离子交换树脂脱除高浓度磷酸钠溶液中钒(Ⅴ)铬(Ⅵ)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化工和冶金行业产生大量含钒铬废渣,这类废渣中通常含有钒、铬、磷等元素,若直接排放到环境中会造成水资源污染,及有价金属的浪费和水体富营养化。针对这一现象,本文通过对国内某企业的磷铁矿焙烧后产生的含钒、铬的磷酸钠废渣的综合利用研究,探索了一种利用离子交换树脂脱除并回收其中的钒、铬有价金属的方法,同时净化了磷酸钠。
     本文首先通过对多种型号树脂的交换容量和吸附效果比较,筛选出D301R大孔弱碱性阴离子交换树脂作为吸附材料,并对其吸附、解吸过程进行了系统研究。通过静态吸附行为的研究,主要考察了pH值、温度、固液比、转速等因素对钒铬吸附的影响,并从热力学和动力学方面对D301R树脂吸附钒、铬的过程进行深入分析。动态实验主要研究了实际料液在交换柱中的吸附工艺,在料液浓度、温度、停留时间、树脂床层高等因素的优化实验基础上设计了离子交换柱参数,并确定了两步解吸的工艺路线。另外,通过多轮的吸附-解吸-再生循环实验验证树脂的重复使用性能。
     静态实验研究结果表明:D301R树脂在pH=6.5,最佳固液比(即树脂质量:料液体积)为1:10,转速180 r/min条件下,钒(Ⅴ)、铬(Ⅵ)的去除效率分别可达60%、85%。热力学研究表明:D301R树脂对高浓度磷酸钠溶液中钒(Ⅴ)的吸附行为可用Langmiur和Freundlich等温方程描述,相关系数分别为0.9803和0.9761。吸附钒(Ⅴ)、铬(Ⅵ)的过程是自发过程(ΔG<0),熵变为负值(ΔS<0),均为放热过程(ΔH<0)。动力学研究表明D301R树脂对钒(Ⅴ)、铬(Ⅵ)的吸附交换在室温下是瞬时反应,符合二级吸附交换动力学过程。通过表观速率常数的拟合得到钒(Ⅴ)、铬(Ⅵ)的吸附交换过程的表观活化能分别为59.84J/mol,1183.33J/mol。动边界模型模拟和搅拌速度实验表明钒(Ⅴ)在D301R树脂上的吸附受颗粒扩散和化学反应联合控制,其中以化学反应控制为主;铬(Ⅵ)的吸附过程主要受颗粒扩散控制。
     动态的工艺实验表明:最佳工艺条件为,废渣料液浓度120 g/L、HRT=15 min,室温25℃,树脂床层体积为20mL(L/D=13)。解吸操作采用3mol/L的NaOH作为解吸剂,两步解吸的方式。经过十轮循环实验,钒和铬的吸附率分别基本稳定在90%、80%以上,解吸效率也分别保持在95%、90%左右,吸附和解吸性能没有明显改变。
     该工艺不仅可有效脱除并回收了钒(Ⅴ)、铬(Ⅵ)有价金属,成功净化了磷酸钠,提高了磷酸钠废渣的综合利用率及经济效益,最终达到清洁生产、环境保护和实现循环经济三者的统一。
Waste residue containing vanadium(Ⅴ) and chromium(Ⅵ) from phosphorus chemical and metallurgical industries, which usually contain vanadium, chromium, phosphorus and other elements. If directly discharged into the environment will cause water pollution, waste of valuable metals and entrophication. This paper deals with an economical, effective ion exchange method to removal and recover vanadium(Ⅴ) and chromium(Ⅵ), provides process parameters for comprehensive ultilization of sodium phosphate residue.
     In this paper, D301R macroporous weak base anion exchange resin was selected as a suitable adsorptive material based on study of ion exchange capacities, adsorptive effects, and elution processes systematically, focusing on the influential factors of adsorption temperature, pH value, solid-liquid ratio and stirring rate. The kinetics and thermodynamics behaviors of ion exchange were studied by static method. The adsorptive process in ion exchange column was studied by dynamic method with the practical, and then the optimal parameters of ion exchange column were determined on the basis of experiments on factors such as initial concentration of solution, temperature, contact time and resin bed volume, including two-step elution process. Furthermore, the repeatability of resin was also verified through ten cycles of dynamic experiments.
