基于Handel-C的CCSDS图像压缩算法实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着航天遥感技术的迅猛发展,采集空间图像的需求也日益增长。为了解决有限的卫星通信信道容量和海量数据下传的矛盾,应用卫星数传系统在图像数据下传之前必须采用数据压缩技术,这就需要对图象编码理论和经典编码算法进行深入研究分析,因此研究性能优越、易于硬件实现的、适于航天环境的图像编码算法及VLSI实现具有重要意义。
     2005年11月发布的CCSDS图像压缩标准是一种基于小波变换的图像专用压缩算法,该算法以其优良的图像压缩效率和针对空间数据的高可靠策略,在空间图像数据压缩领域具有广阔的应用前景。在论文中,我们主要对CCSDS图像压缩算法的重要模块的VLSI实现方法进行了研究。研究的主要内容包括:(a)一维和二维9/7整数小波变换的VLSI结构设计;(b)位平面编码的VLSI结构设计;(c)压缩算法的Handel-C设计。
     论文第二章研究了CCSDS图像压缩算法的基本组成部分,分析了算法与JPEG2000和SPIHT两种算法的复杂度及性能的区别,得出结论:CCSDS算法可以在性能与硬件实现复杂度上取得很好的平衡,有利于满足高效的深空探测及近地观测应用。
     论文第三章的DWT模块部分,分别就一维小波变换、二维小波变换的结构设计进行了研究。针对9/7小波变换直接映射结构具有较长关键路径的缺点,依据流水线优化原则,构造了一种新的基于流水线优化的提升方案,大大减少了关键路径延时。在1D-DWT设计的基础上,发展了一种有效的二维小波变换结构,该结构实现图像行变换和列变换的流水线并行执行,接下来在2D-DWT的基础上,设计了一种支持空间图像线扫式输入的级间流水的三级变换结构。
     论文第三章的位平面编码设计部分,首先给出了BPE总体设计架构,在预处理阶段读取每个小波系数时,就计算出系数深度信息并保存,避免了后期位平面扫描阶段每个平面重复读取小波系数的时间,提高了编码效率;随后给出DC量化系数和AC系数块深度Rice编码的电路设计单元;接下来的位平面扫描模块设计中,设计了一种16个小波系数块并行扫描的扫描结构,采用小波系数深度替代重复读取小波系数的方式改进了系数类型字的计算方式;对扫描信息的存储结构提出了2点优化措施,加快了熵编码器的编码速度;最后码流拼接模块设计中,提出了一种有效的无冗余位码流拼接结构。
     论文第四章阐述了算法的Handel-C设计,首先给出了Handel-C语言和传统C语言的比较,接下来分析了基本语句的Handel-C实现电路的结构;设计了Handel-C代码的软件总体结构以及转化C语言模块为Handel-C语言模块时,需要遵循的若干原则;针对软件模块跨时钟域的相互连接的问题提出了一种解决方法。
     最后在论文第五章FPGA芯片验证阶段,利用ML555开发板搭建整个验证系统,对该系统进行大量的硬件测试,验证了本文CCSDS算法硬件实现结构的有效性。
     本论文工作的主要创新之处在于:
     (1)构造了一种新的基于流水线优化的提升方案,针对9/7M小波直接映射结构具有较长关键路径的缺点,依据电路数据通道与前向分割集交点插入流水线寄存器的原则,加入4级流水线,相对于优化前的电路结构而言,其关键路径长度和组合逻辑深度大大变浅,仿真结果表明采用该优化方案,电路最高运行频率提高约4倍,而硬件资源开销仅增加了大约50%。
     (2)位平面扫描模块设计中,针对扫描信息的存储结构提出了2点优化措施:其一是Stage4阶段小波系数位平面扫描比特字串并转换后存入对应存储空间,降低了存储要求,其二是存储内容由转义类型字改为转义类型字对应的编码符号,避免了熵编码对多个固定无效标志的访问,加快了熵编码器的编码速度。
     (3)码流拼接模块设计中,提出了一种有效的无冗余位码流拼接结构,能够实现在一个时钟周期内完成1~8位二进制比特位的无冗余连接。
Together with the development of space exploration technology, the demand for collecting data of space image is getting higher and higher. Due to the confliction between the limited communication bandwidth and the mass image data being downloaded, high speed image compression technology must be taken before onboard image data transmitted, which in turn calls for research on theory of image compression and leading compression algorithm. Therefore it is meaningful to research on the focus of VLSI hardware architecture for those compression algorithms, which are easily hardware implementation and are suitable for outer space environment.
