油藏原位与实验室模拟系统中的微生物分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前全球的多数油田都已处于二次开采阶段,水驱采油是二次开采中应用最广泛的技术之一,它大幅提高了采油效率,延长了油田的开采年限;但在实施注水的过程中,外界的微生物以及氧气的进入,导致其内部的生态环境受到影响。油藏内部的微生物群落结构在长期的循环注水开采过程中是否会与注入水中的微生物出现趋同性?它们的微生物群落又会呈现怎样的多态性?这些问题的研究对于了解油藏生态和制订合理的开发措施具有重要的意义;此外,油田在经历过各种采油措施之后,仍有一半以上的原油无法采出,而研究也表明,微生物可以将油藏中的原油原位转化为甲烷,如果可以实现将无法开采的残余油以天然气的形式进行开采,这将对于缓解石油供需矛盾具有重要意义,然而,要实现微生物的高效转化,还需对其机制进行深入地研究。
     在本研究中,我们首先结合传统的变性梯度凝胶电泳(DGGE)、克隆文库技术与新兴的焦磷酸测序技术比较了长期注水的孤岛油田注水井和采油井中的微生物组成。三种方法的结果均显示,注入水与产出液中的微生物组成差异显著(P<0.05)。利用克隆文库对微生物组成的分析结果发现,注入水中96.3%的细菌分类操作单元(OTU)和70.6%的古菌OTU都无法从采油井中检出;而焦磷酸测序的结果也表明注水井中超过80%的操作分类单元(OTUs),其中包括两个最优势的OTU,均无法从采油井中检出。而利用UniFrac显著性检验发现拥有相同地层结构的采油井中的微生物结构无显著差异(P>0.05),地层结构不同的采油井中细菌组成差异显著(P<0.05),这一结果表明各采油井中的微生物组成可能与其地层结构相关,而并非主要受注入水中的微生物的影响。
     其次,我们利用焦磷酸测序的方法对胜利油田埕东、沾三和孤岛三个区块采油井中超过3万条的细菌及古菌序列进行了分析。从胜利油田检测到21个细菌门以及2个古菌门;还有14.2%的细菌以及26.8%的古菌序列分类地位仍不明确,说明我们所研究的高温注水油藏中蕴藏着丰富的未知微生物资源。系统发育学分析表明胜利油田除了具有油藏环境中常见的Proteobacteia、Firmicutes、Bacteroidetes等门的细菌以及产甲烷古菌之外,还检测到油藏环境中鲜有报道的Aquificae和Fusobacteria等微生物类型。这些结果也意味着在高温、高压、厌氧的地下深部生物圈中同样存在着复杂的微生物群落结构以及大量新的微生物资源。UniFrac分析结果表明,三个区块的细菌组成并无显著差异(P>0.05),而古菌组成差异显著(P<0.05)。利用典范对应分析(CCA)对各环境因子与微生物组成的影响分析结果证实,温度与各区块的微生物组成关系密切;SO42-对细菌组成的影响大于其它离子,而HCO3-对古菌组成的影响大于其它离子。
     本论文还对高温条件下不同厌氧代谢方式对石油烃的降解以及菌群结构的影响进行了分析。在实验室人工构建了硫酸盐还原和产甲烷两种培养体系,利用驯化的活性污泥以及油藏产出液中的外源菌群对胜利油田的原油进行了为期540天的厌氧降解,并对培养不同时间原油的降解程度以及菌群的变化进行了检测。结果发现驯化的菌群在两种培养条件下均能够实现对原油的降解,且在60℃高温时产甲烷条件对芳香烃的降解效率高于硫酸盐还原条件。DGGE指纹图谱和基于焦磷酸测序的UniFrac分析结果均显示,虽然接种物来源相同,产甲烷培养和硫酸盐还原培养条件下的菌群组成存在显著的差异,说明硫酸盐对于石油烃降解过程中菌群的组成具有很大的影响;而对于同一种培养条件,古菌的结构随培养时间的变化大于细菌。系统发育学分析结果显示,在两种培养体系中均检测到丰富的互营细菌、发酵细菌以及硫酸盐还原菌。对古菌的分析结果发现在硫酸盐还原和产甲烷两种培养条件下CO_2还原产甲烷途径和乙酸发酵产甲烷菌途径同时存在,但以利用H_2还原CO_2产甲烷途径为主。
     综上所述,本研究利用传统的分子生物学手段以及新兴的高通量测序技术证明,虽然胜利油田经历了长时间的循环注水,但是注入水中的微生物并不是影响采油井内部微生物生态的主要因素;另外,同一油田的不同工作区块的微生物组成存在较大差异,而且这一差异与各区块的温度关系密切;在60℃高温条件下,人工驯化的外源菌群在硫酸盐还原和产甲烷两种培养系统中均可实现石油烃的降解,且产甲烷培养体系对芳香烃的降解效率高于硫酸盐还原体系;在两种培养系统中CO_2还原和乙酸发酵产甲烷途径同时存在,并以CO_2还原产甲烷途径为主。
Most of reservoirs in the world have entered the secondary recovery after decades of exploitation, in which water flooding plays a significant role. Water-flooding dramatically improves the efficiency of oil recovery. However, exogenous microorganisms and dissolved oxygen which may affect the microbial structure will enter the reservoir environment flowed with flooded water. For long-term water-flooding reservoirs, whether microbial structure of reservoir will assimilate by that in injection water is still not clear. Otherwise, more than half of crude oil still left in the reservoirs even after the exploit by using various oil recovery methods. Previous studies have proved the potential of conversion of the residual oil into methane by microorganisms, the study of microbial community in reservoir has an important significance on resolving the conflicts of crude oil supply and extending demand.
     In this study, Gudao petroleum reservoir, which has been water-flooded for over 30 years, was selected. Using denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene clone library and pyrosequencing, we compared the microbial communities of injection well with that of production well. The results showed that microbial composition between injection well and production well were significantly different (P<0.05). It indicated that microbial composition of production well and injection well were not converged during long-term water flooding. Clone library result showed that 96.3% of bacterial operational taxonomic units (OTUs) and 70.6% of archaeal OTUs in injected water cannot be detected from production well. Similar results were obtained by pyrosequencing, more than 80% of OTUs in the injection water, including two of the most predominant OTUs, were difficult to detect in the production wells. UniFrac significance analysis showed that bacterial structures in production wells with the same oil-bearing strata has no significant difference (P>0.05), but bacterial structures were significantly different in the production wells with different oil-bearing strata (P<0.05). This suggests that microbial composition of production well may be closely related with the stratigraphic structure of itself.
     In the second part, we compared the microbial community structures of three working blocks of Shengli petroleum reservoir (Chengdong, zhansan and Gudao) using bar-coded pyrosequencing. 21 bacterial phyla and 2 archaeal phyla, together with 14.2% bacterial and 26.8% archaeal unclassified sequences were detected from more than 30,000 sequences. Phylogenetic analysis showed that predominant phylotypes in Shengli petroleum reservoir were Proteobacteria, Firmicutes, Bacteroidetes, and methnogens, which were considered as common type of microorganisms in petroleum reservoir. Except that, we also found Aquificae and Fusobacteria and other rarely reported bacteria in oil reservoir environment. UniFrac significance test indicated that bacterial community structure of three working block has no significant difference (P>0.05), but opposite result was found in archaea (P<0.05). Canonical Correspondence Analysis (CCA) showed stronger effect of temperature than mineralization on microbial community, SO42- has greater effect on bacterial community than other ions, but HCO3- has greater effect on archaeal community than others.
     Finally, we constructed high temperature sulfate reducing and methanogenic anaerobic crude oil degrading systems, investigated the degradation of crude oil and microbial composition of two systems for period of 540 days incubation. The result showed that aromatic hydrocarbon of crude oil was degraded under both conditions and the degradation rate under methanogenic condition was higher than sulfate reducing condition at 60℃. Both DGGE and bar-coded pyrosequencing results showed that the microbial community structures in two systems were different although using the same inoculums, indicating that sulfate has great impact on microbial composition during petroleum degradation process. But in the same culture condition, the structure of archaea changed greater than bacteria over time. Phylogenetic analysis showed that fermentative bacteria, sulfate-reducing bacteria and syntrophic bacteria were detected from both systems. Moreover, there exist two pathways for methane formation in these systems, acetate fermentation and H_2/CO_2 reduction, and the dominant pathway was H_2/CO_2 reduction.
