多金属伴生铁矿石综合回收选矿试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多金属伴生铁矿石储量巨大,往往伴生有大量有用组分;此类矿石矿物组成复杂、多种伴生金属矿物之间互相嵌布、嵌布粒度粗细不均,单体解离过程中易造成部分矿物过磨,形成细泥罩盖,影响矿物分选回收;同时多种矿物可浮性交错重叠,浮选回收时,需要考虑各产品间的相互影响,回收工艺较为复杂。本论文以某多金属伴生铁矿石为研究对象,进行工艺矿物学研究,结合矿石性质确定合理的分选流程和药剂制度,并进行闭路流程数质量计算和产品分析,为该矿石综合回收以及开发利用提供一定的理论依据。
     该矿石为矽卡岩型多金属伴生混合型铁矿石,矿石中主要有用元素是铁、铜、硫,伴生金、银和钴,主要有害元素是硅、钙、镁。其中铁矿物主要以磁性铁和碳酸铁形式存在,铜、硫氧化率较高;钴以类质同象形式主要赋存于黄铁矿中;伴生金银呈单质状态存在。大量的弱磁性铁矿物难于回收对其资源综合回收利用具有较大影响。条件试验表明添加硫酸铜、硫化钠、水玻璃、石灰、碳酸钠、煤油等调整剂对该矿石铜硫粗选效果改善不明显;在相同药剂用量下,粗选分段加药更有利于粗选铜矿物的回收;乙黄药与丁铵黑药2:1混合用药具有一定协同作用。
     对比阶段磨矿和常规磨矿两种流程,开路流程试验中阶段磨矿流程虽然可提高铜精矿的品位1%~2%,但铜回收率降低2%左右。闭路全流程试验中阶段磨矿流程所获得的铜精矿的品位和回收率仅和常规磨矿闭路全流程试验相当,并不能进一步提高铜精矿的品位,未能达到阶段细磨预期的效果。粗尾分级再磨流程能较大程度地解离粗粒铁矿物连生体中的硫化矿物,可使铁精矿含硫低于0.1%。
     常规磨矿流程比阶段磨矿流程更适合处理该矿石,推荐使用常规磨矿流程,以先浮后磁为原则流程。浮选系统以铜硫混合浮选分离流程为主干;铜硫混合浮选采用两粗两精,粗选分段加药,混精浓缩脱药,石灰搅拌调浆;铜硫分离浮选采用一粗两精两扫,获得含金、银铜精矿及硫钴精矿;磁选系统,浮选尾矿经两段弱磁选获得强磁性铁精矿,弱磁选尾矿再进行强磁选。获得铜精矿含铜16.47%,含金6.5g/t、银15g/t,铜、金、银回收率分别为85.95%、74.55%及52.95%;硫钴精矿含硫33.28%,含钴0.259%,硫、钴回收率分别为54.81%及42.66%;弱磁选铁精矿含铁62.73%,含硫0.113%,铁回收率为41.85%。强磁选可获得铁品位为40.04%,回收率为35.05%的强磁选铁精矿。强磁选精矿含有大量的菱铁矿,烧损较大,烧损后铁品位可以达到54.71%。
The polymetallic iron ores having huge reserves and often associating with a large number of useful components,the recovery technique for this kind of ores are often complicated because of the complex composition, minerals mutual embedded, nonuniform dissemination size, the overgrinding of minerals during mineral monomeric liberation, fine mud covers the formation, the flotability of minerals crisscross overlap.In order to get theoretical basis for comprehensive recovery of this ore, the process mineralogy, the reasonable ore separation process and appropriate pharmaceutical systems in combination with the nature of the ore, and the quantity and quality of closed circuit calculation are all researched in this thesis.
     This ore belongs to skarn-type polymetallic iron ore, the main useful elements are iron, copper, sulfur, accompanying gold, silver and cobalt, silicon, calcium, magnesium are the harmful elements. Magnetite and siderite are the mainly iron minerals, the oxidation ratio of copper and sulfur are high.Cobalt is mainly scattered into the pyrite in isomorphism, gold and silver is associated with other minerals.A lot of weakly magnetic iron loss in the tailing by LIMS, making some difficults for the recovery of iron.
     Conditions test indicate that the adding of regulators,such as copper sulphate, sodium sulphide,sodium silicate,lime,sodium carbonate, kerosene,has not obvious improvement for the copper-sulfide bulk roughing.Under the same dosage of reagents, reagent-adding in batches have more advantageous than concentrated dosing.The butyl xanthate and ammonium di-butyl dithiophosphate mixture collector has certain synergy.