     The statics experiment results showed that with D301R resin at pH=6.5, room temperature, and ratio of resin to solution of 1:10, stirring rate of 180 r/min, removal rates of vanadium(Ⅴ) and chromium(Ⅵ) were 90% and 80% respectively. The thermodynamics research suggested that adsorption isotherms of Vanadium(Ⅴ) approximately fitted the Langmiur or Freundlich equation with the experimental range of concentration, the correlative coefficients were 0.9803 and 0.9761. The thermodynamic study showed that the adsorption of vanadium(Ⅴ) and chromium(Ⅵ) were spontaneous, and the entropy were negative. The adsorption of vanadium(Ⅴ) and chromium(Ⅵ) were exothermic process.
     Dynamic data from the static experiment indicate that adsorption of vanadium( V) and chromium(Ⅵ) were instantaneous reaction under the room temperature conditions. A second-order adsorption-ion exchange kinetic equation was developed for the process. The apparent activation energy of vanadium(Ⅴ) and chromium(Ⅵ) were 59.84J/mol and 1183.33J/mol respectively, according to fitting the apparent sorption rate constant. The moving boundary model and stirring rate indicated that the adsorption of vanadium(Ⅴ) was controlled by particle diffusion and chemical reaction and chrommm(Ⅵ) was controlled by particle diffusion.
     The optimal conditions were obtained by dynamic process tests which showed that residue concentration of 120g/L, HRT=15min, room temperature(25℃), resin bed volume of 20 mL(L/D=13). 3 mol/L NaOH was chosen as desorption agent by means of two-steps elution process. Ten cycles of dynamic experiments showed that, removal rates of vanadium(Ⅴ) and chromium(Ⅵ) were 90% and 80% respectively, and the desorptive rates were 95% and 90%,which showed the performance of vanadium(Ⅴ) and chromium(Ⅵ) were stable.
     This process not only removed and recovered the valuable metallic elements effectively, meanwhile, purified sodium phosphate, but also improved the ratio of resource comprehensive utilization. If this process widely used, it will improve on the technical process in phosphorus industry, result in great economic efficiency, as well as social and environment benefit, which is good to realize circulate economy.
引文
[1]Wayne E.Marshall,Lynda H.Wartelle.Chromate(CrO_4~(2-)) and Copper(Cu~(2+)) adsorption by dual-functional ion exchange resins made from agricultural by-products[J].Water Res.,2006,40:2541-2548.
    [2]宋晓明,杨健,王萍.废水除磷研究进展[J].福建环境,2003,20(6):33-35.
    [3]Tanada S,Kabayama M,Kawasaki N,et al.,Removal of phosphate by aluminum oxide hydroxide[J].Journal of Colloid and Interface Science,2003,257(1):135-140.
    [4]Jian Hu,Xuewen Wang,Liansheng Xiao,et al.,Removal of vanadium from molybdate solution by ion exchange[J].Hydrometallurgy.,2009,(95):203-206.
    [5]Biawas,R.K.,Wakihara,M.,Taniguchi,M.,Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst.Hydrometallurgy 14,219-230.
    [6]US EPA/625/R-00/005,In-situ treatment of soil and groundwater contaminated with chromium,Technical Resources Guide,United States Environmental Protection Agency.
    [7]R.J.Irwin,M.V.N.Mouwerik,L.Strvens,M.D.Seese,W.Basham,Environmental Contaminants Encyclopedia Chromium(Ⅵ)(Hexavalent Chromium) Entry,National Park Service Water Resources Divisions,Fort Collins,CO,1971.
    [8]林晓,曹宏斌,张懿.伯胺萃取Cr(Ⅵ)的光谱学研究.光谱学与光谱分析[J].2008,28(7):1518-1521.
    [9]Pengge Ning,Hongbin Cao,Chenming Liu,el al.Characterization and prevention of Ⅰnterfacial crud produced during the extraction of vanadium and chromium by primary amine[J],Hydrometallurgy,2009,97:131-136.
    [10]文喆.国外钒资源与钒产品的市场前景分析.世界有色金属,2001,No.11,7-8.