     In summary, in this study, using both traditional molecular biological methods and pyrosequencing, we proved that microorganisms in the injection well are not the main factor that affects the endogenous ecology although it suffered long time water flooding. In the same oil field, the microbial communities of different working block were different, and the influence of temperature is greater than salinity. Special exogenous microbial community can degrade petroleum hydrocarbons in both sulfate reducing and methanogenic conditions at 60℃, and the degradation rate of aromatic hydrocarbon in methanogenic condition is fast than sulfate reducing condition.
引文
1.张抗,油气田生命周期和战术战略接替, 2000,北京:地质出版社. 4-5.
    2.程海鹰,王修林,徐登霆,等,内原微生物提高采收率研究,石油勘探与开发, 2006. 33(1): p. 91-94.
    3. Stosur, G. EOR: Past, present and what the next 25 years may bring. in SPE International Improved Oil Recovery Conference in Asia Pacific. 2003. Kuala Lumpur, Malaysia: Society of Petroleum Engineers.
    4. Sen, R., Biotechnology in petroleum recovery: The microbial EOR. Progress in Energy and Combustion Science, 2008. 34(6): p. 714-724.
    5.陈广明,唐晓东,崔盈贤,几种原油开采技术简介,化学工业与工程技术, 2009. p. 27-31.
    6. Lazar, I., I. Petrisor, and T. Yen, Microbial enhanced oil recovery (MEOR). Petroleum Science and Technology, 2007. 25(11): p. 1353-1366.
    7.程金香,马俊杰,王伯铎,等,石油开发工程生态环境影响分析与评价,环境科学与技术, 2004. p. 64-65.
    8.陆秀君,郭书海,孙清,等,石油污染土壤的修复技术研究现状及展望,沈阳农业大学学报, 2003. p. 63-67.
    9. Bastin, E., F. Greer, C. Merritt, et al., The presence of sulphate reducing bacteria in oil field waters. Science, 1926. 63(1618): p. 21-24.
    10. Gold, T., The deep, hot biosphere. Proceedings of the National Academy of Sciences, 1992. 89(13): p. 6045-6049.
    11. Whitman, W.B., D.C. Coleman, and W.J. Wiebe, Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, 1998. 95(12): p. 6578-6583.
    12. Prieur, D., Microbiology of deep-sea hydrothermal vents. Trends in Biotechnology, 1997. 15(7): p. 242-244.
    13. Pradillon, F., B. Shillito, C.M. Young, et al., Deep-sea ecology: Developmental arrest in vent worm embryos. Nature, 2001. 413(6857): p. 698-699.
    14. Fortin, D., F.G. Ferris, and S.D. Scott, Formation of Fe-silicates and Fe-oxides on bacterial surfaces in samples collected near hydrothermal vents on the Southern Explorer Ridge in thenortheast Pacific Ocean. American Mineralogist, 1998. 83(11-12): p. 1399-1408.
    15. Hofmann, B. and J. Farmer, Filamentous fabrics in low-temperature mineral assemblages: are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars. Planetary and Space Science, 2000. 48(11): p. 1077-1086.
    16. D'Hondt, S., S. Rutherford, and A.J. Spivack, Metabolic activity of subsurface life in deep-sea sediments. Science, 2002. 295(5562): p. 2067-2070.
    17. Magot, M., B. Ollivier, and B. Patel, Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, 2000. 77(2): p. 103-116.
    18. Gieg LM, D.I., Duncan KE, Suflita JM., Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol, 2010. 12(11 ): p. 1462-2920.
    19. Jakobsen, R. and D. Postma, Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, R m , Denmark. Geochimica et Cosmochimica Acta, 1999. 63(1): p. 137-151.
    20. Anderson, R. and D. Lovley, Hexadecane decay by methanogenesis. Nature, 2000. 10(404): p. 722–723.
    21. Borzenkov, I., S. Belyaev, Y. Miller, et al., Methanogenesis in the highly mineralized stratal waters of the Bondyuzhskoe oil field. Microbiology, 1997. 66(1): p. 104-110.
    22. Struchtemeyer, C., M. Elshahed, K. Duncan, et al., Evidence for aceticlastic methanogenesis in the presence of sulfate in a gas condensate-contaminated aquifer. Applied and Environmental Microbiology, 2005. 71(9): p. 5348.
    23. Warren, E., B. Bekins, E. Godsy, et al., Inhibition of acetoclastic methanogenesis in crude oil-and creosote-contaminated groundwater. Bioremediation journal, 2003. 7(3): p. 139-149.
    24. Beckman, J., The action of bacteria on mineral oil. Ind. Eng. Chem. News, 1926. 10(3): p. 3-10.
    25. Zobell, C.E., Action of microorganisms on hydrocarbons. Microbiology and Molecular Biology Reviews, 1946. 10(1): p. 1-49.
    26. ZoBell, C.E., Bacterial release of oil from sedimentary materials. Oil Gas J, 1947. 46(13): p. 62-72.
    27. Mogilevskii, G., The bacterial method of prospecting for oil and natural gases. 1953: Associated Technical Services.
    28. Yarbrough, H. and V. Coty. Microbially enhanced oil recovery from the upper cretaceous nacatoch
    26 formation, Union County, Arkansas. in Microbial Enhanced Oil Recovery. 1983. Union County.
    29. Mukherji, S., S. Jagadevan, G. Mohapatra, et al., Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresource technology, 2004. 95(3): p. 281-286.
    30. Dworkin, M., S. Falkow, E. Rosenberg, et al., Anaerobic Biodegradation of Hydrocarbons Including Methane, in The prokaryotes. 2006, Springer New York. p. 1028-1049.
    31. Wang, L., Anaerobic Biodegradation of Petroleum Hydrocarbons and Enlightenment of the Prospects for Gasification of Residual Oil. Microbiology/Weishengwuxue Tongbao. 37(1): p. 96-102.
    32. Widdel, F. and R. Rabus, Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology, 2001. 12(3): p. 259-276.
    33. Krejci-Graf, K., Rule of density of oils. Bull. Am. Assoc. Petrol. Geologists, 1932. 16: p. 1038-1043.
    34. Palmer, S.E., Effect of biodegradation and water washing on crude oil composition. Organic Geochemistry, 1993: p. 511–533.
    35. Head, I., D. Jones, and S. Larter, Biological activity in the deep subsurface and the origin of heavy oil. Nature, 2003. 426(6964): p. 344-352.
    36. Chapelle, F.H., K. O'Neill, P.M. Bradley, et al., A hydrogen-based subsurface microbial community dominated by methanogens. Nature, 2002. 415(6869): p. 312-315.
    37. Martini, A.M., J.M. Budai, L.M. Walter, et al., Microbial generation of economic accumulations of methane within a shallow organic-rich shale. Nature, 1996. 383(6596): p. 155-158.
    38. Rowe, D. and A. Muehlenbachs, Low-temperature thermal generation of hydrocarbon gases in shallow shales. Nature, 1999. 398(6722): p. 61-63.
    39. Parkes, J., Cracking anaerobic bacteria. Nature a-z index, 1999. 401(6750): p. 217-218.
    40. Zengler, K., H. Richnow, R. Rosselló-Mora, et al., Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999. 401(6750): p. 266-269.
    41. Jones, D., I. Head, N. Gray, et al., Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2007. 451(7175): p. 176-180.
    42. Gieg, L.M., K.E. Duncan, and J.M. Suflita, Bioenergy production via microbial conversion ofresidual oil to natural gas. Applied and Environmental Microbiology, 2008. 74(10): p. 3022-3029.
    43. Orphan, V., L. Taylor, D. Hafenbradl, et al., Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Applied and Environmental Microbiology, 2000. 66(2): p. 700-711.
    44. Nazina, T., A. Grigor'yan, Y. Xue, et al., Phylogenetic diversity of aerobic saprotrophic bacteria isolated from the Daqing oil field. Microbiology, 2002. 71(1): p. 91-97.
    45. Anderson, R.T. and D.R. Lovley, Biogeochemistry: Hexadecane decay by methanogenesis. Nature, 2000. 404(6779): p. 722-723.