     In contrast to conventional grinding process, the stage grinding process can improve the grade of copper concentrate 1% ~ 2%, and reduce the sulfur content of copper concentrate, but the copper recovery reduce 2% by open flowsheet test.The closed-circuit test show that the stage grinding cann’t receive the expected result. The iron concentrate which sulfur content in it is below 0.1%, canbe obtained by the process of classification-reginding of coarse tailing, which can greatly disintegrate sulfide minerals intergrowth with coarse grained iron ores.The conventional grinding flowsheet is more suitable for processing this ore.By adopting the flowsheet of reagent-adding in batches, the bulk roughing flotation and then two-bulk cleaning to obtain Cu-S rough concentrate,rough concentrate dewatering and removing reagents residue,a separation of Cu-S rough concentrate by one-roughing,two-cleaning,two-scavenging in the flotation systems, after that recovery the iron from the flotation tailing by LIMS and further recovery the weakly magnetic iron concentrate by HIMS.With the conditions of the grinding fineness of -75μm 80%, a copper concentrate with copper grade of 16.47%,6.5g/t gold and 15g/t silver canbe obtained, the recovery of copper,gold and silver are 85.95%,74.55% and 52.95% respectively. The cobalt sulfide concentrate with the grade of sulfur and cobalt are 33.28% and 0.259%,which the recovery are 54.81% and 42.66% respectively.LIMS concentrate with iron content 62.73% and recovery of 41.85%,which sulfur content canbe reduced to 0.113%,is also obtained in the closed-circuit.The concentrate with iron content 40.04% and recovery of 35.05% canbe obtained by HIMS,which the ignition loss iron content canbe reached to 54.71%.
引文
[1]王静纯,余大良.伴生金属和二次资源利用与环境和谐[C]. 2006年中国矿业循环经济论坛,2006:125~132.
    [2]邓光君.国家矿产资源安全理论与评价体系研究[D].北京:中国地质大学(北京),2006
    [3]姚华军.对矿产资源与社会经济可持续发展问题的思考[J].人文与管理论丛,1998, (7):23~25.
    [4]黄仲权.云南伴(共)生金矿资源开发利用现状及对策[J].黄金科学技术,1999,(1):46~49.
    [5]陈从喜.试论矿产资源综合利用与地质找矿[J].国土资源情报,2009,(7):72~75.
    [6]丁其光,汪镜亮.共伴生矿产和尾矿综合利用是危机矿山解困的途径之一[J].矿产综合利用,2009,(6):31~34.
    [7]蒲含勇.论我国矿产资源的综合利用[J].矿产综合利用,2001,(4):34~36.
    [8]李文光.我国西部地区矿产资源概况[J].化工矿产地质,2000,(3):7~10.
    [9]吴玉萍.推进循环经济发展的制度创新[J].经济视角, 2006,(4):11~16.
    [10]魏志江.铁矿资源开发利用分析与预测[J].中国矿业,2010,(3):6~10.
    [11]肖振.多金属硫化矿中伴生硫铁矿的选矿设计[J].有色金属设计,2002,29(2):25~29.
    [12] S.M.Bulatovic.Use of organic polymers in the flotation of polymetallic ores:A review[J].Minerals Engineering,1999,12 (4):341~354.
    [13]邱廷省,孙忠梅,邹来昌.复杂多金属含铜银金矿综合回收技术研究[J].金属矿山,2010,(1):81~83.
    [14]江军生,赵阳,曹平等.银洞子多金属矿可持续发展研究[J].矿业研究与开发,2009,(4):19~22.
    [15]戴新宇,于克旭.提高某银多金属矿综合回收率的选矿试验研究[J].矿产综合利用,2009,(1):7~9.
    [16]李俊宁,肖春莲,王炬等.某铁硫铜复杂多金属矿选矿工艺研究[J].金属矿山,2008,(12):58~63.
    [17]李禄宏.铁精矿提铁降硫工艺研究[D].赣州:江西理工大学,2006.
    [18]李崇德.铜硫分步优先浮选工艺的应用[J].有色矿山,1995,(3):41~45.
    [19] N. A. Chinakal,F. A. Baryshnikov.Beneficiation of oxidized iron ores by direct reduction and magnetic separation [J].Beneficiation,1996,3 (2):32~36.
    [20]黄常英.氧化铁锰多金属矿高温氯化焙烧试验研究[J].中国锰业,1998,(5):28~32.
