掺杂二氧化钒超细粉体的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钒(VO2)是一种具有相变性质的金属氧化物,其相变温度为68℃,相变前后结构的变化导致其产生对红外光由透射向反射的可逆转变,人们根据这一特性将其应用于制备智能控温薄膜领域。目前,相关方面的研究集中在通过溅射法、沉积法或溶胶——凝胶法等直接制备VO2无机薄膜,但制膜设备及原料价格昂贵,成膜面积小,不适合规模化生产。而细粒度的VO2粉体由于显著减少材料相变时的应力,并且随着粒度的减小,光透过率增加,将其加入到有机高聚物中制备的VO2有机复合薄膜则能够克服无机膜的上述缺陷,具有相当广泛的应用前景。但是,有关基于VO2粉体的有机薄膜的报道甚少,主要表现在缺少具有低温相变功能的VO2超细粉体的工业化制备方法,并且在粉体改性方面研究不足。本论文采用高温熔融的方法实现了对VO2粉体有效掺杂,将其相变温度降至室温附近,并且通过共沸蒸馏的方法解决了溶胶—凝胶过程中的粉体硬团聚问题,制备出具有低温相变性能的V02超细粉体。为了改善粉体与有机介质的相容性,还尝试了对VO2粉体进行表面改性。本文主要研究内容、方法和结果如下:
     1实验研究了不同掺杂剂对VO2粉体相变性能的影响。采用五氧化二钒(V2O5)与掺杂剂高温熔融、水淬的方法进行掺杂,再将得到的溶胶干燥后还原即制备出掺杂VO2粉体。通过选取不同的含钨的化合物作为钨掺杂剂,利用XRD、DSC、XPS、SEM等手段对掺杂VO2粉体的性能进行表征和分析,发现钨酸钠的掺杂效果在选用的含钨化合物中最好,平均每加入1at.%(与钒元素的摩尔质量比)的钨酸钠,VO2相变温度降低32℃。另外,选取钼酸钠作为掺杂剂对比不同掺杂元素的影响效果,结果表明平均每加入1at.%的钼酸钠,VO2相变温度降低20℃。
     2研究了采用共沸蒸馏法制备掺杂对VO2粉体相变性能的影响。通过改进上述工艺,在溶胶干燥之前选择正丁醇作为共沸溶剂进行共沸蒸馏,避免了颗粒硬团聚问题的产生,制备出尺寸较小、粒径分布较窄的VO2超细粉体。经过比较发现,采用共沸蒸馏法制备的掺杂钨酸钠或钼酸钠的VO2粉体的相变温度降低的幅度低于未进行共沸蒸馏的粉体,但相变焓值却增了一倍多。另一方面,通过改变共沸蒸馏后的V2O5粉体的煅烧温度,发现粉体形貌由颗粒状转变为纳米棒状,实现了具有一定形貌的V2O5粉体的可控合成。
     3初步研究了有关VO2粉体表面改性的方法。采用两种不同的途径对VO2粉体进行表面改性:(1)先以正硅酸乙酯(TEOS)为原料对粉体进行SiO2无机包覆,再与硅烷偶联剂反应,实现无机/有机双重包覆;(2)尝试用聚丙烯酰氯、聚乙二醇对粉体进行表面接枝改性。
Vanadium dioxide (VO2) is one kind of metallic oxide with thermochromism property at phase transition temperature of 68℃. It can alter infrared transmittance by transforming crystal structure reversibly when phase transition occurs, that characteristic is applicable to prepare intelligent temperature-control films. At present, the research about relevant issues is focused on preparation of VO2 inorganic films though Sputtering, CVD, sol-gel, and so on. However, these methods need expensive instrument and raw material, besides the area of the films is limited, so that they are not suitable for large-scale production.
     It was reported that ultrafine powder of VO2 is capable of lessening the stress caused by the phase transition and to make light transmittance improved. The hybrid films made by adding the fine particle of VO2 to the polymer are able to overcome defects in VO2 inorganic films, which have infinite potential in application. Yet, there is seldom research on that field, because it's lacking in mass production of VO2 ultrafine powder which possess the function of phase transition at low temperature, as well as the powder surface modification technique.