    46. Siddique, T., P.M. Fedorak, and J.M. Foght, Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environmental science & technology, 2006. 40(17): p. 5459-5464.
    47. Townsend, G.T., R.C. Prince, and J.M. Suflita, Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environmental science & technology, 2003. 37(22): p. 5213-5218.
    48. Milkov, A.V., Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 2004. 66(3-4): p. 183-197.
    49. Aitken, C., D. Jones, and S. Larter, Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 2004. 431(7006): p. 291-294.
    50. McIntosh, J.C., L.M. Walter, and A.M. Martini, Extensive microbial modification of formation water geochemistry: Case study from a Midcontinent sedimentary basin, United States. Bulletin of the Geological Society of America, 2004. 116(5-6): p. 743-759.
    51. RESERVOIRS, P. and A. BIOREACTORS, BIODEGRADATION OF PETROLEUM IN SUBSURFACE GEOLOGICAL RESERVOIRS. Petroleum Microbiology, 2005: p. 91-130.
    52.李先奇,张水昌,朱光有,等,中国生物成因气的类型划分与研究方向,天然气地球科学, 2005. p. 477-484.
    53.李连民,陈世加,王绪龙,等,准噶尔盆地陆梁油气田白垩系天然气的成因及其地质意义,天然气地球科学, 2004. p. 75-78.
    54. Magot, M., Indigenous microbial communities in oil fields. Petroleum microbiology, 2005: p. 21–33.
    55. Nazina, T., N. Shestakova, A. Grigor’yan, et al., Phylogenetic diversity and activity of anaerobic microorganisms of high-temperature horizons of the Dagang oil field (PR China). Microbiology, 2006. 75(1): p. 55-65.
    56. Zengler, K., H.H. Richnow, R. Rosselló-Mora, et al., Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999. 401(6750): p. 266-269.
    57.朱利中,土壤及地下水有机污染的化学与生物修复,环境科学进展, 1999. p. 65-71.
    58. Pritchard, P.H. and C.F. Costa, EPA's Alaska oil spill bioremediation project. Part 5. Environmental science & technology, 1991. 25(3): p. 372-379.
    59. Venosa, A.D., M.T. Suidan, B.A. Wrenn, et al., Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environmental science & technology, 1996. 30(5): p. 1764-1775.
    60. Prince, R.C., Petroleum spill bioremediation in marine environments. Critical Reviews in Microbiology, 1993. 19(4): p. 217-240.
    61. Swannell, R., K. Lee, and M. McDonagh, Field evaluations of marine oil spill bioremediation. Microbiology and Molecular Biology Reviews, 1996. 60(2): p. 342.
    62. Lovley, D., Bioremediation: Anaerobes to the rescue. Science(Washington), 2001. 293(5534): p. 1444-1446.
    63. Greene, A., B. Patel, and A. Sheehy, Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. International Journal of Systematic and Evolutionary Microbiology, 1997. 47(2): p. 505-509.
    64. L'Haridon, S., M. Miroshnichenko, H. Hippe, et al., Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. International journal of systematic and evolutionary microbiology, 2002. 52(5): p. 1715.
    65. Rosnes, J.T., T. Torsvik, and T. Lien, Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Applied and Environmental Microbiology, 1991. 57(8): p. 2302.
    66. Cheng, L., T.L. Qiu, X.B. Yin, et al., Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. International journal of systematic and evolutionary microbiology,2007. 57(12): p. 2964-2969.
    67. Banat, I., Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 1995. 51(1): p. 1-12.
    68. Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 1995. 59(1): p. 143-169.
    69. Jannasch, H.W. and G.E. Jones, Bacterial populations in sea water as determined by different methods of enumeration. Limnology and Oceanography, 1959. 4(2): p. 128-139.
    70. Suzuki, M.T., M.S. Rappe, Z.W. Haimberger, et al., Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Applied and Environmental Microbiology, 1997. 63(3): p. 983-989.
    71. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993. 59(3): p. 695-700.
    72. Nassar, A., A. Darrasse, M. Lemattre, et al., Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. Applied and Environmental Microbiology, 1996. 62(7): p. 2228-2235.
    73. DeLong, E.F., G.S. Wickham, and N.R. Pace, Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science, 1989. 243(4896): p. 1360-1363.
    74. Pace, N.R., A molecular view of microbial diversity and the biosphere. Science, 1997. 276(5313): p. 734.
    75. Head, I., J. Saunders, and R. Pickup, Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial ecology, 1998. 35(1): p. 1-21.
    76. Fischer, S. and L. Lerman, DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proceedings of the National Academy of Sciences of the United States of America, 1983. 80(6): p. 1579-1583.
    77. Muyzer, G., E. De Waal, and A. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genescoding for 16S rRNA. Applied and Environmental Microbiology, 1993. 59(3): p. 695-700.
    78. Ercolini, D., PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. Journal of microbiological methods, 2004. 56(3): p. 297-314.
    79. Shen, J., B. Zhang, G. Wei, et al., Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Applied and environmental microbiology, 2006. 72(8): p. 5232-5238.
    80. Zhang, M., B. Liu, Y. Zhang, et al., Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. Journal of clinical microbiology, 2007. 45(2): p. 496.
    81. Pang, X., D. Ding, G. Wei, et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. Journal of microbiological methods, 2005. 61(3): p. 413-417.
    82. Wei, G., H. Lu, Z. Zhou, et al., The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microbial ecology, 2007. 54(1): p. 194-202.
    83. Zhao, Y., W. Li, Z. Zhou, et al., Dynamics of microbial community structure and cellulolytic activity in agricultural soil amended with two biofertilizers. European journal of soil biology, 2005. 41(1-2): p. 21-29.
    84.滕应,骆永明,赵祥伟,等,重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析,土壤学报, 2004. p. 343-347.
    85. Riemann, L., Bacterial community composition during two consecutive NE Monsoon periods in the Arabian Sea studied by denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep Sea Research Part II: Topical Studies in Oceanography, 1999. 46(8-9): p. 1791-1811.
    86. Araya, R., K. Tani, T. Takagi, et al., Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS microbiology ecology, 2003. 43(1): p. 111-119.
    87. Curtis, T.P. and N.G. Craine, The comparison of the diversity of activated sludge plants. Water Science and Technology, 1998. 37(4-5): p. 71-78.
    88.刘新春,吴成强,张昱,等, PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析,生态学报, 2005. p. 842-847.
    89. Liu, B., F. Zhang, X. Feng, et al., Thauera and Azoarcus as functionally important genera in a denitrifying quinoline‐removal bioreactor as revealed by microbial community structure comparison. FEMS microbiology ecology, 2006. 55(2): p. 274-286.
    90. Mao, Y., X. Zhang, X. Yan, et al., Development of group-specific PCR-DGGE fingerprinting for monitoring structural changes of Thauera spp. in an industrial wastewater treatment plant responding to operational perturbations. Journal of microbiological methods, 2008. 75(2): p. 231-236.
    91. Wang, J., T. Ma, L. Zhao, et al., PCR–DGGE method for analyzing the bacterial community in a high temperature petroleum reservoir. World Journal of Microbiology and Biotechnology, 2008. 24(9): p. 1981-1987.
    92. Wang, J., T. Ma, L. Zhao, et al., Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery. Journal of Industrial Microbiology and Biotechnology, 2008. 35(6): p. 619-628.
    93.佘跃惠,张凡,向廷生,等, PCR-DGGE方法分析原油储层微生物群落结构及种群多样性,生态学报, 2005. p. 237-242.
    94. She Y, Zhang F, Xiang T, et al., Microbial diversity in petroleum reservoirs analyzed by PCR-DGGE. Acta Ecologica Sinica, 2005. 25 p. 237-242.
    95.任红燕,宋志勇,李霏霁,等,胜利油藏不同时间细菌群落结构的比较,微生物学通报, 2010. p. 561-568.
    96. LaPara, T.M., C.H. Nakatsu, L. Pantea, et al., Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Applied and Environmental Microbiology, 2000. 66(9): p. 3951-3959.
    97. Zhang, X., X. Yan, P. Gao, et al., Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system. Journal of microbiological methods, 2005. 60(1): p. 1-11.