     Published on Nov. 2005, CCSDS image compression algorithm is a leading algorithm oriented to space image. It is based on the Discrete Wavelet Transform (DWT). Due to it’s well compression performance and high reliability, CCSDS image algorithm has extensive foreground in the field of space image compression. The main research of the thesis is on the focus of hardware architecture for onboard image compression, containing three part: (a) hardware architecture for 1D-DWT and 2D-DWT. (b) hardware architecture for Bit Pane Encoding(BPE). (c)the design of CCSDS algorithm using Handel-C language.
     In chapter 2, the main body of the CCSDS algorithm is introduced; Its performance and hardware complexity is analyzed by comparing CCSDS with JPEG2000 and SPIHT. It is concluded that CCSDS is suitable for deep space exploration and earth-approaching observation.
     Hardware architecture for 1D-DWT and 2D-DWT are discussed in chapter 3. Due to the longest path in the direct mapped lifting architecture of 9/7M DWT, it is impossible to get higher running frequency. According to the pipeline design rule, a new method based on 4-leveled pipeline is designed, which minimizes the longest path and significantly improves the timing performance. Based on 1D-DWT, a 3-leveled 2D-DWT is designed, in each level row-DWT and column-DWT is processed by parallel and pipeline methods. .
     In the BPE part of chapter 3, during preprocess stage, it minimizes the wavelet coefficient memory access time by using coefficient depth instead of coefficient itself, the coefficient depth will be used for computing coefficient type. In the stage of Bit Plane Scanning, 16 coefficient blocks are scanned at one time, which accelerates the subsequent AC entropy process. An optimized memory structure is proposed to speedup AC entropy process. In the Byte Builder module design, a valid architecture is presented to linkup the variable length codeword without any redundancy.
     In chapter 4 the Handel-C design process is discussed. After comparing the traditional C language with Handel-C language, the“sequent mechanism”is analyzed, then introduced some rules on rewriting C code to Handel-C code. Finally, a method is proposed to resolve the problem of connecting different clock domain modules.
     The main achievements of the thesis can be summarized as follows.:
     1. An optimized lifting scheme of 9/7M DWT based on 4-leveled pipeline was presented. Due to the longest path in the direct mapped lifting architecture of 9/7M DWT, it is impossible to get higher running frequency. According to the pipeline rule of inserting pipeline register in the forward cutting set, a new method base on 4-leveled pipeline is presented, which minimizes the longest path and significantly improves the timing performance.
     2. Two improvements on the memory structure of BPE scanning information were proposed. During the stage 4, the wavelet coefficient scanned bits can be de-seriated before save to memory location; The mapped symbol of the scanning word is saved to the memory instead of the scanning word itself, Because the mapped symbol has not“null”symbol, the AC Entropy Encoder would not access to invalid memory location. As a result the speed of AC Entropy can be enhanced.
     3. A valid architecture was presented to linkup the variable length codeword without any redundancy. 1-8 bits can be compactly jointed together during one clock.
