钴白合金电解造液技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的快速发展,特别是电池功能材料、超细粉体材料和超硬材料的迅猛发展,导致相关有色金属材料的消费量也在快速增长,特别是中国十分缺乏并全球消费势头迅猛的钴资源。要确保我国有色金属工业的可持续发展和矿产资源的可持续开采,就要坚持国内国外两种资源并举,除了加大国内找矿的力度外,开发利用海外有色金属资源已十分紧迫。开发海外有色金属资源对我国经济的发展具有战略的、全局性的意义,是有色金属工业发展主要的、必然的选择。
     非洲国家钴资源丰富,但非洲国家出台限制钴矿的出口,鼓励将钴矿加工成钴产品后再出售给国外,针对上述政策,必须研制一种低成本溶出钴白合金的技术。本论文主要研究了以非洲某国生产的钴白合金为原料,在1300~1500℃下熔化钴白合金,并浇铸成阳极块作阳极,铜片作阴极,以硫酸为电解液,在直流电的作用下,考查了含硅量不同的钴白合金的电化学溶解性能,根据电化学溶解中存大的问题加入适当的添加剂,使电化学溶解能正常进行。试验结果表明:含硅≤2.6%的钴白合金,电解液不外加任何添加剂,能在电流密度为700 A·m~(-2)下正常电化学溶解,含硅量越低,钴白合金能在越高的电流密度下电化学溶解;含硅≤2.6%的钴白合金,电解液外加添加剂A,用量为0.2mol·L~(-1)时,能在电流密度为1400 A·m~(-2)下正常电化学溶解;含硅≤2.6%的钴白合金,电解液外加添加剂A,用量为0.2mol·L~(-1)时,外加添加剂B,能提高电流密度,但提高的幅度不大;含硅量>2.6%的钴白合金,电解液不添加任何添加剂,随含硅量的增加,能正常电化学溶解的电流密度越小,电流密度不超过500 A·m~(-2),限制了在工业中的生产应用;含硅量>2.6%的钴白合金,电解液外加添加剂A,用量为0.2mol·L~(-1)时,能小幅度提高电流密度,继续增加添加剂A的用量,基本上不能提高钴白合金电化学溶解的电流密度;含硅量>2.6%的钴白合金,电解液外加添加剂A和B,用量分别为0.2mol·L~(-1)和0.12mol·L~(-1)时,钴白合金能在电流密度为1400 A·m~(-2)下进行电化学溶解;动态试验结果表明,含硅7.3%钴白合金的阳极效率为93.37%,溶解1t阳极耗电2.064kwh,铜粉成粉率为30.81%,钴一次电溶出率为87.45%,铜粉含铜99.5%,铜粉占原料含铜量80.85%,铁大部分进入溶液,初步分离了铜与钴铁。
     本论文的最大特点是对含硅量不同的钴白合金电化学溶解性能进行了分类和加入新型添加剂B消除钴白合金溶解过程中的钝化现象。该法操作条件温和,初步实现了铜与钴铁的分离,生产成本低,与其它方法相比具有明显的优势。
With the rapid development of the world economy,especially the rapid development of the battery functional materials , ultra-fine powder materials and superhard material , the consumption of non-ferrous metals related to these materials are also rapid growth, particularly cobalt resources which were lack in China and were of vigorous consumption in world.In order to ensure the sustainable development and sustainable exploitation of mineral resources of China Nonferrous Metals Industry,we must adhere to both domestic and foreign resources.In addition to the efforts increasing domestic exploration,development and utilization of overseas non-ferrous metal resources had been very tight.It was inevitable for Non-ferrous industrial to explore overseas non-ferrous resourses.And it was a strategic,overall significance.
     African countries were rich in cobalt resources . But African countries had introduced restrictions on the export of cobalt ore,and encourage the export of cobalt products after processing.In view of the above-mentioned policy,we must develop a low-cost technology for the dissolution of Co-Cu-Fe alloy.