    98. Olsen, G.J., D. Lane, S. Giovannoni, et al., Microbial ecology and evolution: a ribosomal RNA approach. Annual Reviews in Microbiology, 1986. 40(1): p. 337-365.
    99. Giovannoni, S.J., T.B. Britschgi, C.L. Moyer, et al., Genetic diversity in Sargasso Seabacterioplankton. 1990. 345(3): p. 60-63.
    100. Amann R, Ludwig W, and S. K, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 1995. 59(1): p. 143-169.
    101. Jones, R.T., M.S. Robeson, C.L. Lauber, et al., A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, 2009. 3(4): p. 442-453.
    102. Dunbar, J., S. Takala, S.M. Barns, et al., Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Applied and Environmental Microbiology, 1999. 65(4): p. 1662-1669.
    103. Rappe, M.S., P.F. Kemp, and S.J. Giovannoni, Chromophyte plastid 16S ribosomal RNA genes found in a clone library from Atlantic Ocean seawater. Journal of Phycology, 1995. 31(6): p. 979-988.
    104. Hentschel, U., J. Hopke, M. Horn, et al., Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology, 2002. 68(9): p. 4431-4440.
    105. Sekiguchi, H., M. Watanabe, T. Nakahara, et al., Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Applied and Environmental Microbiology, 2002. 68(10): p. 5142-5150.
    106. Li, M., B. Wang, M. Zhang, et al., Symbiotic gut microbes modulate human metabolic phenotypes. Proceedings of the National Academy of Sciences, 2008. 105(6): p. 2117-2122.
    107. Ellis, R.J., P. Morgan, A.J. Weightman, et al., Cultivation-dependent and-independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and environmental microbiology, 2003. 69(6): p. 3223-3230.
    108. Cottrell, M.T. and D.L. Kirchman, Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Applied and environmental microbiology, 2000. 66(12): p. 5116-5122.
    109. Friedrich, U., K. Prior, K. Altendorf, et al., High bacterial diversity of a waste gas‐degrading community in an industrial biofilter as shown by a 16S rDNA clone library. Environmentalmicrobiology, 2002. 4(11): p. 721-734.
    110. Blackall, L.L., P.C. Burrell, H. Gwilliam, et al., The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities. Water Science and Technology, 1998. 37(4-5): p. 451-454.
    111. Li, H., S. Yang, and B. Mu, Phylogenetic diversity of the archaeal community in a continental high-temperature, water-flooded petroleum reservoir. Current Microbiology, 2007. 55(5): p. 382-388.
    112. Pham, V., L. Hnatow, S. Zhang, et al., Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environmental microbiology, 2009. 11(1): p. 176-187.
    113. Li, H., S. Yang, B. Mu, et al., Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiology Letters, 2006. 257(1): p. 92-98.
    114. Li, H., S. Yang, B. Mu, et al., Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS microbiology ecology, 2007. 60(1): p. 74-84.
    115. Nazina, T., A. Ivanova, I. Borzenkov, et al., Occurrence and geochemical activity of microorganisms in high-temperature, water-flooded oil fields of Kazakhstan and Western Siberia. Geomicrobiology Journal, 1995. 13(3): p. 181-192.
    116. Dahle, H., F. Garshol, M. Madsen, et al., Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek, 2008. 93(1): p. 37-49.
    117. Ren, H.Y., X.J. Zhang, Z. Song, et al., Comparison of Microbial Community Compositions of Injection and Production Well Samples in a Long-Term Water-Flooded Petroleum Reservoir. PloS one, 2011. 6(8): p. e23258.
    118.汪卫东,孤岛油田中一区馆3单元油藏微生物多样性分析.应用与环境生物学报, 2010. 16(003): p. 415-419.
    119. Yamachika, T., J.L. Werther, C. Bodian, et al., Intestinal trefoil factor: a marker of poor prognosis in gastric carcinoma. Clinical cancer research: an official journal of the American Association forCancer Research, 2002. 8(5): p. 1092-1099.
    120. Tiedje, J.M., S. Asuming-Brempong, K. Nüsslein, et al., Opening the black box of soil microbial diversity. Applied Soil Ecology, 1999. 13(2): p. 109-122.
    121. Smit, E., P. Leeflang, and K. Wernars, Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS microbiology ecology, 1997. 23(3): p. 249-261.
    122. Moffett, B.F., F.A. Nicholson, N.C. Uwakwe, et al., Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS microbiology ecology, 2003. 43(1): p. 13-19.
    123. She, Y., X. Zhang, F. Zhang, et al., Molecular analysis of the microbial communities of the Dagang Kongdian flooding bed oil f ield. Acta Microbiologica Sinica, 2005. 45(003): p. 329-334.
    124. Kirk, J.L., L.A. Beaudette, M. Hart, et al., Methods of studying soil microbial diversity. Journal of microbiological methods, 2004. 58(2): p. 169-188.
    125. Liu, W.T., T.L. Marsh, H. Cheng, et al., Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and environmental microbiology, 1997. 63(11): p. 4516-4522.
    126. Engebretson, J.J. and C.L. Moyer, Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Applied and environmental microbiology, 2003. 69(8): p. 4823-4829.
    127. Denaro, R., G. D’Auria, G. Di Marco, et al., Assessing terminal restriction fragment length polymorphism suitability for the description of bacterial community structure and dynamics in hydrocarbon‐polluted marine environments. Environmental microbiology, 2005. 7(1): p. 78-87.
    128. Moeseneder, M.M., J.M. Arrieta, G. Muyzer, et al., Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Applied and environmental microbiology, 1999. 65(8): p. 3518-3525.
    129. Osborn, A.M., E.R.B. Moore, and K.N. Timmis, An evaluation of terminal‐restriction fragment length polymorphism (T‐RFLP) analysis for the study of microbial community structure and dynamics. Environmental microbiology, 2000. 2(1): p. 39-50.
    130. Lueders, T. and M.W. Friedrich, Evaluation of PCR amplification bias by terminal restrictionfragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Applied and environmental microbiology, 2003. 69(1): p. 320-326.
    131.吴作军,卢滇楠,张敏莲,等,微生物分子生态学技术及其在石油污染土壤修复中的应用现状与展望,化工进展, 2010. p. 63-67.
    132. Lukow, T., P.F. Dunfield, and W. Liesack, Use of the T‐RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non‐transgenic potato plants. FEMS microbiology ecology, 2000. 32(3): p. 241-247.
    133. Horz, H.P., J.H. Rotthauwe, T. Lukow, et al., Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of microbiological methods, 2000. 39(3): p. 197-204.
    134.袁三青,薛燕芬,高鹏,等, T-RFLP技术分析油藏微生物多样性,微生物学报, 2007. p. 290-294.
    135.欧阳松应,杨冬,欧阳红生,等,实时荧光定量PCR技术及其应用,生命的化学, 2004. p. 74-76.
    136. Stubner, S., Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen (TM) detection. Journal of microbiological methods, 2002. 50(2): p. 155-164.
    137. Li, H., S. Chen, B.Z. Mu, et al., Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs. Microbial ecology, 2010. 60(4): p. 1-13.
    138. Harms, G., A.C. Layton, H.M. Dionisi, et al., Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental science & technology, 2003. 37(2): p. 343-351.
    139. Tyagi, S. and F.R. Kramer, Molecular beacons: probes that fluoresce upon hybridization. Nature biotechnology, 1996. 14(3): p. 303-308.
    140. Broude, N.E., Stem-loop oligonucleotides: a robust tool for molecular biology and biotechnology. TRENDS in Biotechnology, 2002. 20(6): p. 249-256.
    141. Kubista, M., J.M. Andrade, M. Bengtsson, et al., The real-time polymerase chain reaction. Molecular aspects of medicine, 2006. 27(2-3): p. 95-125.
    142. Ibekwe, A. and C. Grieve, Detection and quantification of Escherichia coli O157: H7 in environmental samples by real‐time PCR. Journal of applied microbiology, 2003. 94(3): p. 421-431.
    143. Landeweert, R., C. Veenman, T.W. Kuyper, et al., Quantification of ectomycorrhizal mycelium in soil by real‐time PCR compared to conventional quantification techniques. FEMS microbiology ecology, 2003. 45(3): p. 283-292.