引文
[1] K. Can, I. S. Egemen, Y. Gokhan, I. Gokhan. Technology Drivers and Challenges for Next Generation Distributed Spacecraft Systems. 2007.RAST'07.3rd International Conference on Recent Advances in Space Technologies, Houston. 2007:503-509
    [2]李平,张纪生. NASA深空网(DSN)的现状及发展趋势.飞行器测控学报. 2003, 22(4):10-17
    [3] A. Kiely, R. Manduchi, M. Klimesh. Maximizing Science Return: Data Compression and Onboard Science Processing. IND Technology & Science News. 2002,6: Issue 12
    [4]陈宇,李俊等.基于FPGA和Handel-C的声纳信号处理算法实现[J] .声学技术,2003年Z2期:82-84
    [5] R. Manduchi, S. Dolinar, etc. Onboard Science Processing and Buffer Management for Intelligent Deep Space Communications[C]//Proceeding of IEEE Aerospace Conference, BigSky, MT, USA, 2000
    [6] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Transactions on Signal Processing. 1993, 41(11): 3445-3462
    [7] D. Taubman. High performance scalable image compression with EBCOT[J]. IEEE Transactions on Image Processing. 2000, 9(5): 1158-1170
    [8] A. Said, W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning in hierarchical trees[J]. IEEE Transactions on Circuits and Systems for Video Technology. 1996 6(6): 243-250
    [9] The Consultative Committee for Space Data Systems. CCSDS 122.0-B-1 image data Compression. 2005
    [10] Pasqual Corsonello, Stefania Perri, etc. Low bit-rate Image Compression Core for Onboard Space Applications[J]. IEEE transaction on circuits and systems for video technology, 2006, 16(1): 114-128
    [11]雷杰.遥感图像编码算法及其硬件实现技术研究.西安电子科技大学博士论文.2009
    [12] Huffman D. A.A Method for the Construction of Minimum Redundancy Code.Proceedings of IRE.1952,40(9):1098-1101
    [13] Huang T. S.Run Length Coding and Its Extensions.Picture Bandwidth Compression,New York,Gordon and Beach,1972
    [14] Ziv J.,Lempel A..A Universal Algorithm for Sequential Data Compression.IEEE Trans. On Information Theory.1977,23(3):337-343
    [15] Witten I. H.,Neal R. M.,Cleary J. G..Arithmetic Coding for Data Compression.Communications of the ACM.1987,30(6):520-540
    [16]黎洪松,成实译.《JPEG静止图像数据压缩标准》.学苑出版社,1996
    [17]吴成柯,戴善荣,陆心如.《图像通信》.西安电子科技大学出版社,1990
    [18]阮秋琦,《数字图像处理学》.电子工业出版社,2001
    [19]张旭东,卢国栋,冯健.《图像编码基础和小波压缩技术》.清华大学出版社,2004
    [20]何小海,藤奇志.《图像通信》.西安:西安电子科技大学出版社,2005
    [21]尤政,戴汩,“航天清华一号”微小卫星及其图像处理.遥感学报, 2001, 5(3): 177-183
    [22] Pen-Shu Yeh. Gilles Moury, Philippe Armbruster. The CCSDS Data Compression Recommendations: Development and Status. Applications of Digital Image Proceeding, Proceedings of SPIE. 2002,4790
    [23]刘荣科,张晓林,廖小涛.星载遥感图像压缩编码技术综述.遥测遥控, 2004, 25(2): 7-12
    [24]徐欣锋.高空间分辨率遥感图像实时压缩进展.光学精密工程, 2004, 12(3): 266-271
    [25] Sun Huixian, Wu Ji, Dai Shuwu et. al. Introduction to the payloads and the initial observation results of Chang’E-1, Chin. J. Space Sci.2008, 28(5): 374-384
    [26] Consultative Committee for Space Data Systems. CCSDS 121.0-B-1: Lossless Data Compression. Blue Book, issue 1. May 1997. http://www.ccsds.org/CCSDS/documents/
    [27] Consultative Committee for Space Data Systems, CCSDS 120.0-G-1: Lossless Data Compression, Green Book. Issue 1. Dec. 2006
    [28] Consultative Committee for Space Data Systems. CCSDS 120.1-G-1: Image Data Compression , Green Book, Issue 1. June 2007
    [29] W. Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets. SIAM Journal of Mathematical Analysis. 1998 ,29(2):511-546
    [30]M.D.Adams,F.Kossentini.Low-Complexity Reversible Integer to Integer Wavelet Transforms for Image Coding. Proceedings of IEEE Pacific Rim Conference Communication, Computers, Signal Processing. 1999:177-180
    [31]赵学军.基于小波变换的图像压缩.图像处理学报,2006,3:203-205.
