基于小波提升的数字盲水印算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文主要对基于提升小波变换下的有意义数字盲水印算法及其应用展开研究,提出了一种提升框架下基于量化补偿的有意义的数字盲水印算法。
     算法选择彩色图像的YIQ空间中的Y分量嵌入水印,利用人眼视觉特性,采用量化补偿的方法,将置乱变换后的二值水印图像预处理后重复的嵌入到Y分量的提升小波变换系数中去。以提升小波变换为理论依据,利用小波的多分辨率分析特性,在提升小波域内进行水印的嵌入和提取,并且嵌入时采用带有补偿系数的量化理论,不但更好的兼顾了水印不可见性与鲁棒性之间的矛盾,而且实现了水印的盲提取。
     采用提升小波变换方法有效的避免了运算过程中引入量化误差的缺陷,从而达到精度上的要求,满足图像的精确分解与重构。另外,提升小波变换是JPEG2000的核心技术,在此变换域嵌入水印,可以有效的防止由于JPEG2000有损压缩而造成的水印消除。
     通过仿真实验以及与其它算法的对比,证明了算法在保证水印不可见性的同时,对常见的图像处理操作如加噪、压缩、剪切等,均具有较好的鲁棒性。
The paper primarily carries on the systemic research of the algorithm of digital image watermarking which is based on wavelet transform.
     At first the background and the actuality of digital watermarking is introduced, dissertate the digital watermarking about the basic concept and characteristics, the generic model of the digital blind watermark, and then summarize the typical algorithms. The attack analysis and evaluation of performance of the watermark are discussed.
     Then the theory and application of wavelet transform, the principle of image permutation are introduced. Wavelets have found wide applications in image proceeding due to the multi-scale analysis property. In recent years, the study of wavelet transform urged its usage in image coding. The multi-resolution analysis of the wavelet transformation matches with the character of the human vision. It can give sub-bands for different levels and different directions of an image. The second generation wavelet transform (the lifting wavelet) is a new method for constructing wavelets and performing wavelet transform. The application of the second generation wavelet transform in the watermark algorithm is talked over based on the research of the wavelet transform theory.
     Lifting wavelet is different from the traditional wavelet transform and analyzes the items in the time region (space region). It not only holds the features of the traditional wavelet and also contains traditional wavelet, so that all the traditional wavelet can be formed through the lifting method. The lifting scheme can offers a method of the multi-resolution analysis. Lifting framework technique can effectively accomplish the wavelet decompose and restoration with a series lifting (split, predict and update). Lifting wavelet also has the feature of multi-resolution analysis. Lifting wavelet calculates in the original location. It is simple and understandable and its reverse transformation is easy to achieve. And also, the lifting wavelet is the core arithmetic of the new generation compression technology–JPEG2000. Then embedding the watermark in the lifting wavelet domain can avoid the elimination of the watermark which is arisen by the JPEG2000 compression. So apply the lifting wavelet transform which has the feature of multi-resolution analysis to digital image watermarking, it not only reserves the superiority of multi-resolution based on wavelet, and also improve the computing speed, It is a simpler, more understandable method and have the better robustness.
     At last, from three aspect of chosen of the watermark information, chosen of watermark transform domain and transform method, and watermark hiding and detecting algorithm, the digital blind watermark technology is studied in detail. In former methods, the watermark is usually the pseudo-random sequence, and the original image is needed when extracting the watermark. There are two defaults with the algorithm. One is that it can only carry little information and have the poor ability of keeping secrecy. And another is that because of the need of the original image, it brings the inconvenience when extracting the watermark.Aiming at the problem, the meaningful blind watermark is generally studied and analyzed.
     For one thing, A blind watermark algorithm is simulated. It chooses the gray image as the watermark which is needed to be embedded. After the Arnold transform and the bit-plane decomposition, obtain eight bit-planes four of which is chose to be embedded. Then using the quantization method, the watermark imformation is embedded into the intermediate frequency of the wavelet coefficient. The experiment shows that this algorithm has the ability to resist the JPEG compression and the cutting. But the ability to resist the filter and the noise is not good.
