微乳液提取铝酸钠溶液中钒的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文论述了铝酸钠溶液体系中,微乳液法萃取钒的机理,考察了N263/异戊醇/煤油/氢氧化钠溶液反胶束微乳液体系对铝钒的分离效果,并逐一量化影响因素,N263浓度、助表面活性剂异戊醇浓度、内水相碱浓度、水乳比R、料液碱度、萃取温度、搅拌强度和萃取时间。通过正交实验得到最佳萃取工艺条件。萃取后的微乳液中含有铝杂质,实验通过洗涤工艺除铝,考察了萃洗液成分浓度、相比、洗涤温度、搅拌强度、洗涤温度、洗涤时间因素对铝洗脱率的影响,确定了最佳洗涤工艺。同时还对富钒微乳液进行了破乳反萃研究,通过单因素优选法确定了破乳和反萃的最佳工艺条件。
     结果表明:在萃取试验中,当含钒铝酸钠料液成分为Al2O3浓度为20.4g/L、Na2O浓度为14.88g/L、V2O5为1g/L时,正交试验得出微乳液萃取提钒的最佳工艺为:表面活性剂N263浓度为10%、助表面活性剂异戊醇浓度为20%,水乳比为3、内水相氢氧化钠浓度为0.4mol/L,萃取时间为3min、搅拌强度为200r/min、萃取温度为50℃,钒的萃取率达到了85%,钒铝的分离系数为65,萃取后微乳液中V2O5的浓度为2.560g/L、Al2O3的浓度为1.642g/L。
     在洗涤试验中,得到的洗涤铝的最佳工艺条件是:萃洗液为4g/L NaOH和3g/L V2O5、微乳液与萃洗液体积比为3、洗涤时间为6min、搅拌强度为200r/min、洗涤温度为40℃、铝的洗涤率达到了99.5%,洗涤后水相中Al2O3的浓度为4.9g/L,V2O5的浓度为0.645g/L,可以直接回萃取阶段重新萃取,洗涤后微乳液中Al2O3的浓度8mg/L,V2O5的浓度为3.450g/L。
     在反萃试验中,得出的反萃和破乳最佳工艺条件是:反萃剂为1.0mol/L NaOH+0.6mol/L NaCl,反萃时间为3min,反萃温度为60℃,微乳液与反萃液体积比为6。反萃得到的反萃液中V2O5的浓度为20.7g/L,Al2O3的浓度为36mg/L。
The principle of microemulsion solution extracting vanadium from sodium aluminate solution was discussed in this paper. In microemulsion solution system of N263- isoamyl alcohol- kerosene-sodium hydroxide, the effects of many factors, such as the concentration of N263, the concentration of cosurfactant isoamyl alcohol, the concentration of alkali in internat water phase, the volume ratio of aqueous to microemulsion(R), the concentration of alkali of feed liquid, temperature, agitation intensity and extraction time, on the separation of aluminium and vanadium, were explored, and optimum conditions were obtained by orthogonal experiment method. The microemulsion after extraction contains impurity of aluminum, which was removed through abstersion. The effects of the concentration of extract component, ratio of microemulsion to the water volume, temperature, agitation intensity and abstersion time on the aluminum removal was studied and the optimum conditions were obtained. And the back extraction vanadium from vanadium-riched microemulsion was also explored and the optimum conditions were ascertioned through single factor selecting method.
     The results as follows:
     In extraction experiments, on conditions that the concentration of Al2O3, Na2O and V2O5 were 20.4g/L, 14.88g/Land 1g/L respectively in sodium-aluminate-vanadate solution, the optimum conditions were as follows: the concentration of surfactant N263 and cosurfactant isoamyl alcohol were 10% and 20% respectively, the volume ratio of aqueous to microemulsion(R) was 3, the concentration of alkali in internat water phase is 0.4mol/L, extraction time was 5 minutes, agitation intensity was 200 r/min and the temperature was 50℃. The extraction rate of vanadium reached 85%, and the separation coefficient of vanadium and aluminum was 62. The concentration of vanadium and Al2O3 in organic phase after extration were 2.560 g/L and 1.642 g/L respectively.
