紫苏(Perilla frutescens (L.)Britte)花芽生理分化机理及紫苏子α-亚麻酸提取纯化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以紫苏(Perilla frutescens(L.)Britte)为材料,进行了紫苏花芽生理分化机理以及紫苏子α-亚麻酸提取和纯化工艺的研究。
     一、紫苏花芽生理分化机理研究
     紫苏花芽生理分化期分为成花诱导期和花芽孕育期。成花诱导完成于六月中下旬,花芽孕育则从六月中下旬开始,完成于七月下旬。在此基础上,我们研究了土壤水分胁迫和弱光胁迫两个抑花因子对紫苏花芽生理分化的影响,以探讨紫苏花芽生理分化机理。主要研究结果如下:
     旺盛的DNA复制、RNA合成为花芽生理分化所必需。花芽孕育期中期DNA和RNA含量的升高对于花芽生理分化有明显的促进作用。RNA/DNA值急剧降低为花芽生理分化的一个明显特征。
     激素对花芽生理分化的作用,可能通过时间和空间上调节激素之间比例或平衡以及核酸的代谢来完成对花芽诱导和孕育的调控。主要表现在:①时间上的控制。4种内源激素峰值顺序出现:IAA,GA(成花诱导期)→ZRs(花芽孕育前期)→ABA(花芽孕育中期)。②空间上的控制。在成花诱导期中,IAA/GA值的变化可能起着关键的主导作用;在花芽孕育期中ZR_s/GA值与成花率具有明显的正相关性。
     各碳水化合物、可溶性蛋白含量的增加为紫苏花芽生理分化所必需。这可能与花器原始体形成所需碳水化合物和酶的合成有关。总氮含量在成花诱导期后持续下降,至花芽孕育期中期达到最低值。C/N值在诱导期至孕育期前期呈上升趋势,孕育期后期开始回落,相对高的C/N值可能有利于花芽诱导和孕育的完成。此外我们还研究了α-淀粉酶(α-AMY)、硝酸还原酶(NR)活性的变化以及淀粉酶同工酶谱的变化。
    
     中英文摘要
     水分对紫苏花芽生理分化影响最为显著时期为花芽孕育期的中后期。持续
    的土壤水分胁迫在此期引起膜系统的伤害,严重影响花芽生理分化的进行和最
    终的成花率。而光照对紫苏花芽生理分化影响最显著的时期为孕育期前期,持
    续的弱光胁迫在此期导致净同化作用速度明显低于对照,最终对成花率产生显
    著的影响。
    二、紫苏子a.亚麻酸提取与纯化工艺研究
     (一)苏子油的提取
     紫苏子经预处理后,我们对提取方法、提取溶剂、以及影响提取效率的其
    它参数进行了比较和研究。结果显示:在本次试验中苏子油的最佳提取条件为:
    4倍质量体积的石油醚:乙酸乙酯Oj)为提取溶剂,提取温度 60 oC,提取时间
    12h,提取二次。得油率为32.87%,经气相色谱分析苏子油中a-亚麻酸含量为
    42石4%。
     (二)a.亚麻酸的提取和纯化
    1苏子精油的制备:用 15%NaOH溶液除去少量的游离脂肪酸、磷脂、色素、
    蛋白质、胶质等成分,所得苏子精油中a-亚麻酸的含量为46刀1%,提纯倍数
    为1.079,a.亚麻酸收率为93.32%。
    2 改良碱解:在比较酸解法和碱解法的基础上,我们对碱解法进行了改进。苏
    子精油经4倍质量体积的3.7%NaOH乙醇溶液皂化后,所得滤液分别置于室温、
    -5.ZC、-9.soC、-15.loC、-19。7℃下保存12h。最后所得混合脂肪酸的分析
    结果显示:随处理温度的降低,各组a-亚麻酸含量和提纯倍数均明显上升,u
    .亚麻酸收率则呈降低趋势。
    3尿素包合:在对影响腺包反应的腺包温度、腺包比例、腺包时间、腺包次数、
    腮包客体、腺包溶剂研究的基础上,我们得出本次试验中腺包反应条件的最佳
    组合即:以混合脂肪酸为腺包客体,甲醇或乙醇为溶剂,脂肪酸:甲醇(或乙醇):
    尿素二1:8:2,包合温度.10刀℃,包合时间12h,包合1次。
    4改良碱解和尿素包合对a-亚麻酸提取纯化的综合效应:将苏子精油在乙醇溶
    液中皂化后,所得滤液分别置于室温、-5.It、-10.OC和-15.ZoC下处理 12h。
    最后所得的混合脂肪酸分别在最优条件下进行包合。结果表明:在-5loC下进
    行改良碱解,然后以最优条件进行包合为最佳组合,此时液相中的a-亚麻酸含
    量为88.16%,得率为23.14%,提纯倍数为1.916。
    5硝酸银柱层析和减压蒸馏:将豚包所得混合脂肪酸甲酯化后,应用硝酸银柱
    层析技术或减压蒸馏技术,可使a-亚麻酸含量达到了98%以上。
     (三)本次试验的主要成果和创新
    ①应用正交试验设计得出了苏子油的最佳提取条件。
     2
    
     中英文摘要
    ②首次应用硝酸银薄层色谱和硼酸薄层色谱对a-亚麻酸的测定进行了比较和
    研究。这为在常规实验条件下测定a-亚麻酸含量提供了一个可行的方法。
    ③利用脂肪酸在乙醇溶液中随温度降低溶解度变化的规律,对苏子油碱解法进
    行了改进。经改良碱解使a-亚麻酸含量由常规碱解的52.45%提高到63.50儿
    提纯倍数由 1.140提高到l.380。
    ④采用尿素包合法对苏子油a-亚麻酸进行了纯化研究,并对包合条件作了深入
    细致的研究。
    ⑤在研究改良碱解法和尿素包合法的基础_.〔,探讨了二者对a.亚麻酸提取和纯
    化的综合效应。
    ③应用硝酸银柱层析和减压蒸馏技术对Q-亚麻酸的进一步纯化进行了尝试和
    比?