     This paper mainly studied the Co-Cu-Fe alloy from African.The Co-Cu-Fe alloy first were melt in 1300 ~ 1500℃and then casted into the anode.In electrochemical experiments,the cathode was sheet copper and the electrolyte was sulphuric acid.The experiments examined the eclectrochemical dissolution properties of different silicon content Co-Cu-Fe alloy.In accordance with the electrochemical dissolution properties,we added appropriate additives in order to be carried out normally in electrochemical dissolution.The experimental results showed that:The Co-Cu-Fe alloy which silicon content was less than 2.6% can be electrolyzed normally in te current density of 700 A·m-2 without any additives.And the lower the silicon content in Co-Cu-Fe alloy was ,the higher the current density was;The Co-Cu-Fe alloy which silicon content was less than 2.6% can be electrolyzed normally in te current density of 1400 A·m~(-2) with the additive A the amount of which is 0.2mol·L~(-1);The Co-Cu-Fe alloy which silicon content was less than 2.6% with the 0.2mol·L~(-1) additive A could increase the current density when adding additive B,but the current density increase was less;The Co-Cu-Fe alloy which silicon content was more than 2.6% had a smaller current density with the increase of silicon content in anode.And the current density was less than 500 A·m~(-2) which limited the industrial application;The Co-Cu-Fe alloy which silicon content was more than 2.6% can increase the current density smally with the amount of 0.2mol·L~(-1) additive A.But the effect is not obviously with the increase amount of additive A;The Co-Cu-Fe alloy which silicon content was more than 2.6% can be electrolyzed normally in te current density of 1400 A·m~(-2) with the amount of 0.2mol·L~(-1) additive A and 0.12mol·L~(-1) additive B;Dynamic experiment results showed that the anode efficiency of Co-Cu-Fe alloy which contained 7.3% silicon is 93.37%,the energy consumption was 2.064 kwh·t~(-1) Co-Cu-Fe alloy,copper power rate was 30.81%,the cobalt recovery rate into solution was 87.45%,the copper power contained 99.5% copper and the copper recovery rate into copper power was 80.85%.The majority of iron were in the solution.Through the electrochemical dissolution achieved the initial separation of copper and cobalt、iron.
     The significant features in the whole technological process was classifying the electrochemical dissolution for the different silicon content Co-Cu-Fe alloy and adding new additive B in order to eliminate the passivation phenomenon in electrochemical dissolution.The operating conditions of this technology were mildness.And this technology achieved initial separation of copper and cobalt、iron and had a low production.Compared with other methods,it offered distinct advantages.
引文
[01]崔乃梁.我国钴生产概述.有色冶炼,1996,(6):6~9
    [02]何焕华.中国镍钴冶金学.北京:冶金工业出版社,2000
    [03]丰成友,张德全.中国钴资源开发及其开发利用概况.矿产与地质,2004,23(1):93~100
    [04]孙晓刚.世界钴资源的分布和应用.有色金属冶金,2000(1):38~41
    [05]乐颂光.钴冶金.北京:冶金工业出版社,1987
    [06] Kirk Othmer.Encyclopedie of Chemical Technology.3th Ed,Vol.6,John Wiley&Sons,New York,1980:481
    [07]国土国土资源科技管理.我国钴资源的特点.金川科技,2005(2):38~41
    [08]伍少云.重金属-钴.中国有色冶金,2005(1):50~52
    [09]陈彪.世界钴矿资源及难选钴矿石钴提取工艺的研究.吉林大学博士论文20010501
    [10]王海北,刘三平,蒋开喜,等.我国钴生产和消费现状.矿冶,2004,13(3):53~56