     Based on the analysis of the research in existence of the digital blind watermark algorithm in the wavelet domain, a blind watermark technique using lifting wavelet transform was put forward. To increase the robustness, the original color image is transformed into the YIQ color space. Exploiting the excellent properties of the wavelet transform, encrypted watermark is embedded into the Y luminance component of the YIQ in Lifting Wavelet Transform domain using quantization compensation. This method does not require the original image in the proposal detection algorithm. Through Arnold transformation, the watermarking image was hashed to eliminate the spatial correlation among pixels. The ability to withstand attacks was enhanced. The security of watermarking was enhanced too.
     The paper mainly carried on three aspects work of the following:
     (1) Embed and extract the watermark in the lifting wavelet transform domain and choose the colorful image which has the practicality as the watermark to be embedded. The paper analyzes the superiority which is between the lifting wavelet and the traditional wavelet in detail. So the watermark will have the better performance when handled in the lifting wavelet.
     (2) Put forward using the two-value image which has special meaning as Watermark information, and pretreatment the watermark with image permutation before it be embedded. Make it become disorderly information and then embed the watermark, and in this way the watermark’s security and imperceptibility was strengthened.
     (3) Use the quantization compensation. Although the blind watermark is carried out with the general quantization, the robustness will be reduced. We employ the method of the quantization compensation to amend the default of the quantization so as to improve the robustness.
     (4) For strengthening the steadiness of the watermark algorithm, the paper put forward to the thought of the watermark which was repeated embedding. After the original image was disassembled with the lifting wavelet, according to the HVS, the right frequency bands were selected where the watermark image was repeated embedding. So the algorithm not only ensures the watermark’s imperceptibility, but also tremendous strengthen the watermark’s robustness.
     Plentiful emulate experiments prove the algorithm assures the watermark’s imperceptibility and robustness of the algorithm to familiar image process such as noise contamination, compression, cropping, zoom, etc. Finally, review entire work, and make the expectation of the direction for the future research of watermarking.
引文
[1] 陈明奇, 纽心忻, 杨义先, 数字水印的研究进展和应用, 通信学报, 2001, 22(5):71~79
    [2] 赵翔, 郝林, 数字水印综述, 计算机工程与设计, 2006, 27 (11):1946~1950
    [3] Van Schyndel R, Tirkel A, Osborne C, A digital watermark, IEEE Proceeding on International Conference on Image Processing, Austin, Tex. IEEE Press,1994, :86~90
    [4] Tewfik A H, Data hiding for multimedia personalization, interaction and protection, IEEE Signal Processing Mag, 1997, :41~44.
    [5] Cox I.J, Kilian J, et al., Secure spread spectrum watermarking for multimedia, IEEE Transactions on Image Processing, 1997, 6(12):1673~1687
    [6] Barni M, Bartolini F, Cappellini V, A DWT-based technique for spatial-frequency masking of digital signatures SPIE Proceeding on Security and Watermarking of Multimedia Contents, 1999,:31~39
    [7] Langelaar G.C, et al., Robust labeling methods for copy protection of images, In Proceedings of SPIE Electronic Imaging 97, Storange and Retrieval for Image and Video Database, 1997,:98~309
    [8] Nikolaidis N, Pitas I, Copyright protection of image using robust digital signature, In Proceedings of 1996 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP, 1996), 1996, :2168~2171
    [9] 孙圣和, 陆哲名, 数字水印处理技术, 电子学报, 2000, 28(8),:85~90.
    [10] 刘瑞祯, 谭铁牛, 水印能量估计的一般性框架, 计算机学报, 2001, 24(3):1~5
    [11] Swanson M. D, Kobayashi M, Tewfik A.H, Multimedia data-embedding and watermarking technologies, In Proceedings of the IEEE, 1998, 86(6):1064~1087.
    [12] Swanson M.D, Bin Zhu, Tewfik A.H, Multiresolution scene-based video watermarking using perceptual models. In IEEE Journal on Selected Areas in Communications, 1998, 16(4):540~550.
    [13] Wolfgang R.B, Podilchuk C.I, Delp E.J, Perceptual watermarks for digital images and video, In Proceedings of the IEEE, 1999, 87(7):1108~1126.