    [11]艾仕云.铬(Ⅵ)盐污染与代用品的开发.化学教育,1999,6:1-2.
    [12]熊家林.磷化工概论[M].北京:化学工业出版社,1994,63-66.
    [13]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985,1
    [14]Moslalyk R R,Alfantazi A M.Processing og Vanadium:A review[J].Mineral Engineering,2003,(16):793-805.
    [15]文友.钒的资源、应用、开发与展望[J].稀有金属与硬质合金,1996,124(3):51-55
    [16]文永植.钒抗糖尿病作用研究的最新动向[J].世界元素医学,2005,12(2):33-35
    [17]蒋优才.钒及其在陶瓷工业中的应用[J].陶瓷研究,1998,13(1):28-31
    [18]唐安平,秦毅红.钒酸铋颜料的制备研究[J].稀有金属,2003,27(1):199-201
    [19]Srivastava,A.K.,Anti-diabetic and toxic effects of vanadium compounds[J].Mol.Cell Biochem,2000,206:177-182.
    [20]Pope M T.et al.Clays and Clay Minerals,1968,22:527.
    [21]D.E.Kimbrough,Y.Cohen,A.M.Winer,L.Creelman,C.A.Mabuni,Critical assessment of chromium in the environment,Crit,Rev,Environ.Sci.Technol.1999,29(1):1-4
    [22]C.A.Kozlowski,W.Walkowiak,Removal of chromium(VI) from aqueous solution by polymer inclusion membrane[J],Water Res.2002,36:4870-4876.
    [23]Sibel Tunali,Iamail Kiran,Tamer Alar.Chromium(V[) biosoiption characteristics of Neurospora crassa fungal biomass[J].Minerals Engineering,2005,18:681-689.
    [24]Bai R S,Abraham T E Studies on chromium(Ⅵ) adsorption-desorption using immobilized fungal biomass[J].Bioresource Technology,2003,87:17-26.
    [25]Goyal N,Jain S C,Banerjee U C.Comparative studies on the microbial adsorption of heavy metals[J].Advances in Environmental Research,2003,7:311-319.
    [26]Prasad M N V,Freitas H.Removal of toxic metals from solution by leaf,stemand root phytomass of Quercus ilex L.(hollyyoak)[J].Environmental Pollution,2000,110:277-283.
    [27]Chandra Babu N K,Asma K,Raghupathi A,et al.Screening of leather auxiliaries for their role in toxic hexavalent chromium formation in leather-posing potential health hazards to the users[J].Clean Prod,2005,13(12):1189-1195.
    [28]陈瑞福.高浓度镀铬废水的处理研究[J].工业水处理,2000,20(11):16-17
    [29]潘留明.含铬废水的电化学法处理研究[D].武汉:武汉科技大学,2005.
    [30]陈鉴等.钒及钒冶金[M].1983.
    [31]谢景龙.钒业废水的六价铬治理[J].环境工程,2008,26(3):54-55.
    [32]M.Gheju,A.Iovi,Kinetics of hexavalent chromium reduction by scrap iron[J],Hazard.Mater.,2006(135):66-73.
    [33]李龙云.“化学法处理提钒废水回收钒铬工艺”,四川省冶金工业环保实用技术成果汇编[M].四川省金属学会环保学术委员会编,1992.
    [34]程正东.钒渣粒铁滚磨法连续处理酸性含钒含铬废水[P].中国专利,1035998A.1989-10-4.
    [35]BOSINCOS.Interaction mechanism between hexavalent chromium and corncob[J].Journal of Applied Polymer Science,2007,104(3):1964-1967.
    [36]Tan W T.Removal of chromium(Ⅵ) from solution by coconut husk palm pressed fibres[J].Environmental Technology,1993,14(3):277.
    [37]陈任翔.粉煤灰吸附法处理含铬废水[J].工业用水与废水,2006,37(5):47-49.
    [38]罗南,刘波,李国良等.活性氢氧化铁处理含钒废水的研究[J].四川环境,1989,8(1):39-48.
    [39]Acar,F.N.,Malkoc,E.The removal of chromium(Ⅵ) from aqueous solutions by Fagus orientalis L,Bioresourc.Technol.,2004,94:13-15.