Physiological flower bud differentiation mechanism of Perrilla frutescens(L.) Britte and technology of extracting and purifying a -Linolenic acid were studied in this paper. 1 Physiological flower bud differentiation mechanism
    The results showed that the phase of physiological flower bud differentiation could be divided into two phases: floral induction and floral initiation. The floral induction accomplished in the last ten-day period of June, and from which floral initiation began and accomplished in the last ten-day period of July.
    On this foundation, the author studied the effect of soil water stress and low-light stress on physiological flower bud differentiation of Perilla Frutescens(L.) Britte. The major results as follows:
    Copying DNA and transcribing RNA vigorously were essential for the physiological flower bud differentiation. The contents of DNA and RNA went up in the middle period of floral initiation, which obviously promoted physiological flower bud differentiation. The sharply reduce in value of RNA/DNA was a clear character for the physiological flower bud differentiation.
    Endogenous hormones regulated and controlled physiological flower bud differentiation by the way of adjusting, probably from time and space, the proportion or balance in themselves as well as nucleic acids metabolism.
    The major control as follows:
    Controlling by the time: peak value of endogenous hormones appeared in sequence: IAA and GA's (floral induction), ZRs's (early in floral initiation), ABA's(later in floral initiation).
    Controlling by the space: the change of IAA/GA's value probably dominated in
    
    
    the floral induction. ZRs/GA's value possessed clear positive correlation with flower bud formation.
    The increase in carbohydrate and soluble protein were necessary in floral initiation, as might be related with synthesis of carbohydrate and enzyme needed in the formation of floral primordia. Total nitrogen content went on to descend after floral induction phase, and the lowest value of it came in middle period of floral bud initiation. C/N's value tended to rise between floral induction phase and early phase of floral initiation, and reached the lowest in the middle period of floral initiation. Relative high C/N's value probably was favor of accomplishment of the physiological flower bud differentiation. In addition, we also studied changes of the activity of a - AMY and NR as well as change of amylase isozyme band.