    [32]王剑.基于MATLAB的小波变换在图像压缩中的应用.计算机工程与应用2003,1:57—61
    [33] Thomas w F,Scott A H.SPIHT image compression on FPGAs,IEEE Transactions on circuits and systems for video technology.2005.15(9):1138—1147.
    [34]张佳岩.基于小波变换的深空通信图像压缩算法及应用研究.哈尔滨工业大学博士论文.2007
    [35]张春光,王胜坤,张肖强等.基于小波变换与SPIHT算法的静止图像压缩.科技情报开发与经济.2007,17(20):186—188.
    [36]Image Data Compression, Recommendation for Space Data System Standards,INFORMATIONAL REPORT. CCSDS120.1-G-l. June 2007.
    [37] D.S.Taubman and M.W.Marcelline,魏江力等译《JPEG2000图像压缩基础、标准和实现》.北京:电子工业出版社. 2004.
    [38]姜宏旭,周孝宽.遥感图像压缩中CCSDS标准的应用及VLSI实现.计算机工程与应用, 2004, 15: 222-225
    [39]周孝宽.基于空间重采样的遥感图像压缩.北京航空航天大学学报. 2001, 27(5): 611-614
    [40]程子敬,星载高速图像数据压缩原理样机的研制,北京航空航天大学学报1999, 25(6): 458-461
    [41]程子敬,星载图像实时压缩技术研究,北京航空航天大学学报1999,25(4):458-461
    [42]马瑞敏,王景宇,王国权.空间太阳望远镜FPGA星载图像压缩模块的设计与实现.宇航学报, 2008, 29(4): 1345-1349
    [43] Joerg Ritter, Gorschwin Fey, Paul Molitor. Spiht implementation in a XC4000 device. Proc. of 45th Midwest Symposium on Circuits and Systems, 2002, 1: 239-242
    [44] T.W Fry, S. Hauck. Hyperspectral image compression on reconfigurable platforms. Porc. Of 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines, 2002, 9:251-260
    [45] Pasqual Corsonello, Stefania Perri, et.al. Low bit-rate Image Compression Core for Onboard Space Applications. IEEE transaction on circuits and systems for video technology, 2006, 16(1): 114-128
    [46] Kuizhi Mei, Nanning Zheng, Chang Huang et. VLSI Design of a High Speed and Area Efficient JPEG2000 Encoder. IEEE tansactions on circuits and systems for video technology, 2007, 17(8): 1065-1078
    [47]熊承义.高速图像压缩编码器的VLSI结构设计研究.华中科技大学博士学位论文, 2006
    [48] C. Yu and S. J. Chen. VLSI implementation of 2-D discrete wavelettransform for real-time video signal processing, IEEE Trans. Consum Electron. 1997, 43(4): 1270-1279
    [49] A. S. Lewis and G. Knowles, VLSI architecture for 2-D Daubechies wavelet transform without multipliers. Electron. Lett., 1991. 27(1): 171-173
    [50] C. Chakrabarti and M. Vishwanath, Architectures for wavelet transforms:a survey. J. VLSI Signal Process. 1996,14: 171-192
    [51] C. Chakrabarti and M. Vishwanath. Efficient realizations of discrete and continuous wavelet transforms: from single chip implementations to mappings on SIMD array computers. IEEE Trans. Signal Process., 1995, 43(3): 759-771
    [52] J. C. Limqueco and M. A. Bayoumi. A VLSI architecture for separable 2-D discrete wavelet transforms. VLSI Signal Process. 1998, 18: 125-140
    [53] P.Wu and L. Chen, An efficient architecture for two-dimensional discrete wavelet transform, IEEE Trans. Circuits Syst. Video Technol., 2001: 11(4): 536-545
    [54] K. K. Parhi and T. Nishitani, VLSI architectures for discrete wavelet transforms, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1993, 1(3): 191-202