     In abstersion experiments, the optimum conditions of removing aluminum were as follows: the extraction wash solution contained 4g/L NaOH and 3 g/L V2O5, the volume ratio of microemulsion and wash solution was 3, time was 6 minutes, agitation intensity was 200 r/min and the temperature was 40℃. The aluminum abstersion rate reached 99.5%. The concentration of Al2O3 and V2O5 after abstersion were 4.9g/L and 0.645g/L respectively in aqueous phase, which can be returned to re-extraction in the process of extration. And contrastively the concentration of Al2O3 and V2O5 after abstersion were 8 mg/L and 3.450 g/L respectively in microemulsion.
     In back-extraction experiments, the optimum conditions of back-extract vanadium were as follows: back-extraction solvent was consisted by 1.0mol/LNaOH and 0.6mol/LNaCl, back-extraction time was 3min,temperature was 60℃, the volume ratio of microemulsion to back-extraction solution was 6. The concentration of Al2O3 and V2O5 were 36mg/L and 20.7g/L respectively in back-extraction solution.
引文
[1]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985
    [2]刘世友.钒的应用与展望[J].稀有金属与硬质合金,2000(141):58~61
    [3]黄道鑫等.提钒炼钢[M].北京:冶金工业出版社,2000:1~2
    [4]任学佑.稀有金属钒的应用现状及市场前景[J].稀有金属,2003.27(6):809~8l2
    [5]漆明鉴.从石煤中提钒现状及前景[J].湿法冶金,1999,(72):l~10
    [6]陈厚生.中国钒工业的创建和发展[J].钒钛,1992(6):25~28
    [7]谭若斌.国内外钒资源的开发利用[J].钒钛,1994(5,6):4~11
    [8]锡淦,雷鹰,胡克俊等.国外钒的应用概况[J].有色金属,2000(2):13~21
    [9] Fetisov A A , II IN V l , Kiriehkov A A , Kuzovkov A J A.Method of Smeltinglow-carbon vanadium-containing steel of inereased strength and cold resistance[P].Uited States,RU2186125,2002-07-27
    [10]胡木成,张革.钒市场[J].科技日报, 2001-07-20
    [11] Reichman Steven H(US), Kosin JohnE(US), Meyerink James F(US).Tittanium-aluminum-vanadium alloys and products made using such alloys[P].United States,US6053993,2000-04-25
    [12]于兴哲,宋月清,崔舜等.钒基合金的研究现状和进展[J].材料开发与应用,2006,12:36~4
    [13] Lipamikov V N,Ettmayer P. Effeet of Vacaney Ordering on Strueture and some Properties of ranadium Carbide[J].14th Intemational Plansee Seminar,97,12~16
    [14]褚德成,姚立为.全钒氧化还原贮能电池制备方法的研究[J].应用能源技术,2000,(2):13~14
    [15]李华,常守文,严川伟.全钒氧化还原液流电池中电极材料的研究评述[J].电化学,2002,8(3):257~261
    [16]文永植.钒抗糖尿病作用研究的最新动向[J].世界元素医学,2005,12(2):33~35
    [17]王传旺,陶春元.钒的有机配合物及其抗糖尿病活性[J].江西化工,2004(2):9~14
    [18]蒋优才.钒及其在陶瓷工业中的应用[J].陶瓷研究,1998,13(l):28~31
    [19]张强,胡善洲,周学东.钒-锆蓝陶瓷色料的制备及其性能[J].陶瓷工程,2000(3):14~16
    [20] Elemer,Papp.用拜耳法生产氧化铝时回收铝土矿中稀有元素的可能性[J].国外轻金属,1964(4)
    [21]甘国耀等.轻金属[M].1984,NO.8,13~15
    [22] Mahanly,M. S.Chemical Abstracts[J].Vol.69.NO.2, 1968~8334
    [23]杨重愚.氧化铝生产工艺学[M].冶金工业出版社,1982,329
    [24] Mukherjee T K,Chakraborty S P,Bidaye A C,et a1.Recovery of Pure Vanadium Oxide from Bayer Sludge[J].Miner.Eng,1990,3(3/4):345~353
    [25] Mukherjee T K,Gupta C K.Extraction of Vanadium from an Industrial Waste[J].High Temp.Mater.Processes,1993,11(1/4):189~205
    [26] Mehra O K, Gupta C K.On the Aluminothermic Reduction of Calcium Vanadate[J].Metall.Trans.,1977,88:683~85
    [27] Pattnaik S P,Mukherjee T K.Ferrovanadium from a Secondary Source of Vanadium[J].Metal1.Trans.,1983,14B:133~136