    The most evident effect of soil water stress on physiological flower bud differentiation was in the intermediary and later stage of floral initiation. The lasting soil water stress caused the harm of membrane system in this phase and restrained physiological flower bud differentiation. The most evident effect of low-light stress on physiological flower bud differentiation was in early stage of floral initiation. The lasting low-light stress obviously caused the speed of NAR lower than that of the control, and at the same time affected frequency of flower bud formation heavily.
    2 Technology of extracting and purifying a -Linolenic acid
    Based on studying the technology of extracting and purifying a -Linolenic acid, the results as follows:
    For extracting perilla seed oil, the best solvent was composed of petroleum ether and ethyl acetate. After perilla seed oil being extracted twice, each extraction lasting 12 hours at 60 癈, the average yield of perilla seed oil was 32.87%. Analyzed by gas chromatogram, the results showed that the content of a -Linolenic acid was 42.64%.
    In order to take-off the compositions such as a few dissociating fatty acids, phosphatides, pigments, proteins and so on., the perilla seed oil was refined by the treatment with NaOH solution. The results showed that the content of a -Linolenic acid, a -Linolenic acid yield and purification multiple were respectively 46.01%, 93.32% and 1.079 in refined perilla seed oil.
    On the base of comparing acid hydrolysis method and alkaline hydrolysis method, We improved the alkaline hydrolysis method.
    
    After being ref
引文
1. Boveris A, 1984. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria[M]. Orlando: Academic Press:429
    2. Buban T, Simon I, 1978. Cytochemical investigation in apices of apple buds with special reference to flower initiation[J]. Acta Hort, 80:193
    3. Burrows G, 1960. Molecular distillation[M]. Oxford:Clarenden Press:56-61
    4. Delap AV, 1967. The effect of supplying nitrate at different seasons on the growth, blossoming and nitrogen content of young apple tree in sand culture [J]. Hort.Sci, 42:149-167
    5. Domart C, Miyauchi DT, Sumerwed WN, 1995. The fractionation of marine-oil fatty acids with urea[J]. A.O.C.S, 32:481
    6. Faust M, 1989. Physiology of Temperate Zone Fruit Trees[M]. New York:John Wiley and Sons:75-79
    7. Grasmanls VO, Toughs GW, 1967. Leeper Ammonium nutrition and flowering of apple trees[J]. Aust.J.Eiol, 20:761-767
    8. Grochowska MJ, Karaszewska A, Janlowska B, et al., 1984a. Dormant pruning influence on auzin, gibberellin and cytokinin levels in apples trees[J]. Amer Soc Hort Sci, 109:312