    144. Smits, T.H.M., C. Devenoges, K. Szynalski, et al., Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. Journal of microbiological methods, 2004. 57(3): p. 369-378.
    145. He, J.W. and S. Jiang, Quantification of enterococci and human adenoviruses in environmental samples by real-time PCR. Applied and environmental microbiology, 2005. 71(5): p. 2250-2255.
    146. Malinen, E., T. Rinttil , K. Kajander, et al., Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. The American journal of gastroenterology, 2005. 100(2): p. 373-382.
    147. Malorny, B., E. Paccassoni, P. Fach, et al., Diagnostic real-time PCR for detection of Salmonella in food. Applied and environmental microbiology, 2004. 70(12): p. 7046-7052.
    148. Smith, M.S., R.K. Yang, C.W. Knapp, et al., Quantification of tetracycline resistance genes in feedlot lagoons by real-time PCR. Applied and environmental microbiology, 2004. 70(12): p. 7372-7377.
    149. Volkmann, H., T. Schwartz, P. Bischoff, et al., Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). Journal of microbiological methods, 2004. 56(2): p. 277-286.
    150. Wang, G. and Y. Wang, Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. Applied and environmental microbiology, 1997. 63(12): p. 4645-4650.
    151. Qiu, X., L. Wu, H. Huang, et al., Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Applied and environmental microbiology, 2001. 67(2): p. 880-887.
    152. Speksnijder, A.G.C.L., G.A. Kowalchuk, S. De Jong, et al., Microvariation artifacts introduced byPCR and cloning of closely related 16S rRNA gene sequences. Applied and environmental microbiology, 2001. 67(1): p. 469-472.
    153. Wintzingerode, F., U.B. G bel, and E. Stackebrandt, Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiology Reviews, 1997. 21(3): p. 213-229.
    154. Thompson, J., L. Marcelino, and M. Polz, Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by'reconditioning PCR'. Nucleic Acids Research, 2002. 30(9): p. 2083-2088.
    155. DeSantis, T.Z., P. Hugenholtz, N. Larsen, et al., Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and environmental microbiology, 2006. 72(7): p. 5069-5072.
    156. Fodor, S.P., J.L. Read, M.C. Pirrung, et al., Light-directed, spatially addressable parallel chemical synthesis. Science, 1991. 251(4995): p. 767-773.
    157. Lockhart, D.J., H. Dong, M.C. Byrne, et al., Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature biotechnology, 1996. 14(13): p. 1675-1680.
    158. Lashkari, D.A., J.L. DeRisi, J.H. McCusker, et al., Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proceedings of the National Academy of Sciences, 1997. 94(24): p. 13057-13062.
    159. Heller, R.A., M. Schena, A. Chai, et al., Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proceedings of the National Academy of Sciences, 1997. 94(6): p. 2150-2155.
    160.安海谦,卢圣栋, DNA芯片技术及其应用.生物工程进展, 1998. 18(2): p. 37-40.
    161. Hacia, J.G., L.C. Brody, M.S. Chee, et al., Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two–colour fluorescence analysis. Nature genetics, 1996. 14(4): p. 441-447.
    162. Hacia, J.G., W. Makalowski, K. Edgemon, et al., Evolutionary sequence comparisons using high-density oligonucleotide arrays. Nature genetics, 1998. 18(2): p. 155-158.
    163. Yergeau, E., S.A. Schoondermark-Stolk, E.L. Brodie, et al., Environmental microarray analyses of Antarctic soil microbial communities. The ISME Journal, 2008. 3(3): p. 340-351.
    164. Hai-Qian, A. and I. Sheng-Dong, DNA chip the technology and application. Progressin Biotechnology, 1998. 18(2): p. 37-40.
    165.Radajewski, S., P. Ineson, N.R. Parekh, et al., Stable-isotope probing as a tool in microbial ecology. Nature, 2000. 403(6770): p. 646-649.
    166. Hutchens, E., S. Radajewski, M.G. Dumont, et al., Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environmental microbiology, 2004. 6(2): p. 111-120.
    167. Miller, L.G., K.L. Warner, S.M. Baesman, et al., Degradation of methyl bromide and methyl chloride in soil microcosms: Use of stable C isotope fractionation and stable isotope probing to identify reactions and the responsible microorganisms1. Geochimica et Cosmochimica Acta, 2004. 68(15): p. 3271-3283.
    168. Borodina, E., M.J. Cox, I.R. McDonald, et al., Use of DNA‐stable isotope probing and functional gene probes to investigate the diversity of methyl chloride‐utilizing bacteria in soil. Environmental microbiology, 2005. 7(9): p. 1318-1328.
    169. Lin, J.L., S. Radajewski, B.T. Eshinimaev, et al., Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environmental microbiology, 2004. 6(10): p. 1049-1060.
    170. Ginige, M.P., P. Hugenholtz, H. Daims, et al., Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Applied and environmental microbiology, 2004. 70(1): p. 588-596.
    171. Singleton, D.R., S.N. Powell, R. Sangaiah, et al., Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Applied and environmental microbiology, 2005. 71(3): p. 1202-1209.
    172. Bonch-Osmolovskaya, E., M. Miroshnichenko, A. Lebedinsky, et al., Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Applied and Environmental Microbiology, 2003. 69(10): p. 6143-6151.
    173. Voordouw, G., J.K. Voordouw, T.R. Jack, et al., Identification of distinct communities of sulfate-reducing bacteria in oil fields by reverse sample genome probing. Applied andenvironmental microbiology, 1992. 58(11): p. 3542-3552.
    174. Telang, A.J., S. Ebert, J.M. Foght, et al., Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Applied and environmental microbiology, 1997. 63(5): p. 1785-1793.
    175. Margulies, M., M. Egholm, W. Altman, et al., Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005. 437(7057): p. 376-380.
    176. Van Orsouw, N.J., R.C.J. Hogers, A. Janssen, et al., Complexity reduction of polymorphic sequences (CRoPS(tm)): a novel approach for large-scale polymorphism discovery in complex genomes. PloS one, 2007. 2(11): p. e1172.
    177. Hillier, L.D.W., G.T. Marth, A.R. Quinlan, et al., Whole-genome sequencing and variant discovery in C. elegans. Nature methods, 2008. 5(2): p. 183-188.
    178. Kirchman, D.L., M.T. Cottrell, and C. Lovejoy, The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environmental microbiology. 12(5): p. 1132-1143.
    179. Uroz, S., M. Buée, C. Murat, et al., Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environmental Microbiology Reports, 2010. 2(2): p. 281-288.
    180. Roesch, L., R. Fulthorpe, A. Riva, et al., Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 2007. 1(4): p. 283-290.
    181.O'Day, K., Gut Reaction: Pyrosequencing Provides the Poop on Distal Gut Bacteria. PLoS biology, 2008. 6(11): p. e295.
    182. Zhang, C., M. Zhang, S. Wang, et al., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. The ISME Journal, 2010. 4(2): p. 232-241.
    183. Andersson, A.F., M. Lindberg, H. Jakobsson, et al., Comparative analysis of human gut microbiota by barcoded pyrosequencing. PloS one, 2008. 3(7): p. e2836.
    184. Roh, S., K. Kim, H. Young-Do Nam, et al., Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. The ISME Journal, 2009. 4(1): p. 1-16.
    185. Liu, Z., T.Z. DeSantis, G.L. Andersen, et al., Accurate taxonomy assignments from 16S rRNAsequences produced by highly parallel pyrosequencers. Nucleic Acids Research, 2008. 36(18): p. e120.
    186. Liu, Z., C. Lozupone, M. Hamady, et al., Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Research, 2007. 35(18): p. e120.
    187. Wu, D., A. Hartman, N. Ward, et al., An automated phylogenetic tree-based small subunit rRNA taxonomy and alignment pipeline (STAP). PloS one, 2008. 3(7): p. e2566.
    188. Eckford, R. and P. Fedorak, Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. Journal of Industrial Microbiology and Biotechnology, 2002. 29(2): p. 83-92.
    189. Nazina, T., A. Ivanova, O. Goulbeva, et al., Occurence of sulfate-and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field. Microbiology (New York), 1995. 64(2).