    [28] H.Watarai,Microemulsions in separation scienees[J].Chromatogr.A,780(1997):93~102
    [29] T.P.Hoar and J.H,Schulan,Transparent water-in-oil disPersions:the oleo Pathiehydro-mieelle[J].Nature,1943,152:102~103
    [30] J.H.Schulman,W. Stoeekenius and L.M.Prince,Meehanism of formation and Strueture of mieroemulsions by eleetron mieroseopy[J].Phys.Chem.,63:1677~1680 (1959)
    [31]崔正刚、殷福珊.微乳化技术及应用[M].北京:中国轻工业出版,1999,306~311
    [32]郭荣.微乳液特性与应用[M].江苏化工,1959,4:14~17 [33l赵国玺,朱王步等.表面活性剂作用原理[M].北京:中国轻工业出版社,2003,Chap.12,P. 620~621
    [34] Moulik S P,Paul B K.Structure,dynamics and transport properties of microemulsions[J].Adv.Colloid Interface Sci.,1998(78):l40~l41
    [35] Tondre C,Hebrant M.Micellar and microemulsion systems to perform heterogeneous reactions,biphasic extraction and solute transport[J].molecular liquids,1997(72):279~294
    [36] Hebrant M,Provin C,Brunette J P,et a1.Micellar extraction of europium(Ⅲ) by a bolaform extractant and parent compounds derived from 5-pyrazolone [J].colloids and surfaces,A:physicochemical and engineering aspects,2001(181):225~236
    [37] Tondre C,Xenaklis A.Use of microemulsion as Liquid membranes [J].Faraday Discuss Chem Soc.,1984(77):1l5~126
    [38] Bausch T E,P1ucinski P,Nitsch W.Kinetics of the re-extraction of hydrophilic solutes out of AOT-reversed micelles[J].colloid and interface sci.,1992(151):226~234
    [39] Plucinski P,Nitsch W.Mechanism of mass transfer between aqueous phase and water-in-oil microemulsion[J].Langmuir,1994(10):371~376
    [40] Wiencek J M,Qutubuddin S.Microemulsion liquid membranesⅡ.Copper ion removal from buffered and unbuffered aqueous feed[J].Sep.Sic.Techno1.,1992,27(11):1408~1422
    [41] Wiencek J M,Qutubuddin S.Microemulsion liquid membranes I.Application to acetic acid removal from water[J].Sep.Sci.Tech.,1992,27(10):1211~1288
    [42] Vijayalakshmi C S,Annapragada A V,Gulari E.Equilibrium extraction and concentration of multivalent metal ion solutions by using WinsorⅡmicroemulsions[J].Sep.Sci.Techno1.,1990,25(6):717~727
    [43] Vijayalakshmi C S,Gulari E.Extraction of trivalent metals and separation of binary mixture of metals using WinsorⅡmicroemulsions systems[J].Sep.Sci.Techno1.,1992,27(2):173~198
    [44] Osseo-Asare K.Enhanced solvent extraction with water-in-oil microemulsion[J].Sep.Sci.Techno1.,1988,23(12&13):1269~1284
    [45] Ovejero-Escudero F J,Angelino H,Casamatta G.Microemulsions as adaptive solvents for hydrometallurgical purposes:a preliminary report[J].J Dispersion Sci.Techne1.,1987,8(1):89~108.
    [46]徐光宪,袁承业.稀土的溶剂萃取[M].北京:科学出版社,1987,1:151~172
    [47]韩立新,李克安,童沈阳.W/O型微乳状液迁移和富集痕量金属离子Cd2+、Cr3+的研究[J].高等学校化学学报,1998,(8):1236~1238
    [48]朱霞石,张晓红,范国康等.Triton X-100微乳液体系中铁的萃取与分离[J].应用化学,2001,18(2):149~151
    [49]曾平,雷昱,王桂庆.NH3·H2O皂化P204/煤油体系微乳液溶水性能及其对V(IV)的萃取研究[J].膜科学与技术,1998,18(5):19~23
    [50]龚福忠,李成海,马培华等.微乳液膜法萃取钕[J].化工学报,2003,Vo1.54 (11):1569~1574
    [51]刘波,冯光熙,黄祥玉.用N-263从钒溶液中回收钒[J],化学研究与应用,2003,15(1)1004~1656

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700