    9. Grochowska MJ, Karaszewska A, Janlowska B, et al., 1984b. The patten of hormones of intact apple shoots and its change after spraying with growth regulators[J]. Acta Hort, 149:25
    10. Green DM, Lord WJ, 1978. Evaluation of scoring ,limb spreading and growth regulators for increasing flower bud initiation and seton young 'Dilicious' apple trees[J]. Amer Soc Hort Sci, 103:208
    11. Gourly JH, Howell FS, 1949. Modern fruit production[M]. New York:Macmillan Co: 62-69
    12. Harley CP, Regeimbal LO, 1995. Comparative effectiveness of naphthaleneacetic acid and naphthaleneacetic sprays for fruit thinning York Imperial apples and initiating blossom buds on Delicious apple trees[J]. Amer Soc Hort Sci, 74:64
    13. Kazunori I, Tsuyoshi Y, Soyao M, et al., 1988. Isolation and purification of a-linolenic acid[P]. Jap.Kokai Tokkyo Koho JP 63,295,698, 02
    14. Kraus EJ, Kraybill HR, 1918. Vegetative and reproduction with special reference to the tomato[P]. Ore.Agr.Exp.Sta.Bull 194:5-90
    15. Lewis LM, coggins CW, Hield HZ, 1964. The effect of biennial bearing and NAA or
    
    the carbohydrate and nitrogen composition of wilding mandarin leaves[J]. Proc Amer Soc Hort Sci, 84:147
    16. Luckwill LC, 1974. In proceeding of the XIV International Horticultural Congress[C]. Orlando:Academic press: 169-177
    17. Michio W, Shiro A, Nobukazu T, et al., Pharmaceuticals containing xanthine oxidase inhibitor for treatment of gout[P]. Eur.Pat.Appl.EP 429,038, 29
    18. Naik MS, Abrol YP, Nair TR, et al., 1982. Nitrate assimilation,its regulation and relationship to reduce nitrogenc[J]. Photochemistry, 21:495-504
    19. Nakamura S, Nishhura Y, Inogki K, et al., 1994. Inhibition of tumor cell growth by low-boiling-point saturated fatty acids isolated by molecular distillation and reversed phase liquid chromatography of uncytotoxic wool grease secreted from sheep sebaceous gland[J]. Cancer Biochem Biophys, 14(2) :113-121
    20. Rawal SK, Mehta AR, 1982. Changes in enzyme activity and isoperoxidases haploid tobacco callus during organogenesis[J]. Plant Sci, 24:66-67
    21. Ridgway PW, 1963. Molecular stills[M]. Lodon:Chapman and Hall:265-271
    22. Sanguk K, Wonyoung L, Sangdo Y, et al.,1996. Supercritical carbon dioxide extraction of Perilla oil [J]. Food and Biotechnology, 5(4) :300-304
    23. Scandalious JC, 1993. Oxygen stress and superoxide dismutases[J]. Plant Physiol, 101:7
    24. Schmidt S, 1970. Nuclei acid metabolism and flower bud development in apple (mauls domestic)[J]. Hort.Abst, 53(2) :80