    [55] G. Dillen, B. Georis, J. D. Legat, and O. Cantineau. Combined linebased architecture for the 5-3 and 9-7 wavelet transform of jpeg2000, IEEE Trans. Circuits Syst. Video Technol., 2003, 13(9): 944-950
    [56] Chengyi Xiong, Jinwen Tian, and Jian Liu. Efficient Architectures for Two-Dimensional Discrete Wavelet Transform Using Lifting Scheme. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007,16(3): 607-614
    [57] K. Andra, C. Chakrabarti, and T. Acharya. A VLSI architecture for lifting-based forward and inverse wavelet transform, IEEE Trans. Signal Process., 2002,50(4): 966-977
    [58] W. Jiang and A. Ortega. Lifting factorization-based discrete wavelettransform architecture design, IEEE Trans. Circuits Syst. Video Technol., 2001, 11(5): 651-657
    [59] S. Barua, J. E. Carletta, K. A. Kotteri, and A. E. Bell. An efficient architecture for lifting-based two-dimensional discrete wavelet transform, Integr. VLSI J., 2005, 38(3): 341-352
    [60]徐勇,徐智勇,张启衡. 5/3小波提升结构的深度流水线优化.计算机应用研究. 2010,27(3):975-976.
    [61] Taubman D, Ordentlich E, et al. Embedded block coding in JPEG2000. Signal Processing: image Communication, 2002, 17:47-72
    [62] Xiong Cheng-Yi, Tian Jin-Wen, Liu Jian. Word-Level and Sequential Coding Scheme of Bit Plane Coding for EBCOT in JPEG2000. in Proceeding of IEEE the Ninth International Symposium on Consumer Electronics, 2005, 1:468-472
    [63] Chiang J S, Lin Y S, and Hsieh C Y. Efficient pass parallel architecture for EBCOT in JPEG2000. in Proceeding of IEEE International Symposium on Circuits and Systems, 2002, 1:773-776.
    [64] Fang H C, Chang Y W, et al. Parallel embedded block coding architecture for JPEG 2000. IEEE Transactions on Circuits and Systems for Video Technology, 2005,15(9):1086-1097
    [65] Flierl M, Girod B. Video coding with motion compensated lifted wavelet transforms.Signal processing: Image Communication, 2004, 19:561-575
    [66] Rusert T, Hanke K and Mayer C. Enhanced interframe wavelet video coding considering the interrelation of spatio-temporal transform and motion compensation.Signal processing: Image Communication, 2004, 19:617-635
    [67] Lian C J, Chen K F, et al. Analysis and architecture design of block-coding engine for EBCOT in JPEG2000. IEEE Trans. on Circuits and Systems for Video Technology, 2003, 13:219-230
    [68] Fang H C, Wang T C, et al. Novel word-level algorithm of embedded block coding in JPEG2000. in Proceeding of IEEE International Conference on Multimedia and Expo., 2003, 1:123-139
    [69] Xu C, Han Y, and Zhang Y. Bit-plane and pass dual parallelarchitecture for coefficient bit modeling in JPEG2000. in Proceeding of IEEE international conference on acoustic, speech, and signal processing, 2004, 5:85-88