    [14] Huang Jiwu, Shi Yun Q, Adaptive image watermarking scheme based on visual masking, In Electronics Letters, 1998, 34(8):748~750.
    [15] 黄继武, Shi Yun Q, 一种自适应图像水印算法.自动化学报, 1999, 25(4):476~482
    [16] Podilchuk C.I, Wenjun Zeng, Image-adaptive watermarking using visual models, In IEEE Journal on Selected Areas in Communications, 1998, 16(4):525~539.
    [17] Wang H.M, Su P.C, et al., Wavelet-based digital image watermarking, In OPTICS EXPRESS, 1998, 3(12):491~496.
    [18] Delaigle J.F, et al., Watermarking algorithm based on a human visual model. In Signal Processing, 1998, 66(3):319~335.
    [19] Ching-Yung Lin, Shi-Fu Chang, Watermarking capacity of digital images based on domain-specific masking effects, In Proceedings of IEEE International Conference on Information Technology, Coding and Computing, 2001,:90~94.
    [20] Zhao J, Koch E, Embedding robust labels into images for copyright protection, Proceedings of the KnowRight’95 Conference on Intellectual Property Rights and New Technologies, Vienna, Austria, 1995,:241~251.
    [21] 王珊珊, 基于整数小波变换的图像数字水印技术, 西安电子科技大学硕士学位论文, 2003
    [22] I.J.Cox, M.l.Miller, J,A,Bloom 编, 王颖, 黄志蓓译, 数字水印, 电子工业出版社, 2003
    [23] 易开详, 石教英, 孙参, 数字水印技术研究进展, 中国图像图形学报, 2001, 16(2):111~117
    [24] 孙圣和, 陆哲明, 牛夏牧, 数字水印技术及应用, 科学出版社, 2004
    [25] 张春田, 苏育挺, 管晓康, 多媒体数字水印技术[J], 通信学报, 2000, 21(9):46~52.
    [26] Cox I J, Matt L M, The First 50 Years of Electronic Watermarking, Journal of Applied Signal Processing, 2002.
    [27] I.J. Cox, M.L. Miller, J.A. Bloom, Watermarking Applications and Their Properties, IEEE International Conference on Information Technology, 2000,:6~10
    [28] 牛夏牧, 陆哲明, 孙圣和, 基于多分辨率分解的数字水印技术, 电子学报, 2000, 28(8):1~4
    [29] Kundur D, Hatzinakos D, A robust digital image watermarking method using a wavelet-based fusion, In: Proceedings of IEEE International Conference on Image Processing, Jan. 1997,:544~547
    [30] Lin tian Qiao, Klara Nahrsted, Non-invertible watermarking methods for MPEG encoded audio, SPIE Proceedings on Security and Watermarking of Multimedia Contents, San Jose, 1999,:194~202
    [31] 王艳辉, 王相海, 一种基于提升方案小波和小波块的图像水印算法, 微电子学与计算机, 2005, 22(7):79~83.
    [32] Chun-Shien Lu, Hong-Yuan, Mark Liao, Multipurpose Watermarking for Image Authentication and Protection, IEEE Transaction on Image Processing, 2001, 10(10):1579~1592
    [33] Christine I Podilchuk, Zeng Wenjun, Digital image watermarking using visual models, SPIE Proceeding on Human Vision and Electronic Image, 1997,:100~111
    [34] 黄继武, SHI YunQ, 一种自适应图像水印算法, 自动化学报, 1999, 25(4):44~48
    [35] 黄继武, SHI YunQ, 姚若河, 基于块分类的自适应图像水印算法, 中国图像图形学报, 1999, 4(8):640~643
    [36] 易开祥, 石教英, 一种自适应二维数字水印算法, 全国第二届信息隐藏学术研讨会论文集, 北京, 2000,:108~112
    [37] 王志雄, 王慧琴, 李人厚, 数字水印应用中的攻击和对策综述, 通信学报, 2002,23(11):74~79.