     In this dissertation, the VO2 was doped effectively to low the phase transition temperature via sol-gel method, combining with the azeotropic distillation procedure thermochromism VO2 micro powder were successfully synthesized, simultaneously we had tried to modify the powder in order to improve the compatibility between the inorganic particles and polymer. The primary contents, methods and results are as follows:
     1. Research on the VO2 phase transition properties doped by some different dopants. In this experiment, Vanadium pentoxide(V2O5) was doped by dopant through the elevated temperature fusion process, the result doped VO2 powder were achieved after reduced V2O5 by ammonia. By selecting different tungsten compounds as tungsten dopant, the performance of doped VO2 were characterized by means of XRD、DSC、XPS、SEM and so on, it was found that the powder doped by sodiumtungstate(Na2WO4) showed the best effect, the phase transition temperature of VO2 is decreased by 32℃with only lat.% Na2WO4 doped. Sodium molybdate (Na2MoO4) was chosed as molybdenum dopant, the phase transition temperature is reduced by 20℃with lat.% Na2MoO4 doped.
     2. Effect of azeotropic distillation on the phase transition behavior and powder morphology of doped VO2 powder had been investigated. The doped VO2 powder which has small size and good distribution was successfully prepared by an improved azeotropic distillation processing, which prevented the formations of agglomeration. With comparison, the reduced rate of phase transition temperature of VO2 doped by Na2WO4 or Na2MoO4 prepared by azeotropic distillation method were lower than the rate of which without azeotropic distillation, however, the enthalpy value has increased the more than doubled. On the other hand, the V2O5 nanorods were formed through changing calcination temperature growth from the nanocrystalline phase created after azeotropic distillation.
     3. Preliminary studies on VO2 powder surface modification method. Two different ways were used for VO2 powder surface modification:(1)Inorganic/organic surface treatment. First, the particle was coated by silica via hydrolysis of tetraethoxy silane(TEOS), and then modified by silane coupling agent. (2) Poly (acryloyl chloride) and poly (ethylene glycol) was covalently grafted onto the surface.
引文
[1]廖世明,柏谈论.国外钒冶金(第1版)[M].北京.冶金工业出版社.1985.
    [2]黄道鑫.提钒炼钢(第1版)[M].北京.冶金工业出版社.2000.
    [3]大连理工大学无机化学教研室.无机化学[M].北京.高等教育出版社.
    [4]Cocciantelli J M, Gravereau P, Doumerc J P, et al. On the preparation and characterization of a new polymorph of V205[J]. Journal of solid state chemistry, 1991,93,497-502.
    [5]Livage J. Interface properties of vanadium pentoxide gels[J]. Mater. Res. Bull., 1991,26,1173-1180.
    [6]Yin D, Xu N, Zhang J, et al. High quality vanadium dioxide films prepared by an inorganic sol-gel method[J]. Mater. Res. Bull.,1996,31(3):335-340.
    [7]Pelletier O, Davidson P, Bourgaux C, et al. A detailed study of the synthesis of aqueous vanadium pentoxide nematic gels[J]. Langmuir,2000,16(12):5295-5303.
    [8]Chandrappa G T, Steunou N, Livage J. Materials chemistry:Macroporous crystalline vanadium oxide foam[J]. Nature,2002,416,702.
    [9]Vigolo B, Zakri C, Nallet F, et al. Detailed study of diluted V2O5 suspensions[J]. Langmuir,2002,18(24):9121-9132.
    [10]Hanlon T J, Walker R E, Coath J A, et al. Comparison between vanadium dioxide coatings on glass produced by sputtering alkoxide and aqueous sol-gel methods[J]. Thin Solid Films,2002,405,234-237.
    [11]郭丽,吴益华,鲁宇浩.锂蓄电池正极材料V2O5干凝胶的研究进展[J].电源技术,2003,27(6):558-562.
    [12]Parent M J, Passerini S, Owens B B, et al. Composites of V2O5 aerogel and nickel fiber as high rate intercalation electrodes [J]. J. Electrochem. Soc.,1999,146(4): 1346-1350.
    [13]Le D B, Passerini S, Guo J, et al. High surface area V2O5 aerogel intercalation electrodes[J].J. Electrochem. Soc.,1996,143(7):2099-2104.
    [14]Zhang F, Passerini S, Owens B B, et al. Nanocomposites of V2O5 aerogel and RuO2 as cathode materials for lithium intercalation [J]. Electrochem. Solid-State Lett., 2001,4(12):A221-A223.