    25. Sen Gupta A, Webb RP, Holaday AS, et al., 1993. Overexpression of superoxide dismutase protects plants from oxidative stress. Induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants[J]. Plant Physiol, 103:949
    26. Smirnoff N, Cumbes QJ, 1989. Hydroxyl radical scaveging activity of compatible solutes[J]. Phytochemistry, 28:1075-1060
    27. Srivastava HS, 1980. Regulation of nitrate reductase activity in higher plant[J]. Photochemistry, 19:725-733
    28. Stewartand RC, Bewley JD, 1980. Lipid peroxidation associated with accelerated aging of Soybean axes[J]. Plant Physiol, 65:245-248
    29. Siegel BZ, Galston AW, 1987. The isoperoxidase of Pisum sativum L[J]. Plant Physiol, 42:221-226
    30. Tomio N, Masahiro T, Hitoshi K, et al., 1991. Inhibitory effect of dietary perilla oil rich in the n-3 polyunsaturated fatty acid α-linolenic acid on colon carcinogenesis in rats[J]. Jap Cancer Res., 82(10) 1089-1096(Eng)
    31. Traitler H, Miyauchi DT, Sumerwed WN, et al., 1998. Fractionation of
    
    blackcurrant seed oil[J]. Am Oil Chem Soc, 65(5):755-760
    32. Yokochi T, Monica H, Meir S, et al., 1990. Increase in the γ-linolenic acid content by solvent winterization of fungal oil extracted from mortierella genus[J]. Am Oil Chem Soc, 67(11):846-851
    33.R.亨特著,陆宪辉译,1980.植物生长分析[M].北京:科学出版社:11-22
    34.丁宝莲,沈曾佑,张志良等,1982.烟草叶肉细胞壁POD同工酶的研究[J].植物生理学报,8(3):127-133
    35.上海植物生理学会编,1999.植物发育过程中组织和器官内几种同工酶的凝胶电泳分析.现代植物生理学实验指南[M].北京:科学出版社:263-266
    36.马焕普,1987.果树花芽分化与激素的关系[J].植物生理学通讯,(1):1-6
    37.王永奇,李滦宁,杨英华,1995.紫苏的研究Ⅺ,紫苏子的化学成分[J].中草药,26(5):236-238
    38.王世平,许明宪,孙云蔚,1989.苹果顶芽内源激素动态与成花关系的研究[J].果树科学,(3):137
    39.王威,李蔓杰,刘继华等,1999.紫苏子质量标准规范化的研究[J].中草药,30(4):267-268
    40.王映强,赖炳森,颜晓林等,1998.亚麻子油中脂肪酸组成分析[J].药物分析杂志,18(3):176-178
    41.王映强,赖炳森,颜晓林等,1998.气相色谱法测定紫苏子油中α-亚麻酸的含量[J].中国生化药物杂志,19(2):91-93
    42.王爱国,邵从本,罗广华,1986.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,(2):55-57
    43.王爱国,罗广华,1990.植物的超氧自由基与羟氨反应的定量关系[J].植物生理学通讯,(6):55-57
    44.王静珍,1997.紫苏与白苏药理作用的研究[J].中国中药杂志,22(1):48-51
    45.中华人民共和国卫生部药典编委会,1990.中华人民共和国药典:一部[M].北京:人民卫生出版社:364
    46.中国医学科学院药物研究所编,1978.薄层层析及其在中草药分析中的应用[M].北京:科学出版社:35-36;76-77;370-371
    47.中国科学院植物研究所植物化学研究室油脂组编,1973.中国油脂植物手册[M].北京:科学出版社:254-256
    48.邓烈,何绍兰,1994.柑桔花芽分化机理综述[J].中国柑桔,23(增刊):7-14
    49.冯武文,杨林于,宏奇,2000.一种新型分离技术——分子蒸馏技术[J].化工生产与技术,7(4):6-9
    50.白宝章,汤学军,1994.植物生理学测试技术[M].北京:中国科学出版社:75-77
    
    
    51.石万里,夏宜平,姚毓巯,1993.核酸蛋白代谢与菊花花芽分化的关系[J].园艺学报,20(1):99-100
    52.刘友良编著,1992.植物水分逆境生理[M].北京:农业出版社:66-67
    53.刘冬,石山,杨玉梅,1992.植物来源的ω-3脂肪酸——α-亚麻酸[J].中草药,23(9):495-496
    54.刘建仙主编,1996.功能性食品[M].北京:轻工业出版社:258-284
    55.刘继华,王威,黄莺等,1998.紫苏磷脂侧链脂肪酸组成的分析及含量的测定[J].中草药,29(11):743-744
    56.刘月秀,张卫民,1999.紫苏化学成分分析[J].广西植物,19(3):285-288
    57.刘月秀,张卫民,钱学射,1996.紫苏属植物的研究与利用[J].中国野生植物资源,15(3):24-27