    [21]高启鹏.铋锌铁多金属矿石的选矿试验研究[J].金属矿山,2003,(10):31~33.
    [22]王永生.铁矿石中低品位伴生有价金属回收利用实践[C].第五届全国矿山采选技术进展报告会,2006:194~199.
    [23]陈慧杰.石英脉型复杂多金属矿选矿试验研究[D].武汉:武汉理工大学,2009.
    [24]王永利,徐国栋.钴资源的开发和利用[J].河北北方学院学报(自然科学版),2005,21(3):18~21.
    [25]雷时益,张俞明,曾卫东等.大厂锡石多金属硫化矿的合理选矿工艺[J].国外金属矿选矿,2008, (12):2~6.
    [26]王耀.大乌苏沟地区超低品位伴生磁铁矿选矿综合利用试验研究[J].中国矿业,2006, 15(11):61~64.
    [27]万文治.Cu-Co-Fe合金溶出与分离研究[D].长沙:中南大学,2007.
    [28]刘同有.中国镍钴铂族金属资源和开发战略(上)[J].国土资源科技管理,2003, (1):60~64.
    [29]卿波.尿素均匀沉淀法制备单分散四氧化三钴粉末[D].长沙:中南大学,2007.
    [30]李厚明.青海东昆仑驼路沟钴(金)矿床地质特征[J].矿物岩石地球化学通报,2000,(4):68~71.
    [31]迟春霞.基于黄金矿山企业生命周期的发展战略研究[D].沈阳:辽宁工程技术大学,2006.
    [32]蔡玲,孙长泉,孙成林等.伴生金银综合回收[M].北京:冶金工业出版社.1999.
    [33]李含明.我国银矿资源分布特点介绍[J].现代矿业,2009,(7):78~81.
    [34] Z.Cui,Q.Liu,Etsell.Magnetic properties of ilmenite,hematite and oilsand minerals after roasting[M].Minerals Engineering,2002,15(12):1121~1129.
    [35]厉广军,胡恒杰,蔡正安.低品位赤铁矿及伴生铜钴金的综合回收利用[J].金属矿山,2006,(7):86~87.
    [36]邱俊,吕宪俊,陈平等.铁矿选矿技术[M].北京:化学工业出版社.2009.
    [37]钱韵,于红军.对凹山铁矿床伴生磷资源综合利用[J].金属矿山,2000,(9)增刊:102~104.
    [38]龙仲胜.多金属矿的可选性研究[J].矿业研究与开发,2002,22(1):31~33.
    [39]郭玉霞.民乐铜矿细菌浸出小试研究[D].昆明:昆明理工大学,2003.
    [40]朱江.武钢伴生铜资源综合利用研究及实践[J].矿业快报,2001,22(11):19~21.
    [41]陈贵亮,唐顺昌,胡贵增等.矽卡岩型低品位多金属矿资源的综合回收[J].有色金属(选矿部分), 2001,(1):9~10.
    [42]于艳红,陈建平,田成春等.共伴生多元素铁矿的选矿工艺研究[J].矿冶工程, 2009,29(5):54~57.
    [43]张自业,陈红轶.河南某多金属铁矿石选矿试验研究[J].金属矿山,2009,(6):80~83.
    [44]王珩.高硫铜矿石分步优先浮选中矿再磨再选工艺研究及探讨[J].有色金属(选矿部分),2003,(5):10~13.
    [45]胡真,管则皋,李汉文等.某含铜铁伴生金银多金属氧化矿选矿工艺流程的研究[J].矿冶工程, 2006,(8):140~143.
    [46] Bulatovic Srdjan,F.Jackson James.Depressant for flotation separation of polymetallicsulphide ores[J].Minerals Engineering,1998,11(5):485~486.
    [47]王俊峰,岳鸿卫.钴硫精矿回收工艺研究[J].河南冶金,1999,(1):29~31.
    [48] A.M.Desiator.A method for selection of copper-molybdenum concentrates with low-molecular organic depressors[J].Flotation reagents,1996,(4):99~100.
    [49] Gordon E Agar.Copper sulphide depression with thioglycollate or trithiocarbonate [J] .CIMBulltin 2001,872(7):43~47.
    [50]谢黎云.某多金属矿选矿试验研究[J].中国钨业,2000,15(6):60~62.
    [51]邱廷省,李国栋,方夕辉.复杂多金属氧化矿中金银回收技术研究[J].金属矿山,2009,(9):84~88.
    [52]冯其明,陈建华.硫化矿浮选分离有机抑制剂研究进展[J].国外金属矿选矿,1998,(4):12~15.