    190. Grassia, G.S., K.M. McLean, P. Glénat, et al., A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS microbiology ecology, 1996. 21(1): p. 47-58.
    191.承磊,仇天雷,邓宇,等,油藏厌氧微生物研究进展,应用与环境生物学报, 2006. p. 740-744.
    192.李煜庚,冯世功,石油微生物学.第一版,1991,上海:上海交通大学出版社. 302-303.
    193.刘金峰,牟伯中,油藏极端环境中的微生物,微生物学杂志, 2004. p. 31-34.
    194. Margesin, R., M. H mmerle, and D. Tscherko, Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: effects of hydrocarbon concentration, fertilizers, and incubation time. Microbial ecology, 2007. 53(2): p. 259-269.
    195. Head, I.M., D.M. Jones, and S.R. Larter, Biological activity in the deep subsurface and the origin of heavy oil. Nature, 2003. 426(6964): p. 344-352.
    196.蔡春芳,李宏涛,沉积盆地热化学硫酸盐还原作用评述.地球科学进展, 2005. 20(10): p. 1100-1105.
    197. Rueter, P., R. Rabus, H. Wilkest, et al., Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 1994. 372(6505): p. 455-458.
    198. Cord-Ruwisch, R., W. Kleinitz, and F. Widdel, Sulfate-reducing bacteria and their activities in oil production. Journal of petroleum technology, 1987. 39(1): p. 97-106.
    199. Tardy-Jacquenod, C., P. Caumette, R. Matheron, et al., Characterization of sulfate-reducingbacteria isolated from oil-field waters. Canadian journal of microbiology, 1996. 42(3): p. 259-266.
    200. NILSEN, R.K., T. Torsvik, and T. Lien, Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. International journal of systematic bacteriology, 1996. 46(2): p. 397-402.
    201. Castro, H.F., N.H. Williams, and A. Ogram, Phylogeny of sulfate‐reducing bacteria1. FEMS microbiology ecology, 2000. 31(1): p. 1-9.
    202. Magot, M., P. Caumette, J. Desperrier, et al., Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. International journal of systematic bacteriology, 1992. 42(3): p. 398-402.
    203. Rees, G., S. GRASSIA, J. SHEEHY, et al., Desulfacinum infernurn gem nov., sp. nov., a Thermophilic Sulfate-Reducing Bacterium from a Petroleum Reservoir. International Journal of Systematic and Evolutionary Microbiology, 1995. 45(1): p. 85-89.
    204. Nemati, M., G. Jenneman, and G. Voordouw, Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnology and bioengineering, 2001. 74(5): p. 424-434.
    205. Hitzman, D.O., Enhanced oil recovery process using microorganisms. 1984, Google Patents: USA.
    206. Jayaraman, A., P. Hallock, R. Carson, et al., Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Applied microbiology and biotechnology, 1999. 52(2): p. 267-275.
    207.王立影, M. Maurice,李辉,等,石油烃的厌氧生物降解对油藏残余油气化开采的启示,微生物学通报, 2010. p. 96-102.
    208. Belyaev, S. and M. Ivanov, Bacterial methanogenesis in underground waters. Ecological Bulletins, 1983(35): p. 273-280.
    209. Cheng, L., T. Qiu, X. Li, et al., Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiology Letters, 2008. 285(1): p. 65-71.
    210. Gieg, L., K. Duncan, and J. Suflita, Bioenergy production via microbial conversion of residual oil to natural gas. Applied and Environmental Microbiology, 2008. 74(10): p. 3022-3029.
    211. Davydova-Charakhchyan, I., A. Mileeva, L. Mityushina, et al., The acetogenic bacteria from the oil fields in Tataria and Western Siberia. Mikrobiologia, 1992. 61(2): p. 306-315.
    212. Holmer, M. and E. Kristensen, Coexistence of sulfate reduction and methane production in anorganic-rich sediment. MARINE ECOLOGY-PROGRESS SERIES, 1994. 107: p. 177-177.
    213. Miranda-Tello, E., M.L. Fardeau, P. Thomas, et al., Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. International journal of systematic and evolutionary microbiology, 2004. 54(1): p. 169-174.
    214. Stetter, K., R. Huber, E. Bl chl, et al., Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature, 1993. 365(6448): p. 743-745.
    215. Fardeau, M.L., M. Magot, B. Patel, et al., Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. International journal of systematic and evolutionary microbiology, 2000. 50(6): p. 2141-2149.
    216. Bhupathiraju, V.K., M.J. McInerney, C.R. Woese, et al., Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. International journal of systematic bacteriology, 1999. 49(3): p. 953-960.
    217. McInerney, M.J., R.M. Knapp, J.L. Chisholm, et al. Use of indigenous or injected microorganisms for enhanced oil recovery. 1999.
    218. Grabowski, A., O. Nercessian, F. Fayolle, et al., Microbial diversity in production waters of a low-temperature biodegraded oil reservoir. FEMS microbiology ecology, 2005. 54(3): p. 427-444.
    219. Rainey, F.A., T.N. Zhilina, E.S. Boulygina, et al., The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov. and further taxonomic rearrangements at the genus and species level. Anaerobe, 1995. 1(4): p. 185-199.
    220. Patel, B., K. Andrews, B. Ollivier, et al., Reevaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA gene. FEMS microbiology letters, 1995. 134(1): p. 115-119.
    221. Ravot, G., B. Ollivier, M. Magot, et al., Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Applied and environmental microbiology, 1995. 61(5): p. 2053-2055.
    222. Grabowski, A., B.J. Tindall, V. Bardin, et al., Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. International journalof systematic and evolutionary microbiology, 2005. 55(3): p. 1113-1121.
    223. Salinas, M., M. Fardeau, J. Cayol, et al., Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. International journal of systematic and evolutionary microbiology, 2004. 54(3): p. 645-649.
    224. Miranda-Tello, E., M.L. Fardeau, J. Sepúlveda, et al., Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate-and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. International journal of systematic and evolutionary microbiology, 2003. 53(5): p. 1509-1514.
    225. Slobodkin, A.I., C. Jeanthon, S. L'Haridon, et al., Dissimilatory reduction of Fe (III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of Western Siberia. Current microbiology, 1999. 39(2): p. 99-102.
    226. Greene, A.C., B.K.C. Patel, and A.J. Sheehy, Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. International journal of systematic and evolutionary microbiology, 1997. 47(2): p. 505-509.
    227. Belyaev, S., I. Borzenkov, E. Milekhina, et al., Halotolerant and extremely halophilic oil-oxidizing bacteria in oil fields. Developments in Petroleum Science, 1993. 39: p. 79-88.
    228. Milekhina, E., I. Borzenkov, I. Zvyagintseva, et al., Characterization of a hydrocarbon-oxidizing Rhodococcus erythropolis strain isolated from an oil field. Microbiology, 1998. 67(3): p. 271-274.
    229. Stephens, J.O., L.R. Brown, and A.A. Vadie, The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1. 2000, National Petroleum Technology Office: United states. p. 5.
    230. Takahata, Y., M. Nishijima, T. Hoaki, et al., Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Applied and environmental microbiology, 2000. 66(1): p. 73-79.
    231. Orphan, V., S. Goffredi, E. Delong, et al., Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiology Journal, 2003. 20(4): p. 295-311.
    232. Grabowski, A., O. Nercessian, F. Fayolle, et al., Microbial diversity in production waters of a low‐temperature biodegraded oil reservoir. FEMS microbiology ecology, 2005. 54(3): p. 427-443.
    233. Greene, A., B. Patel, and S. Yacob, Geoalkalibacter subterraneus sp. nov., an anaerobic Fe (III)-and Mn (IV)-reducing bacterium from a petroleum reservoir, and emended descriptions of the family Desulfuromonadaceae and the genus Geoalkalibacter. International Journal of Systematic and Evolutionary Microbiology, 2009. 59(4): p. 781-785.
    234. L'Haridon, S., M. Miroshnichenko, H. Hippe, et al., Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. International journal of systematic and evolutionary microbiology, 2001. 51(4): p. 1327-1334.
    235. Salinas, M., Fardeau, ML,Cayol, JL,Casalot, L,Patel, BKC,Thomas, P,Garcia, JL,Ollivier, B, Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. International journal of systematic and evolutionary microbiology, 2004. 54(3): p. 645-649.