    58.沈伟其,1988.测定水稻叶片叶绿体混合提取法[J].植物生理学通讯,(3):62-64
    59.沈德绪,林伯年,1989.果树童期与提早结果[M].上海:上海科学技术出版社:91-111
    60.朱世云,包宗宏,云志等,1997.尿素包合法富集鱼油中的EPA和DHA的研究[J].中国油脂,22(5):54-56
    61.朱丹,王世威,郭郦等,1997.苏子油中α-亚麻酸的纯化研究[J].中草药,28(6):342-343
    62.李天红,黄卫东,孟昭清,1996.苹果花芽孕育机理的探讨[J].植物生理学报22(3):251-257
    63.李天红,孟昭清,黄卫东,1995.红富士苹果花芽孕育时期的研究[J].北京农业大学学报,21(2):165-167
    64.李素芬,1994.苏子饼的饲用价值[J].饲养研究,(1):26-28
    65.吴少伯,1979.植物组织蛋白质及同工酶的聚丙烯酰胺凝胶盘状电泳[J].植物生理学通讯,(2):30-33
    66.吴颂如,陈婉芬,周燮,1988.酶联免役法(ELLSA)测定内源植物激素[J].植物生理学通讯,(5):53-57
    67.张士文,王海廷,汪清胤等,1987.酯酶同工酶与番茄杂交优势种关系的研究[J].园艺学报,14(2):108-113
    68.张卫民,刘月秀,王红,1998.紫苏子的化学成分研究[J].中国野生植物资源,17(1):42-44
    69.张太平,1997.黔南山区苏子种质资源研究[J].中国油料,19(1):67-68
    70.张龙翔,张庭芳,李令媛主编,1981.生化实验方法和技术[M].北京:人民教育出版社:278-284
    
    
    71.张志良著,1991.植物生理学实验指导(第二版)[M].北京:高等教育出版社:54-57
    72.张贵君主编,1993.常用中药鉴定大全[M].哈尔滨:黑龙江科学技术出版社:456-457
    73.张菊珍,董新炜,任国谱,1994.脲包法在酯类分离技术中的应用[J].中国油脂,19(6):40-43
    74.张燕平,张虹,王惟华等,1999.苏子油的精练及α-亚麻酸的纯化研究[J].中国粮油学报,14(1):40-43
    75.陈文麟,1992.紫苏油的特点及其利用[J].中国油料,(3):26-28
    76.陈立松,刘星辉,1998.水分胁迫下对荔枝叶片活性氧代谢的影响[J].园艺学报,25(3):241-246
    77.陈贵,张立军,1993.植物MDA含量单位与计算方法的一些问题[J].植物生理学通讯,29(3):361-363
    78.於新建,夏叔芳,1986.改良β-极限糊精法测定α-淀粉酶活力[J].植物生理学通讯,(4):63-65
    79.林红卫,周玉清,覃海错等,1999.从螺旋藻中分离和纯化γ-亚麻酸的方法[J].化学世界,32(9):464-466
    80.范文洵,1988.鱼油及其代谢产物EPA和DHA[J].生理科学进展,19(2):110-113
    81.周丹,1994.紫苏油对小鼠学习记忆力的影响[J].中草药,25(5):36-38
    82.胡能书,万贤国主编,1985.同功酶技术及应用[M].长沙:湖南科技出版社:64-67
    83.赵国林,周天林,1996.“葡萄状核桃”和普通核桃的过氧化物同工酶的比较研究[J].西北植物学报,16(4):372-377
    84.郭英,1996.紫苏油和松子油对大鼠机体脂类和脂质过氧化的影响[J].营养学报,18(3):78-79
    85.梁立峰,1982.植物激素与苹果的花芽分化[J].植物生理学通讯,(4):1-5
    86.徐章华,邵玉芬,1997.苏子油对大鼠血脂及血液流变性的影响[J].营养学报,19(1):11-15
    87.殷朝洲,1993.紫苏的种籽、茎叶营养[J].上海农业学报,9(1):13-15
    88.殷朝洲,李保存,朱来汀等,1990.紫苏的开发和利用[J].植物杂志,(4):18-22
    89.章文才主编,1997.果树研究法(第三版)[M].北京:中国农业出版社:136-142
    90.龚春晖,1993.分子蒸馏技术原理及应用[J].全国食品添加剂通讯,(2):31-33
    91.黄启飞,丁德蓉,1999.紫苏的研究进展[J].中国野生植物资源,18(2):12-15
    92.黄海,乔宪生,曹尚银,1986.关于苹果花芽生理分化时期的研究[J].园艺学报,13(3):181-183
    93.黄辉白,程洪,黄迪辉等,1991.柑橘促进与抑制成花情况下的激素与核酸代谢[J].园艺学报,18(3):198-204
    
    
    94.崔徵,吕忠恕,陆嘉陵,1986.第十二界国际生长物质会议简况[J].植物生理学通讯,(2):66-72
    95.辉国钧,葛发欢,王海波等,1996.超临界CO_2萃取工艺在紫苏子脂肪酸油提取中的应用研究[J].中国医药工业杂志,27(2):51-57
    96.程洪,黄辉白,1992.柑桔成花机理研究Ⅱ,与核酸代谢的关系.果树科学,9(2):70-76
    97.程家胜,1982.苹果过氧化物酶同工酶研究——新梢前期生长过程中过氧化物酶同工酶的表达[J].园艺学报,9(2):19-33
    98.简志英,陆嘉陵,蒋瑞君,1989.温度对赤霉素诱导α-淀粉酶的影响[J].植物生理学通讯,(5):44-46
    99.颜季琼译,1984.植物的生长和发育[M].北京科学出版社:233-255
    100.潘瑞炽,董愚得,1995.植物生理学(第三版)[M].北京:高等教育出版社:284-286
    101.樊继莲,许长成,赵世杰等,1997.紫苏叶片光合效率的日变化[J].作物学报,23(5):567-572
    102.魏决,肖青,1999.紫苏油成分的测定及开发利用[J].粮油食品科技,7(4):15-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700