    [15]Coustier F, Passerini S, Smyrl W H. A 400mAh/g aerogel-like V2O5 cathode for rechargeable lithium batteries [J]. J. Electrochem. Soc,1998,145(5):L73-L74.
    [16]Giorgetti M, Mukerjee S, Passerini S, et al. Evidence for reversible formation of metallic Cu in Cu0.1V2O5 xerogel cathodes during intercalation cycling of Li+ ions as detected by X-ray absorption spectroscopy[J]. J. Electrochem. Soc,2001,148 (7):A768-A774.
    [17]Georgette M, Passerine S, Smyrl W H, et al. In situ X-ray absorption spectroscopy characterization of V2O5 xerogel cathodes upon lithium intercalation [J].J. Electrochem. Soc.,1999,146(7):2387-2392.
    [18]王海滨,刘树信,霍冀川.无机热致变色材料的研究及应用进展[J].中国陶瓷,2006,42(4):11-13
    [19]Griffiths C H, Eastwood H K. Infulence of stoichiometry on themetal-semiconduc tor transition in vanadium dioxide[J]. J. Appl. Phys.,1974,45(5):2201-2206.
    [20]Morin F J. Oxide which show a metal-to-insulator transition at the neel temperature [J]. Phys. Rev. lett.,1959,3:34-36.
    [21]马红萍.掺杂VO2薄膜的相变机理和研究进展[J].人工晶体学报,2003,32(4):366-370
    [22]Goodenough J B. The two components of the crystallographic transition in VO2[J]. Solid State Chem,1971,3:490-450
    [23]Haras A, Wiko M. Electronic properties of the VO2(011) surface:density functional cluster calculations[J]. Surface Science,2001,491:77-87
    [24]Yoshio 0, Takeshi Y. Powder X-Ray crystal structure of VO2(A) [J]. Journal of solid state chemistry,1990,86:116-124
    [25]陈长琦,方应翠,朱武等.二氧化钒相变分析及应用[J].真空,2001,12(6):9-12.
    [26]P.哈森.材料的相变.北京:北京科学出版社,1998.
    [27]张青莲.无机化学丛书,第八卷.北京:科学出版社,1998年.
    [28]XU G, JIN P, TAZAWAM, et al. Optimization of antiref lection coating for V02 based energy efficient window[J]. Sol Energy Mater Sol Cells,2004,83(1):29-37.
    [29]陈学荣,胡军志,韩文政.VO2薄膜的结构、光学特性及其应用研究进展[J].材料导报.2007,21(11):
    [30]卢勇,林理彬,邹萍等.价态和结构对VO2薄膜热致相变光电性能的影响[J].人工晶体学报,2001,30(2):185-191.
    [31]卢勇,林理彬.真空还原制备的VO2热致相变薄膜.Raman光谱和红外光谱研究[J].功能材料,2001,32(6):657-659.
    [32]王静,何捷,刘中华.关于退火温度对VO2薄膜制备及其电学性质影响的研究[J].四川大学学报(自然科学版),2006,43(2):365-370.
    [33]刘向,崔敬忠,梁耀廷等.掺钨二氧化钒薄膜的制备与分析[J].真空与低温,2004,10(2):85-88.
    [34]Burkhardt W, Christmann T, Meyer B K, et al. W-and F-doped V02 films studied by photoelectron spectrometry[J]. Thin Solid Films,1999,345:229-235.
    [35]Burkhardt W, Christmann T, Franke S, et al. Tungsten and fluorine co-doping of V02 films[J]. Thin Solid Films,2002,402:226-231.
    [36]Tazawa M, Jin P, Tanemure S. Optical constants of V1-xWxO2 films [J]. Applied Optical,1998,37(10):1858.
    [37]Jin P, Tanemura S. V1-xMoxO2 thermochromic films deposited by reactive magnetron sputtering[J].Thin Solid Films,1996,281-282:239-242.
    [38]徐时清,赵康,谷臣清等.掺杂V02相变薄膜的电阻突变特性研究[J].硅酸盐学报,2002,30(5):637-640.
    [39]徐时清,赵康,马红萍.掺杂VO2薄膜的相变机理和光电特性研究[J].人工晶体学报. 2002,31(5):472-477.
    [40]徐时清.二氧化钒纳米粉末和掺杂薄膜的制备及光电特性研究:(硕士学位论文).西安:西安理工大学,2002.