    236. White, J.R., Oil recovery by water flooding, in Mobil oil corporation, U.s.p. document, Editor. 1984, Google Patents: United states. p. 19.
    237. Babadagli, T., Scaling of cocurrent and countercurrent capillary imbibition for surfactant and polymer injection in naturally fractured reservoirs. SPE Journal, 2001. 6(4): p. 465-478.
    238. Lake, L.W., Enhanced oil recovery. 1989, United States. 550.
    239. Rozanova, E., A. Savvichev, Y.M. Miller, et al., Microbial processes in a West Siberian oil field flooded with waters containing a complex of organic compounds. Microbiology, 1997. 66(6): p. 718-725.
    240. Takahata, Y., T. Hoaki, and T. Maruyama, Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs. Archives of microbiology, 2001. 176(4): p. 264-270.
    241. Aitken, C.M., D. Jones, and S. Larter, Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 2004. 431(7006): p. 291-294.
    242. Larter, S., A. Wilhelms, I. Head, et al., The controls on the composition of biodegraded oils in the deep subsurface--part 1: biodegradation rates in petroleum reservoirs. Organic Geochemistry, 2003. 34(4): p. 601-613.
    243. Larter, S., H. Huang, J. Adams, et al., The controls on the composition of biodegraded oils in the deep subsurface: Part II mdash Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction. AAPG bulletin, 2006. 90(6): p. 921-938.
    1. E. Bastin, F. Greer, C. Merritt, et al., The presence of sulphate reducing bacteria in oil field waters[J]. Science, 1926, 63(1618):21-24.
    2. I. M. Head, D. M. Jones, S. R. Larter, Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964):344-352.
    3. M. Magot, B. Ollivier, B. Patel, Microbiology of petroleum reservoirs[J]. Antonie van Leeuwenhoek, 2000, 77(2):103-116.
    4. D. I. Gieg LM, Duncan KE, Suflita JM., Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields[J]. Environ Microbiol, 2010, 12(11 ):1462-2920.
    5. G. S. Grassia, K. M. McLean, P. Glénat, et al., A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs[J]. FEMS microbiology ecology, 1996, 21(1):47-58.
    6. A. C. Greene, B. K. C. Patel, A. J. Sheehy, Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir[J]. International journal of systematic and evolutionary microbiology, 1997, 47(2):505-509.
    7. L. Cheng, T. L. Qiu, X. B. Yin, et al., Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov[J]. International journal of systematic and evolutionary microbiology, 2007, 57(12):2964-2969.
    8. George Surfactant-Waterflooding Process[P]. 1967.
    9. G. B dtker, K. Lysnes, T. Torsvik, et al., Microbial analysis of backflowed injection water from a nitrate-treated North Sea oil reservoir[J]. Journal of Industrial Microbiology and Biotechnology, 2009, 36(3):439-450.
    10. H. Dahle, F. Garshol, M. Madsen, et al., Microbial community structure analysis of produced water from a high-temperature North Sea oil-field[J]. Antonie van Leeuwenhoek, 2008, 93(1):37-49.
    11. V. Orphan, L. Taylor, D. Hafenbradl, et al., Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs[J]. Applied and Environmental Microbiology, 2000, 66(2):700-711.
    12. V. Pham, L. Hnatow, S. Zhang, et al., Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods[J]. Environmental microbiology, 2009, 11(1):176-187.
    13. I. Lazar, I. Petrisor, T. Yen, Microbial enhanced oil recovery (MEOR)[J]. Petroleum Science and Technology, 2007, 25(11):1353-1366.
    14. L. Brown, Microbial enhanced oil recovery (MEOR)[J]. Current Opinion in Microbiology, 2010, 13(3):316-320.
    15. H. Li, S. Yang, B. Mu, Phylogenetic diversity of the archaeal community in a continental high-temperature, water-flooded petroleum reservoir[J]. Current Microbiology, 2007, 55(5):382-388.
    16. H. Li, S. Yang, B. Mu, et al., Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir[J]. FEMS Microbiology Letters, 2006, 257(1):92-98.
    17. H. Li, S. Yang, B. Mu, et al., Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield[J]. FEMS microbiology ecology, 2007, 60(1):74-84.
    18. M. L. Fardeau, M. Magot, B. Patel, et al., Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water[J]. International journal of systematic and evolutionary microbiology, 2000, 50(6):2141-2149.
    19. M. Magot, P. Caumette, J. Desperrier, et al., Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well[J]. International journal of systematic bacteriology, 1992, 42(3):398-402.
    20. J. R. White Oil recovery by water flooding[P]. 1984.
    21. G. Tang, N. Morrow, Salinity, temperature, oil composition, and oil recovery by waterflooding[J]. SPE Reservoir Engineering, 1997, 12(4):269-276.
    22. J. Liu, L. Ma, B. Mu, et al., The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir[J]. Journal of Petroleum Science and Engineering, 2005, 48(3-4):265-271.
    23. G. Grassia, K. McLean, P. Glénat, et al., A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs[J]. FEMS microbiology ecology, 1996,21(1):47-58.
    24. T. Nazina, A. Ivanova, G. Kandaurova, et al., Microbiological investigation of the carbonate collector of the Romashkinskoe oil field: background study before testing a biotechnology for the enhancement of oil recovery[J]. Microbiology, 1998, 67(5):582-589.
    25.刘金峰,牟伯中,油藏极端环境中的微生物[J].微生物学杂志, 2004, 24(4):31-34.
    26. E. Rozanova, A. Savvichev, Y. M. Miller, et al., Microbial processes in a West Siberian oil field flooded with waters containing a complex of organic compounds[J]. Microbiology, 1997, 66(6):718-725.
    27. She Y, Zhang F, Xiang T, et al., Microbial diversity in petroleum reservoirs analyzed by PCR-DGGE[J]. Acta Ecologica Sinica, 2005, 25 237-242.
    28. S. Yuan, Y. Xue, P. Gao, et al., Microbial diversity in shengli petroleum reservoirs analyzed by T-RFLP[J]. Acta microbiologica Sinica, 2007, 47(2):290-294.
    29. G. Muyzer, E. C. de Waal, A. G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3):695-700.
    30. J. M. Rothberg, J. H. Leamon, The development and impact of 454 sequencing[J]. Nat Biotechnol, 2008, 26(10):1117-1124.
    31. Y. Du, L. Guan, Interwell Tracer Tests: Lessons Learnted from Past Field Studies[C], 2005.
    32. J. Ramirez-Sabag, O. Valdiviezo-Mijangos, M. Coronado, Inter-well tracer tests in oil reservoirs using different optimization methods: A field case[J]. Geof铆sica Internacional, 2005, 44(1):113-120.
    33. S. C. S. Pickford, I. McConnell-ProTechnics, Attempts to Understand Reservoir Communication using Inter-well Chemical Tracers and the Coherence Cube[C], CSGE Geophysics, 2002:1-5.
    34. N. Yoshida, K. Yagi, D. Sato, et al., Bacterial communities in petroleum oil in stockpiles[J]. Journal of bioscience and bioengineering, 2005, 99(2):143-149.
    35.许坤,沈茂铮,高效聚合氯化铝在石油化工污水回收处理中的应用[J].环境化学, 1996, 15(4):356-359.
    36. J. Thompson, L. Marcelino, M. Polz, Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by'reconditioning PCR'[J]. Nucleic Acids Research, 2002,30(9):2083-2088.
    37. D. Lane, 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics (Stackebrandt E & Goodfellow M, eds)[J]. J. Wiley & Sons, Chichester, 1991:115–175.
    38. G. Muyzer, E. De Waal, A. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59(3):695-700.
    39. B. Liu, F. Zhang, X. Feng, et al., Thauera and Azoarcus as functionally important genera in a denitrifying quinoline‐removal bioreactor as revealed by microbial community structure comparison[J]. FEMS microbiology ecology, 2006, 55(2):274-286.
    40. R. Amann, W. Ludwig, K. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiology and Molecular Biology Reviews, 1995, 59(1):143-169.
    41. Raskin L, Poulsen L, Noguera D, et al., Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization[J]. Applied and Environmental Microbiology, 1994, 60(4):1241.