    [70] Martin Boliek, Charilaos Christopoulos, and Eric Majani. JPEG2000 Part I Final Committee Draft Version 1.0. ISO/IEC JTC1/SC29/WG1 N1646R, March 2000
    [71] Dai Q, Chen X, and Lin C. A Novel VLSI Architecture for Multidimensional Discrete Wavelet Transform. IEEE Trans. on Circuits and Systems for Video Tech., 2004,14(8):1105-1110
    [72] Taubman D. High performance scalable image compression with EBCOT. IEEE Trans. on Image Processing, 2000, 9(7):1158-1170
    [73] Skadras A, Christopoulos C, and Ebrahimi T. The JPEG2000 still image compression standard. IEEE Signal Processing Mag., 2001, 18(5):36-58
    [74] Chiang J S, Chang C H, et al. High-speed EBCOT with dual context-modeling coding architecture for JPEG2000. in Proceeding of IEEE International Symposium on Circuits and Systems, 2004, 3:865-868
    [75] Fang Hung-Chi, Wang Tu-Chih, et al. High speed memory efficient EBCOT architecture for JPEG2000. in Proceedings of the 2003 International Symposium on Circuits and Systems, 2003, 2:736-739
    [76]朱悦心,付均等.基于多级查询表的JPEG2000位平面扫描优化方法.电子学报, 2004,32(5):810-813
    [77]王勇,郑南宁,梅魁志等.一种高效的JPEG2000位平面编码器.西安交通大学学报, 2005, 39(2): 158-161
    [78]刘凯,吴成柯等.比特平面并行的EBCOT编码及其VLSI结构.计算机学报, 2004, 27(7):928-935
    [79]刘雷波,李德建等. JPEG2000 ebcot编码器的VLSI结构设计.北京邮电大学学报, 2003, 26(4): 61-65
    [80] H.-C. Fang, T.-C.Wang, and C.-J. Lian, High speed memory efficient EBCOT architecture for JPEG2000, in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’03), May 2003, 2: 25-28.
    [81] C.J. Lian, K.F. Chen, H.H. Chen, and L.G. Chen. Analysis andarchitecture design of block-coding engine for EBCOT in JPEG2000. IEEE Trans. Circuits Syst. Video Technol., 2003:13(3): 219-229
    [82] Frederick W.Wheeler and Willian A.Pearlman. SPIHT image compression without lists, Proc. of IEEE ICASSP 2000, 2000, 6(5): 2047-2050
    [83]张学全.基于FPGA的星载图像压缩系统实现方法研究.中国科学院研究生院博士学位论文, 2009年.
    [84]谭章熹. VHDL在新一代EDA解决方案中的应用[ EB/OL ].http :// passmatlab.myetang.com/fpga/ MAXPLUS/book/p-18.htm. 2004-02.
    [85] C语言FPGA开发工具- Celoxica’s DK2[ EB/ OL ]. http :/ /www. hwacreate. com. cn/ chinese/ product/ qianrushi/ celoxi2ca. htm. 2004- 02.
    [86] Handel-C Language Reference Manual[ S].Celoxica,2003.
    [87]杨溢,方潜生,汪力君.基于Handel-C的硬件优化设计.安徽建筑工业学院学报, 2005,13(6):56-58
    [88]徐志军等. CPLD/FPGA的开发与应用——电子工业出版社, 2006.
    [89]王诚,薛小刚,钟信潮. FPGA/CPLD设计工具—Xilinx ISE使用详解.人民邮电出版社, 2005.
    [90] Virtex-5 Platform FPGAs:Complete Data Sheet, Nov. 2009, http://www.xilinx.com
    [91] Amphion Semiconductor Ltd.(2003,Jan.) Datasheet CS6510:JPEG2000 Encoder.[Online]. www.amphion.com
    [92] Pasqual Corsonello, Stefania Perri, et.al. Low bit-rate Image Compression Core for Onboard Space Applications. IEEE transaction on circuits and systems for video technology, 2006, 16(1): 114-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700