    [41]颜家振,张月,刘阳思.掺钨VO2薄膜制备及其热致相变特性研究[J].稀有金属材料与工程,2008,38(9):1648-1651.
    [42]Mai L Q, Hu B, Hu T, et al. Electrical property of Mo-doped VO2 nanowire array film by melting-quenching sol-gel method[J].J. Phys. Chem. B,2006,110(39):19083-19086.
    [43]Hanlon T J, Coath J A, Richardson M A. Molybdenum-doped vanadium dioxide coatings on glass produced by the aqueous sol-gel method[J]. Thin Solid Films,2003,436:269-272
    [44]周少波,王双保,陈四海等.新型VO2相变薄膜的制备[J].纳米材料与结构,2004,9:29-32.
    [45]Pan Mei, Zhong Hongmei, Wang Shaowei, et al. Properties of VO2 thin film prepared with precursor VO(acac)2[J]. Journal of Crystal Growth,2004,265:121-126.
    [46]Lu Songwei, Hou Lisong, Gan Fuxi. Surface analysis and phase transition of gel-derived VO2 thin films[J].Thin Solid Films,1999,353:40-44.
    [47]丰世凤,宁桂玲,王舰.二氧化钒薄膜制备研究的最新进展[J].化工进展,2007,26(6):814-818.
    [48]Troy D Manning, Ivan P Parkin. Christopher Blackman, et al. APCVD of thermo-chromic vanadium dioxide thin films solid solutions V2MxO2(M=Mo, Nb) or composites VO2:SnO2[J]. Journal of Materials Chemistry,2005,15:4560-4566.
    [49]Troy D Manning, Ivan P Parkin, Martyn E Pemble, et al. Intelligent window coat-ings: atmospheric pressure chemical vapour deposition of tungsten-doped vanadium dioxide[J].Chem. Mater.,2004,16:744-749.
    [50]Ivan P. Parkin, Troy D. Manning. Intelligent thermochromic windows[J].Journal of Chemical Education,2006(83):393-399.
    [51]Sahana M B, Dharmaprakash M S, Shivashankar S A. Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate [J].J. Mater. Chem. 2002,12,333-338.
    [52]Greenberg C B. Undoped and doped VO2 films grown from VO(OC3H7)3[J]. Thin Solid Films,1983,110:73
    [53]Piccirillo C, Binions R, Parkin I P. Synthesis and characterization of W-doped VO2 by aerosol assisted chemical vapor deposition[J]. Thin Solid Films,2008,516:1992
    [54]Jin P, Nakao S, Tanemura S. Tungsten doping into vanadium dioxide thamochromic films by high-energy ion implantation and thermal anneal ing [J]. Thin Solid Films,1998,324: 151-158.
    [55]郑臣谋,雷德铭,储向峰.二氧化钒太阳热智能控温高聚物薄膜[P].中国专利,CN1624029A,2005.
    [56]顾广新,魏勇,武利民.透明隔热玻璃涂料的研制[J].电镀与涂饰,2009,28(3):49-52
    [57]Frederic Guinneton. [J]. Optical Materials,2000, (15):111
    [58]郑臣谋,罗裕基,黄坤耀.制备V1-xMxO2(M=Cr、Ti、Mo、W,0≤x<0.2)陶瓷的湿化学方法——氧钒 (Ⅳ)碱式碳酸铵掺杂母体法[J].无机材料学报,1996,11(4):621-626.
    [59]施剑秋,顾光新,游波等.钨掺杂二氧化钒粉体的制备和热致变色性能[J].复旦学报(自然科学版),2007,6(3):361-366.
    [60]Shi J, Zhou S, You B, et al. Preparation and thermochromic property of tungsten-doped vanadium dioxide particles[J]. Solar Energy Mater Solar Cells,2007,91:1856
    [61]Peng Z, Jiang W, Liu H. Synthesis and electrical properties of tungsten-doped vanadium dioxide nanopowders by thermolysis[J]. J Phys Chem C,2007,111(3):1119-1122
    [62]Peng Z, Wang Y, Du Y, et al. Phase transition and IR properties of tungsten-doped vanadium dioxide nanopowders [J]. Journal of Alloys and Compounds,2009,480:537-540
    [63]彭子飞,江炜,王媛.相变温度可控钨掺杂纳米二氧化钒粉体的制备工艺[P].中国专利,CN101164900A,2008
    [64]Chen Y, Xu H, Feng H X. Preparation of W doped VO2 nanopowders by coprecipitation [J]. Materials Research Innovations,2008,12(2):78-80.