    [53]王宝胜,张振平,刘万志等.改善含高铜、铅金精矿氰化浸出指标的试验研究[J].黄金科学技术,2008,(5):44~45.
    [54]李玉敏,薛光.从含铜金精矿中提取金、银氰化工艺试验研究[J].有色矿冶,2007(1):17~18.
    [55] Green EW,Duke JB.Selective froth Flotation of ultrafine minerals or slime[J].Minerals Engineering ,1992, (14):51~55.
    [56]童雄,蓝卓越,吴多吉等.多金属硫化矿低碱条件下的高效浮选分离[C].全国矿山选矿生产、技术创新暨复杂难处理矿石选矿技术研讨会,2006,144~149.
    [57]张一敏.固体物料分选理论与工艺[M].北京:冶金工业出版社.2007.
    [58] S.Chander,D.W Fuerstenau.Electrochemical flotation separation of chalcocite from molybdenite[J].Int. J. Miner. Process,1982, (10): 89~94.
    [59] VE.Vigdergauz.Methods of electrochemical study of natural metal sulfide[J].International Workshop on Electrochemistry of Flotation of Sulphide Minerals,1999:1439~1442.
    [60] A.A.格拉祖诺夫.提高多金属矿石浮选效果的研究[J].国外金属矿选矿,2005,(8):26~29.
    [61] A.Boulton,D.Fornasiero,J.Ralston.Depression of iron sulphide flotation in zinc roughers[J]. Minerals Engineering,2001,14(9):1067~1079.
    [62] R.J. Pugh.Copper and zinc recovery process from sulfide ores[J].Minerals Engineering,1997,10(9):1040~1041.
    [63]管则皋,张忠汉,高玉德等.锯板坑钨多金属矿综合利用选矿工艺研究[J].广东有色金属学报,2002,12(2):79~84.
    [64]吴熙群,杨菊.含多种伴生成分铜矿石选矿工艺流程研究[J].有色金属(选矿部分),2002,(5):5~8.
    [65]陈建华,冯其明,欧乐明等.低碱度铜硫分离新型有机抑制剂应用研究[J].有色金属(选矿部分),1997,49(4):29~33.
    [66] S. E. Khalafalla,G. W. Reimers.Effect of low concentrations of silica, alumina, lime, and lithia on the magnetic roasting of hematite [J]. Metallurgical and Materials Transactions B, 2004,5(5).
    [67] R.J.Pugh.Macromolecular organic depressants in sulphide flotation[J].Int. J. Miner. Process,1989(25):101~130.
    [68] S.Song,S.Lu,A.Lopez.Valdivieso.Magnetic separation of hematite and limonite fines as hydrophobic flocs from iron ores[J]. Int. J. Miner. Process,1999(21):145~151.
    [69]邵伟华,杨波.某铜铁矿选矿厂铁精矿降硫试验研究[J].有色金属(选矿部分),2005,(4):27~29.
    [70]程波.黑龙江省某大型钨钼铜铁复杂多金属矿综合利用研究[J].科技论坛,2009, (14):9~10.
    [71]文晓武,刘媛.获各琦多金属矿选矿试验研究与实践[J].有色矿山,2001,30(2):38~41.
    [72]李崇德,孙传尧.用PAC作捕收剂时黄铜矿和黄铁矿的浮游性研究[J].有色金属(选矿部分),2002,(6):33~35.
    [73]吴熙群,李成必,杨菊等.高效选择性捕收剂AP的应用[J].有色金属(选矿部分),2002,(2):36~40.
    [74] M.L.Torem,S.Bravo.Effect of thio collectors and feed particle size distribution on flotation of gold bearing sulphide ore[J].Transactions of the Institutions of Mining and Metallurgy. Section C,Mineral Processing and Extractive Metallurgy,2005,115(2): 118~124.
    [75]朱建光. 2002年浮选药剂的进展[J].国外金属矿选矿,2003,(2):4~10.
    [76]廖乾.金川低品位镍矿矿物学特性及选矿工艺技术研究[D].长沙:中南大学,2010.
    [77]李广.提高某选厂铜回收率的新技术研究[D].武汉:武汉理工大学,2009.
    [78] K. L. Sutherland,I. W. Wsrk.Principles of Flotation[M].Melbourne,1994.
    [79]张闿.浮选药剂的组合使用[M].北京:冶金工业出版社.1994.
    [80]叶国华,童雄,张杰等.某难选铜矿浮选新工艺试验研究[J].有色金属(选矿部分),2006,(6):18~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700