    [40]Pumpel,T.,Schinner,F.Native fungal pellets as a biosorbents for heavy metals,FEMS Microbiological Review,1993,11:159-164.
    [41]Kratochvil,D.,Pimentel,P.,Volesky,B.Removal of trivalent and hexavalent chromium by seaweed biosorbent,Environ.Sci.Technol.,1998,32:2693-2698.
    [42]Y C Song.Influence of electron donor and toxic material on the activity of sulfate reduction bacteria for the treatment of electroplating wastewater[J].Water science &technology,1998,138:187-194.
    [43]柴立元,龙腾发,唐宁等.微生物治理碱性含铬废水的试验研究[J].2005,36(5):717-718.
    [44]官纯.微生物处理含钒废水中V~(5+)、Cr~(6+)的实验研究[J].四川冶金,2006,28(5):30-32.
    [45]马青兰,刘秀艳,吕俏.电镀六价铬废水的实用处理工艺研究及应用[J].环境污染及防治,2006,28(12):947-949.
    [46] 赵丽.电解还原法处理含铬废水[J].科技导报,2006,24(11):58-60.
    [47]Audran,J.,Baticle,P.,Letord,M.M.Recycling of Chromic Acid by Electro-Electrodialysis,Fifth World Filtration Congress,Nice,France,1990.
    [48]Roualdes,S.,Kourda,N.,Durand,J.,Pourcelly,G.Plasma-grafted PVDF polymers as anion-exchange membranes for the electrotransport of Cr(Ⅵ),Desalination,2002,146:273-278.
    [49]Lanmbert J.Treatment of solution containing trivalent chromium by electrodialysis[J].Desalination,2006,191(1):100-110.
    [50]李爱琴,唐宏建,王阳峰.环境中铬污染的生态效应及其防治[J].中国环境管理干部学院学报,2006(1):74-77.
    [51]Deleon A.,Proceeding of the Second International Symposium of ICSOBA[C],Moscow Russian,1971,3:359.
    [52]杜昌顺,管志远,任钟旗等.低浓度含铬废水萃取分离的研究[J].北京化工大学学报,2007,34(2):113-116.
    [53]Bin Zhiyong.Study on Extraction of V2O5 from Ore by Roasting and Acid Leaching Process[J].Iron Steel Vanadium Titanium,2006,27(1):21-26.
    [54]黄渭澄.电镀三废处理[M].成都:四川科技出版社,1983:445-447.
    [55]李响,魏荣卿,高展,等.三甲铵型阴离子交换树脂的制备及其对Cr(Ⅵ)的吸附性能[J].过程工程学报,2008,8(3):494-498.
    [56]Jian Hu,Xuewen Wang,Liansheng Xiao,et al.,Removal of vanadium from molybdate solution by ion exchange[J].Hydrometallurgy.,2009,(95):203-206.
    [57]何炳林,黄文强.离子交换与吸附树脂.上海:科技教育出版社,1991.
    [58]Darfner,K.,Ion Exchangers,Ann Arbor Science Publishers,Ann Arbor,1972,44-48.
    [59]王方编译.当代离子交换技术.北京:化学工业出版社,1993.
    [60]金天然.组合式一体化处理电镀废水技术[J].环境保护,2001(1):21,29
    [61]张云祥.大孔离子交换树脂在废水处理终端中应用探讨[J].净水技术,2001,20(2):34-36.
    [62]黄瑞光.世纪电镀废水治理的发展趋势[J].电镀与精饰,2001,23(4):12-16.
    [63]李庆伦.日本电镀废水处理现状[J].工业水处理,1990,10(6):7-8
    [64]吴克明等,反应柱树脂法处理含铬废水的研究,给水排水动态,2005,1.
    [65]符迈群等,铵盐沉钒废水中的钒(v)铬(Ⅵ)回收[J],水处理技术,1984(03).
    [66]Ganlan,B.,Castaaeda,D.,Ortiz I.Removal and recovery of Cr(Ⅵ) from polluted waters:a comparative study of ion-exchange technologies,Water Res.,2005,39:4317-4324.