    [65]Xu Cailing, Ma Lan, Liu Xiang et al. A novel reduction-hydrolysis method of preparing VO2 nanopowders[J]. Materials Research Bulletin,2004(39):881-886.
    [66]黄维刚,林华,范樵乔等.掺Mo纳米VO2粉体的相变特性研究[J].稀有金属材料与工程,2006,35(10):1554-1556.
    [67]Stanley A, Lawton, Edward A Tbeby. Effect of tungsten and molybdenum doping on the semiconductor-metallic transition in vanadium dioxide produced by evaporation decomposition of solution and hydrogen reduction[J]. J Am Cream. Soc. 1995,78(1):238-240
    [68]Bayard M L F, Reynolds T G, Vlasse M, et al. Preparation and Properries of the Oxyflouride Systems V2O5-x and VO2Fx[J]. Journal of Solid State Chemistry,1971,3: 484-489.
    [69]Mai Liqiang, Chen Wen, Xu Qing, et al. Mo doped vanadium oxide nanotubes:microstructure and electrochemistry[J]. Chemical Physics Letters,2003,382:307-312.
    [70]Li Jing, Liu Chunyan, Mao Lijuan. The character of W-doped one-dimensional VO2(M) [J]. Journal of Solid State Chemistry,2009,182:2835-2839.
    [71]Liu J. F, Li Q H, Wang T H, et al. Metastable vanadium dioxide nanobelts:hydrothermal synthesis, electrical transport, and magnetic properties[J]. Angew. Chem. Int. Ed.,2004,43:5048-5042.
    [72]Cao Chuanxiang, Gao Yanfeng, Luo Hongjie. Pure single-crystal rutile vanadium dioxide powders:synthesis, mechanism and phase-transformation property[J]. Phys. Chem. C.,2008,112(48):18810-18814
    [73]高彦峰,曹传祥,罗宏杰.金红石相二氧化钒粉体的制备方法[P].中国专利,CN1013918 14A,2009.
    [74]Ji Shidong, Zhao Yangang, Zhang Feng, et al. Direct formation of single crystal V02(R) nanorods by one-step hydrothermal treatment[J]. Journal of Crystal Growth, 2010,312:282-286.
    [75]齐济,宁桂玲,刘风娟等.掺杂VO2的制备方法及其对性能的影响[J].材料导报:综述篇,2009,23(8):112-116.
    [76]Phillips T E, Murphy R A, Poehier T O. Electrical studies of reactively sputtered Fe-doped VO2 thin films[J].Mater Res Bull,1987,22:1113.
    [77]Biaauw C, Leenhouts F, Woude F. Phase transitions in Fe doped VO2[J]. Solid State Commun,1975,17(5):559.
    [78]Reyes J M, Marko J R, Sayer M. Hysteresis effects in the semiconductor-metal transition of Cr-doped VO2[J].Solid State Commun,1973,13(12):1953
    [79]Lee M, Kim M, Song H. Thermochromism of rapid thermal annealed VO2 and Sn-doped VO2 thin films[J].Thin Solid Films,1996,290:30
    [80]Burkhart W, Christmann T, Meryer D, et al. W-and F-doped VO2 films studied by photoelectron spectrometry[J]. Thin Solid Films,1999,345:229
    [81]Jin P, Tanemura S. V, V1-xMocO2 thermochromic films de-posited by reactive magnetron sputtering[J].Thin Solid Films,1996,281-282:239
    [82]Trarieux H. Effect of Substitution on the Vanadium Dioxide Phase Transition Influence Changements[J]. Phase Prop Phys Corps Solids,1970:101-114.
    [83]Bowman R M, Gregg J M. VO2 thin films:Growth and the effect of applied strain on their resistance[J]. J. Mater. Sci.:Materials in Electronics,1998,9(3):187-191.
    [84]吴崇浩,王世敏.纳米微粒表面修饰研究进展[J].化工新型材料,2002,30(7):1-5
    [85]张万忠,乔学亮,陈建国等.纳米材料的表面修饰与应用[J].化工进展,2004,23(1):1067
    [86]曹茂盛,邓启刚,杨秀红.激光法气相合成Si3N4理超细粉反应机理的研究[J].齐齐哈尔师范学院学报(自然科学版),1993,13(1):10-13.