    [38] S.Katzenbeisser Fabien A.P.Petitcolas 编, 吴秋新, 钮心忻等译, 信息隐藏技术--隐写术与数字水印, 人民邮电出版社, 2001
    [39] 刘贵忠, 邸双亮, 小波分析及其应用, 西安电子科技大学出版社, May, 1992
    [40] 崔锦泰, 小波分析导论, 西安交通大学出版社, 1995
    [41] 杨福生, 小波变换的工程分析与应用, 科学出版社, 2001
    [42] 胡昌华, 张军波, 夏军, 张伟, 基于 MATLAB 的系统分析与设计――小波分析, 西安电子科技大学出版社, 1999
    [43] 齐锐, 基于变换域的数字图像水印技术的研究, 西安电子科技大学硕士学位论文, 2003.
    [44] 冈萨雷斯, 数字图像处理, 电子工业出版社, 2003
    [45] 郝文化, MATLAB 图形图像处理应用教程, 中国水利水电出版社, 2004
    [46] 胡小峰, 赵辉, Visual C++/MATLAB 图像处理与识别实用案例精选, 人民邮电出版社, 2004
    [47] 李兆林, Matlab 6.x 图像处理, 清华大学出版社, 2004
    [48] 杨润伟, 基于小波提升的数字水印算法, 新疆大学硕士研究生学位论文, 2005
    [49] Zhishou Zhang, Qibin Sun, Wai-Choong Wong, A novel Lossy-to-Lossless Watermarking Scheme for JPEG2000 Images, 2004 International Conference on Image Processing(ICIP), 2004, :573~576
    [50] 江雪梅, 基于数字水印技术的数字作品版权保护研究, 武汉理工大学硕士学位论文, 2003
    [51] 梦庆洪, 高剑波, 一种二代小波变换的图像水印方案, 水利电力机械, 2005, 27(1):52~55
    [52] 丁玮, 齐东旭, 数字图像变换及信息隐藏与伪装技术, 计算机学报, 1998, 21(9) : 838~843
    [53] 吴晏升, 王介生, 刘慎权, 图像的排列变换, 计算机学报, 1998, 21(6) pp: 512~519
    [54] 张华熊, 仇佩亮, 置乱技术在数字水印中的应用, 电路与系统学报, 2001, 6(3) :32~36
    [55] Fan Zhang, Hongbin Zhang, Image Watermarking Capacity Analysis Using HopfieldNueral Network, PCM2004, LNCS3333, 2004, :755~762.
    [56] 黄福莹, 基于变换域的数字水印技术和图像压缩编码, 西安电子科技大学硕士学位论文, 2004
    [57] M.Barni, F.Bartolini, V.Cappellini, etc, A DCT-domain System for Robust Image Watermarking, Signal Processing, 1998, 66(3):357~372
    [58] 孟兵, 万建伟, 周良柱, 基于小波域量化噪声的静态图像数字水印算法研究, 计算机工程与科学, 2000, 22(4):15~19
    [59] 毛秉毅, 一种基于频率细化多分辨率小波变换和量化的数字图像水印算法, 计算机工程, 2002, 128(8):211~213
    [60] 刘仲伟, 基于频域的灰度数字水印算法的研究与实现, 沈阳工业大学硕士学位论文, 2005
    [61] 王艳辉, 王相海, 一种基于提升方案小波和小波块的图像水印算法, 微电子学与计算机, 2005, 22(7):79~85
    [62] Qiang Cheng, Thomas S.Huang, Robust Optimum Detection of Transform Domain Multiplicative Watermarks, IEEE Trans. on Signal Processing, 2003, 51(4):906~924
    [63] Zhe-Ming Lu, Dian-Guo Xu, Sheng-He Sun, Multipurpose Image Watermarking Algorithm Based on Multistage Vector Quantization, IEEE Trans. on Image Processing, 2005, 14(6):822~831
    [64] 黄建勇, 基于小波变换的图像数字水印算法研究, 浙江大学硕士学位论文, 2005.
    [65] 李春茹, 基于小波变换和 HVS 的数字图像水印技术, 西安电子科技大学硕士学位论文, 2004
    [66] 文志强, 基于变换域的数字水印技术的研究, 广西大学硕士研究生学位论文, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700