    [11]侯慧芬.从各种含钴原料中提取电解钴.上海有色金属,2001(9):132~137
    [12]帅国权.金川公司钴的回收.有色冶炼,1995,(3):15~18
    [13]王淀佐,张亚辉,孙传尧.大洋多金属结核的处理技术评述.1996,(9):3~11
    [14]侯慧芬.海洋锰结核的综合利用.上海有色金属,1999,20(3):143~199
    [15]法克清.深海多金属核及其处理技术.国外金属矿选矿,1996,(8):17~21
    [16]乐颂光等.再生有色金属生产.长沙:中南工业大学出版社,1991:141~199
    [17]李洪桂等.稀有金属冶金学.北京:冶金工业出版社,1990
    [18]胡宇杰,孙培梅,李洪桂,陈爱良.废硬质合金的回收再生方法及研究进展.稀有金属与硬质合金,2004,32(3):53~57
    [19]翟昕,周长松,苗兴军.磷酸动态浸出法处理低钴类废硬质合金的研究.稀有金属与硬质合金,1994(125):1~9
    [20]袁书玉.磷酸法处理废硬质合金回收钨和钴.现代化工,1996(3):34~3
    [21]彭容秋.再生有色金属冶金.沈阳:东北大学出版社,1994:129~148
    [22]江丽,王卫红,陆严宏.溶剂萃取法分离二次电池废泡沫式镍极板中镍、镉、钴的研究.湿法冶金,2000,19(1):46~50 [23江丽,张志清,陈刚,周晓明,盘晓然.从二次电池废泡沫式镍极板中回收钴.湿法冶金,2001,20(2):92~95
    [24]周斌,康思琦,罗爱平.N235萃取分离废旧隔镍电池中钴和镍的研究.五邑大学学报(自然科学版),2003,17(2):22~25
    [25]许菱,许孙曲.用溶剂取法从废Ni-Cd蓄电池中回收镉,钴和镍的新方法.有色金属与稀土应用,2000,(3):37~42
    [26] Chen Weiliang , Chai Liyuan , Zhang Chuanfu . A Novel Technology for Recycling Waste Dry-batery.Pollution Control and Reutilization of solid wasters.Changsha:Central South University Press,2001:463~468
    [27]廖华,吴芳,罗爱平.废旧镍氢电池正极材料中镍和钴的回收.五邑大学学报(自然科学版),2003,17(1):52~56
    [28]宋文顺.化学电源工艺学.北京:中国轻工业出版社,2000
    [29]席国喜.废旧干电池资源化研究新进展.化工进展,2001,7:136~139
    [30]曾径祥等.废镍电池资源化生产醋酸钴硫酸镍工艺研究.无机盐工业,2003,35(1)
    [31]乐颂光,鲁君乐,何静.再生有色金属生产(修订版).长沙:中南大学出版社,2006:208~209,248~252
    [32]吴雷,魏彤宇.回收废旧镍氢电池中有价金属实验研究及成本估算.城市环境与城市生态,2001,14(6):46~48
    [33]吴芳.从废旧锂离子二次电池中回收钴和锂.中国有色金属学报,2004,14(4):697~701
    [34]钟海云,李荐,柴立元.从锂离子二次电池正极废料-铝钴膜中回收钴的工艺研究.稀有金属与硬质合金,2001,144:1~4
    [35]闵小波,柴立元,刘强,钟海云.电池用钴基合金废料中有价金属的综合回收.矿产保护与利用,1999,(2):52~54
    [36]申勇峰.影响球形氢氧化镍质量的因素分析与控制.湿法冶金,2002,21(2):76~80
    [37]申勇峰.从废锂离子电池中回收钴.有色金属,2002,54(4):69~71
    [38]郑洪河,徐仲榆.非水电解液中LiPF6的光化学不稳定性.电池,2004,34(1):4~6
    [39]南俊民,韩东梅,崔明,左晓希.溶剂萃取法从废旧锂离子电池中回收有价金属.电池,2004,34(1):309~311
    [40]夏文堂,史海燕.采用无污染氧化剂浸出钴白合金中钴铜的试验研究.矿冶,2006,15(3):27~29
    [41]王含渊,江培海,张寅生,黄忠森.钴白合金湿法冶金工艺研究.矿冶,1997,6(1):67~77
    [42]申勇峰.从废高温合金中回收镍钴的工艺.矿冶,2000,9(2):60~62.
    [43] Lidia Burzyn ska,Wanda Gumowska,Ewa Rudnik.Influence of the composition of Cu-Co-Fe alloys on their dissolution in anmmoniacal solution.Hydrometallurgy 71(2004):447~455
    [44]廖春发,邓佐国.从合金渣中制取氧化钴的工艺研究.江西有色金属.1999,13(2):24~27
    [45]陈刚,冯德茂,应明明.一种处理钴铜合金的方法.专利分类号:C22B3/10(2006.01)I,专利号:CN1800422,2006
    [46]胡国荣,彭忠东,高继文.一种从铜钴铁合金中浸出有价金属的方法.专利分类号:C22B3/06(2006.01)I,专利号:CN1912152A,2006
    [47]曹孝先,陈海岚.迎接新世纪冶金分析学术报告会论文集.北京:宝钢技术检测中心,1993
    [48]傅崇说.有色金属冶金原理.北京:冶金工业出版社,2000
    [49]斯米尔诺夫等(苏联).从转炉渣提取钴.北京:中国工业出版社,1965
    [50]赵天从.重金属冶金学.北京:冶金工业出版社,1984
    [51]吴真洁,常蕴玉,李光明,韦任.电解钴废水处理的研究.环境保护科学,2004,30(122):30~31
    [52]张愈祖,蔡传算.高温合金废料中铜钴的回收.铜业工程,2000,(2):34~36
    [53]刘纯鹏.铜冶金过程物理化学.上海:上海科学技术出版社,1990
    [54] Shang-Da Huang,et al.Simultaneous Removal of Heavy Metal Ions from Wastewater by Foam Separation Techniques.Separation Science and Technology, 1988,23(4&5):489~505
    [55]侯慧芬.从钴渣中制取电解钴.上冶科技,1980,(1):1~19
    [56] Robina Farooq, Y.Wang, S.F.Shaukat, J.Donaldson, A.J.Chaudhary.Removal of copper from a copper sulphate solution using an ultrasonic-electrolysis process.Journal ofEnvironmental Sciences ,2002,14(3):375~379
    [57] R. Rozik, R.Orinˇa` kova′, K. Markusˇova′, L. Trnkova. The study of Ni-Co alloy deposition on iron powder particles in a fluidized bed from sulphate bath. J Solid State Electrochem,2006,10:423~429

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700