    [87]Livage J. Vanadium pentoxide gels[J]. Chem. Mater.1991,3:578-593
    [88]刘国强,徐宁,曾潮流等.锂离子蓄电池钒系正极材料的研究进展[J].电源技术.2002,26(2):114-118
    [89]Murphyd W, Christianp A, D J. Vanadium Oxide Cathode Materials for Secondary Lithium Cells[J].J. Electrochem. Soc.,1979,126:497-499
    [90]廉变峰.建筑节能相变材料制备与应用分析:(硕士学位论文).天津:天津大学
    [91]卢炯平.X射线光电子能谱在材料研究中的应用[J].分析测试技术与仪器.1995,1,(1):1-12
    [92]文美兰.X射线光电子能谱的应用介绍[J].化工时刊.2006,20(8):54-56
    [93]Geert Silversmit, Diederik Depla, Hilde Poelman, et al. Determination of the V2p XPS binding energies for different vanadium oxidation states(V5+ to V6+)[J]. Journal of Electron Spectroscopy and Related Phenomena,2004,135:167.
    [94]Bondarenka V, Grebinskij S, Kaciulis S, et al. Surface chemical composition of MV10Mo2O31·nH2O (M=Na2, K2, Ca, Sr, Cu) xerogels[J]. Journal of Electron Spectroscopy and Related Phenomena,2000,107:253.
    [95]Yong Shin Kim. Thermal treatment effects on the material and gas-sensing properties of room-temperature tungsten oxide nanorod sensors[J], Sensors and Actuators B:Chemical,2009,137:297-304
    [96]Simon Penner, Xianjie Liu. The structure and composition of oxidized and reduced tungsten oxide thin films[J],Thin Solid Films,2008,516:2829-2836
    [97]刘春海,杜晓松,汪德志等.H+辐照前后Mo涂层表面的XPS分析[J].功能材料,2007,2(38):176-178
    [98]Jolanta S wiatowska-Mrowiecka, Soline de Diesbach, Vincent Maurice, et al. Li-Ion Intercalation in Thermal Oxide Thin Films of MoO3 as Studied by XPS, RBS, and NRA[J]. J. Phys. Chem. C.,2008,112,11050-11058
    [99]苏勉曾[M].固体化学导论.北京.北京大学出版社.1986.
    [100]叶良修.半导体物理学(上册)[M].北京.高等教育出版社.1983.
    [101]半导体.王云珍[M].北京.科学出版社.1986.
    [102]曾人杰.无机材料化学(上册)[M].厦门.厦门大学出版社.2001.
    [103]杨绍利.VO2薄膜制备及其应用性能基础研究:(博士学位论文)重庆:重庆大学.
    [104]仇海波,高濂,冯楚德等.纳米氧化锆粉体的共沸蒸馏法制备及研究[J].无机材料学报,1994,9(3):365-370.
    [105]黄朝辉.V2O5凝胶的制备及电化学性能研究:(硕士学位论文).长沙:中南大学
    [106]王宝和,张伟,张文博等.共沸蒸馏置换干燥法制备纳米氧化镁粉体的研究[J].盐湖研究,2006,14(3):29-33.
    [107]云利娜,王宝和.共沸蒸馏脱水技术在纳米材料制备中的应用[J].河南化工,2007,24(2):12-14
    [108]隋振英,邹东雷.共沸蒸馏中共沸剂的选择[J].化学工程师,1996,(3):27.
    [109]戴焰林,洪玲,施利毅.沉淀—共沸蒸馏法制备纳米Mg(OH)2的研究[J].上海大学学报(自然科学版),2003,9(5):402-404.
    [110]Alexey M Glushenkov, Vladimir I. Stukachev, Mohd Faiz Hassan, et al.A Novel Approach for Real Mass Transformation from V2O5 Particles to Nanorods. [J]. Crystal Growth & Design,2008,8, (10):3661-3664.
    [111]孙晓明.低维功能纳米材料的液相合成、表征与性能研究:(博士学位论文).北京:清华大学.
    [112]刘演新.多壁碳纳米管的表面接枝改性及其衍生物:(博士学位论文).北京:北京化工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700