    [67]王菲,王连军,李健生,等.大孔螯合树脂对Pb2+的吸附行为及机理[J].过程工程学报,2008,8(3):466-471.
    [68]李响,魏荣卿,高展,等.三甲铵型阴离子交换树脂的制备及其对Cr(Ⅵ)的吸附性能[J].过程工程学报,2008,8(3):494-498.
    [69]Herry P,et al.Selective separation of canadium from molybdenum by electrochemical ion exchange[J].Hydrometallurgy,1998,48(1):73.
    [70]Hu J,Wang X W,Xiao L S,et al.Removal of Vanadium from Molybdate Solution by Ion Exchange[J].Hydrometallurgy,2009,(95):203-206.
    [71]Zhu Z L,Ma H M,Zhang R H,et al.Removal of Cadmium Using MnO_2 Loaded D301Resin[J].Environ Sci.,2007,19:652-656.
    [72]李青刚.从钼酸铵溶液中分离去除钒的净化方法[P].中国专利:200510136644.4,2006-6-28.
    [73]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002:346-349.
    [74]曾添文,戴文灿,张志,等.离子交换树脂对钒(Ⅴ)交换性能的研究[J].离子交换与吸附,2002,18(5):453-458.
    [75]王永江,沈秋仙,熊春华.D301R树脂对铬(Ⅵ)的吸附性能研究[J].上海环境科学, 2002,21(10):614-616.
    [76]王方主编.国际通用离子交换技术手册.北京:科学技术文献出版社,2000.
    [77]姜志新,宋正孝.离子交换分离工程.天津:天津大学出版社,1992.
    [78]Dionex,Determination of Cr(Ⅵ) in water,wastewater and solid wasteextracts,Technical Note 26 LPN 34398-011M7/96,Dionex Corporation,1996.
    [79]Pope M.T.,et al.,Clays and Clay Minerals[J],1968(22):527.
    [80]丁云,廖学品,石壁.胶原纤维固载Fe(Ⅲ)对磷酸根的吸附特性[J].化工学报.2007,58(5):1225-1230.
    [81]Shi T H,Wang Z C,Liu Y,et al.Removal of hexavalent chromium from aqueous solution by D301,D314 and D354 anion-exchange resins[J],Hazard Mater.2009,161(2):900-906.
    [82]Gode F,Pehlivan E.Removal of Chromium(Ill) from Aqueous Solution Using Lewatit S100:The effect of pH,Time,metal Concentration and Temperature[J],Hazard Mater,2006,136:330-337.
    [83]何仕均,赵璇,叶裕才等.利用弱碱阴离子交换树脂去除饮用水源中的微量铬(Ⅵ)[J].清华大学学报(自然科学版),2002,42(5):662-664.
    [84]Ho Y.S.,Ng J.C.Y.,Mckay G.Kinetics of pollutant sorption by biosorbents[J].Separ.Purif.Methords,2000,29(2):189-232.
    [85]朱文涛.物理化学(下册).北京:清华大学出版社 1995.
    [86]孙健程.D201离子交换树脂分离钒、磷、硅的应用基础研究[D].湖南:中南大学矿物加工工程,2008.
    [87]Schmuckler G,Nativ M,Goldstein S,Kinetics of Shell Progressive Reactions in Ion Exchange Resins on the Theory and Practice of Ion Exchange[J].Cambridge,1976.25-30
    [88]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:346-349.
    [89]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:398-400.
    [90]钱庭宝.离子交换剂应用技术[M].天津:科学技术出版社,1984:171-172.
    [91]何仕均,赵璇,叶裕才等.利用弱碱阴离子交换树脂去除饮用水源中的微量铬(Ⅵ)[J].清华大学学报(自然科学版),2002,42(5):662-664.
    [92]马荣骏.离子交换在湿法冶金中的应用[M].北京:冶金工业出版社,1991:164-168.
    [931 王凯荣,Selim H.M,朱端卫.钒和磷在土壤中的竞争吸附与迁移特性研究[J].农业环境科学学报,2003,22(5):536-540.
    [94]姜浩,廖立兵,王军玲等.磷酸根、铬酸根离子在低聚合羟基铁离子-蒙脱石复合体系中竞争吸附行为的实验研究[J].2004,24(1):33-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700