion with SDINS.AIAA 2001-4108 A01-37056
    [77]Mason A.Peck.Attitude Propagation with Intermittent Gyro Measurements and Single-Vector Observations.AIAA-2000-4243 A00-39792
    [78]V.I.Gupalov.Construction Principles and Operation Experience of the Track Surveying System on Laser Gyros.Symposium Gyro Technology 1996,Stuttgart,Germany
    [79]林维菘.捷联定向误差分析与算法.GF-A0014235G,1988
    [80]Loren W.Richardson.Ring Laser Gyro Application for High Accuracy Pointing and Tracking in Space[J].0-8194-1525-1/94,SPIE Vol.2221/101-115
    [81]K.Banerjee,B.Dam,K.Majumdar,R.Banerjee and D.Patranabis.An Improved Dither-Stripping Scheme for Strapdown Ring Laser Gyroscopes[J].0-7803-8560-8/04(?)2004 IEEE,p689-692
    [82]P.G.Savage.Strapdown Inertial Navigation Integration Algorithm Design Part 1:Attitude Algorithms[J].Journal of Guidance,Control and Navigation,Vol.21,No.1,1998.
    [83]J.G.Lee,Y.J.Yoon,J.G.Mark and D.A.Tazartes.Extension of Strapdown Attitude Algorithm for High Frequency Base Motion[J].Journal of Guidance,Control and Navigation,Vol.13,No.4,1990.
    [84]Y.F.Jiang and Y.P.Lin.Improved Strapdown Coning Algorithms[J].IEEE Transactions on Aerospace and Electronic System,Vol.28,No.2,1992.
    [85]M.B.Ignagni.Efficient Class of Optimal Coning Compensation Algorithms[J].Journal of Guidance,Control and Navigation,Vol.19,No.2,1996.
    [86]Kwangjin Kirn and Tae Gyoo Lee.Analysis of the Two-Frequency Coning Motion with SDINS[J].A01-37056,AIAA 2001-4108
    [87]D.H.Titterton & J.L.Weston.Strapdown Inertial Navigation Technology[J].IEE Radar,Sonar,Navigation and Avionics Series 5,Peter Peregrinus Ltd,1997
    [88]邓正隆.惯性导航原理[M].哈尔滨:哈尔滨工业大学出版社,1994
    [89]任思聪.实用惯导系统原理[M].北京:宇航出版社,1988
    [90]柳贵福,张树侠.光纤陀螺零漂数据滤波方法的研究[J].中国惯性技术学报,9(4):66-69,2001
    [91]张树侠,闫威.激光陀螺漂移的数据建模和滤波[J].中国惯性技术学报,7(4):70-72,1999
    [92]张传斌,邓正隆.激光陀螺信号的小波滤波方法研究[J].电子学报,32(1):125-127,2004
    [93]徐丽娜,邓正隆.陀螺仪漂移特性的小波分析[J].中国惯性技术学报,9(3):58-61,2001
    [94]赵玉新,李旭友,刘承香,郝燕玲.光纤陀螺信号处理方法的比较研究[J].中国惯性技术学报,11(2):52-56,2003
    [95]Tehani M.Ring laser gyro data analysis with cluster sampling technique[J],SPIE,1983,412:207-220
    [96]MIAO Lingjuan,ZHANG Fangsheng,SHEN Jun,L IU Wei,.Data Analysis and Modeling of Fiber Optic Gyroscope Drift[J].Journal of Beijing Institute of Technology,11(1):50-55,2002
    [97]凌明祥,张树侠.激光陀螺随机噪声分析及其性能评价[J].中国惯性技术学报,6(4):51-55,1998
    [98]George Arshal.Error Equations of Inertial Navigation[J].Journal of Guidance 10(4):351-358,1987
    [99]Altera Corporation.Cyclone Device Handbook.Altera Corporation,2005
    [100]Analog Devices.16/18-Bit Self-Calibrating Serial/Byte DACPORT.Analog Devices,1995
    [101]Philips Semiconductors.74ALVC 164245 16-bit dual supply translating transceiver.Philips Semiconductors,2004
    [102]谢波,裴听国,万彦辉.双位置初始对准技术在车载捷联惯导系统中的应用研究[J].战术导弹技术,2004(5):33-37
    [103]杨友堂.陀螺仪随机漂移模型辨识[J].惯性技术与器件,1985,15(3):37-43
    [104]胡小平主编.自主导航理论与应用[M].长沙:国防科技大学出版社,2002.10
    [105]潘鸿飞,杨柏军,王立强.陀螺仪随机漂移的测量及其数学模型的建立[J].上海航天,3:20-23,2003
    [106]www.ixsea.com
    [107]www.Honeywell.com,
    [108]www.sperry-marine.com
    [109]王省书、黄宗升、周朴、秦石乔.激光陀螺随机漂移的数字滤波方法比较研究.中国激光,2006.11
    [110]周朴,王省书,秦石乔.激光陀螺捷联姿态测量系统误差建模与仿真研究.红外与激光工程,Vol.36(5),2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700