    42. C. Zhang, M. Zhang, S. Wang, et al., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice[J]. The ISME Journal, 2010, 4(2):232-241.
    43. M. L. Sogin, H. G. Morrison, J. A. Huber, et al., Microbial diversity in the deep sea and the underexplored“rare biosphere”[J]. Proceedings of the National Academy of Sciences, 2006, 103(32):12115-12120.
    44. P. McKenna, C. Hoffmann, N. Minkah, et al., The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis[J]. PLoS Pathog, 2008, 4(2):e20.
    45. P. J. Turnbaugh, M. Hamady, T. Yatsunenko, et al., A core gut microbiome in obese and lean twins[J]. Nature, 2008, 457(7228):480-484.
    46. T. DeSantis Jr, P. Hugenholtz, K. Keller, et al., NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes[J]. Nucleic Acids Research, 2006, 34(Web Server issue):W394.
    47. W. Ludwig, O. Strunk, R. Westram, et al., ARB: a software environment for sequence data[J].Nucleic acids research, 2004, 32(4):1363-1371.
    48. P. Schloss, J. Handelsman, Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness[J]. Applied and Environmental Microbiology, 2005, 71(3):1501–1506.
    49. C. Lozupone, R. Knight, UniFrac: a new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005, 71(12):8228.
    50. G. Celik, B. Aslim, Y. Beyatli, Enhanced crude oil biodegradation and rhamnolipid production by Pseudomonas stutzeri strain G 11 in the presence of Tween-80 and Triton X-100[J]. Journal of Environmental Biology, 2008, 29(6):867-870.
    51. L. Romanenko, M. Uchino, E. Falsen, et al., Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian[J]. The Journal of General and Applied Microbiology, 2005, 51(2):65-71.
    52.佘跃惠,张凡,向廷生等, PCR-DGGE方法分析原油储层微生物群落结构及种群多样性[J].生态学报, 2005, 25(2):237-242.
    53.袁三青,薛燕芬,高鹏等, T-RFLP技术分析油藏微生物多样性[J].微生物学报, 2007, 47(2):290-294.
    54. E. Bonch-Osmolovskaya, M. Miroshnichenko, A. Lebedinsky, et al., Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir[J]. Applied and Environmental Microbiology, 2003, 69(10):6143-6151.
    55. O. G. Brakstad, H. K. Kotlar, S. Markussen, Microbial communities of a complex high-temperature offshore petroleum reservoir[J]. International Journal of Oil, Gas and Coal Technology, 2008, 1(3):211-228.
    56. O. Brakstad, I. Nonstad, L. Faksness, et al., Responses of microbial communities in arctic sea ice after contamination by crude petroleum oil[J]. Microbial ecology, 2008, 55(3):540-552.
    57. J. Bowman, J. Cavanagh, J. Austin, et al., Novel Psychrobacter species from Antarctic ornithogenic soils[J]. International journal of systematic and evolutionary microbiology, 1996, 46(4):841-848.
    58. A. Vela, M. Collins, M. Latre, et al., Psychrobacter pulmonis sp. nov., isolated from the lungs of lambs[J]. International journal of systematic and evolutionary microbiology, 2003, 53(2):415-419.
    59. B. Jones, R. W. Renaut, M. R. Rosen, Silicified microbes in a geyser mound: the enigma of low-temperature cyanobacteria in a high-temperature setting[J]. Palaios, 2003, 18(2):87-109.
    60. K. Stetter, R. Huber, E. Bl chl, et al., Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs[J]. Nature, 1993, 365(6448):743-745.
    61. C. Hubert, A. Loy, M. Nickel, et al., A constant flux of diverse thermophilic bacteria into the cold Arctic seabed[J]. Science, 2009, 325(5947):1541-1544.
    62. A. Wentzel, T. Ellingsen, H. Kotlar, et al., Bacterial metabolism of long-chain n-alkanes[J]. Applied microbiology and biotechnology, 2007, 76(6):1209-1221.
    63. B. Ahring, A. Ibrahim, Z. Mladenovska, Effect of temperature increase from 55 to 65 C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure[J]. Water research, 2001, 35(10):2446-2452.
    64. Jack T, Stehmeier LG, Islam MR, et al., Microbial selective plugging to control water channeling[M]. Elsevier Science Publishing: 1991; p 433.
    65. C. Whitby, T. L. Skovhus, Applied Microbiology and Molecular Biology in Oil Field Systems: Proceedings from the International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (Ismos-2),2009. In 1st ed.; Springer Verlag: 2011:181.
    1. Nazina, T., A. Grigor'yan, Y. Xue, et al., Phylogenetic diversity of aerobic saprotrophic bacteria isolated from the Daqing oil field. Microbiology, 2002. 71(1): p. 91-97.
    2. Nilsen, R.K., T. Torsvik, and T. Lien, Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. International journal of systematic and evolutionary microbiology, 1996. 46(2): p. 397-402.
    3. Rueter, P., R. Rabus, H. Wilkest, et al., Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 1994. 372(6505): p. 455-458.
    4. Nazina, T., T. Tourova, A. Poltaraus, et al., Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. International journal of systematic and evolutionary microbiology, 2001. 51(2): p. 433-446.
    5. Grassia, G.S., K.M. McLean, P. Glénat, et al., A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS microbiology ecology, 1996. 21(1): p. 47-58.
    6. Grabowski, A., B.J. Tindall, V. Bardin, et al., Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. International journal of systematic and evolutionary microbiology, 2005. 55(3): p. 1113-1121.
    7. Cheng, L., T. Qiu, X. Li, et al., Isolation and characterization of Methanoculleus receptaculi sp. nov. from Shengli oil field, China. FEMS Microbiology Letters, 2008. 285(1): p. 65-71.
    8. Gieg LM, D.I., Duncan KE, Suflita JM., Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol, 2010. 12(11 ): p. 1462-2920.
    9. Cheng, L., T.L. Qiu, X.B. Yin, et al., Methermicoccus shengliensis gen. nov., sp. nov., a thermophilic, methylotrophic methanogen isolated from oil-production water, and proposal of Methermicoccaceae fam. nov. International journal of systematic and evolutionary microbiology, 2007. 57(12): p. 2964-2969.
    10. Magot, M., Indigenous microbial communities in oil fields. Petroleum microbiology, 2005: p. 21–33.
    11. Greene, A., B. Patel, and A. Sheehy, Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. International Journal of Systematic and Evolutionary Microbiology, 1997. 47(2): p. 505-509.
    12. Pham, V., L. Hnatow, S. Zhang, et al., Characterizing microbial diversity in production water froman Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environmental microbiology, 2009. 11(1): p. 176-187.
    13. Cord-Ruwisch, R., W. Kleinitz, and F. Widdel, Sulfate-reducing bacteria and their activities in oil production. Journal of petroleum technology, 1987. 39(1): p. 97-106.
    14. Bailey, N., H. Krouse, C. Evans, et al., Alteration of crude oil by waters and bacteria—evidence from geochemical and isotope studies. AAPG Bull, 1973. 57(7): p. 1276-1290.
    15. Meredith, W., S.J. Kelland, and D. Jones, Influence of biodegradation on crude oil acidity and carboxylic acid composition. Organic Geochemistry, 2000. 31(11): p. 1059-1073.
    16.伍晓林,陈坚,生物表面活性剂在提高原油采收率方面的应用,生物学杂志, 2000. p. 25-28.
    17. Banat, I., Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 1995. 51(1): p. 1-12.
    18. Maudgalya, S., R. Knapp, and M. McInerney, Microbially Enhanced Oil Recovery Technologies A Review of the Past, Present and Future. Ollivier, B., and Magot, M. ed. 2005, Washington, DC, USA: American Society for Microbiology Press. 215–237.
    19. Brown, L., Microbial enhanced oil recovery (MEOR). Current Opinion in Microbiology, 2010. 13(3): p. 316-320.
    20. Lazar, I., I. Petrisor, and T. Yen, Microbial enhanced oil recovery (MEOR). Petroleum Science and Technology, 2007. 25(11): p. 1353-1366.
    21. Sen, R., Biotechnology in petroleum recovery: The microbial EOR. Progress in Energy and Combustion Science, 2008. 34(6): p. 714-724.
    22. Wang, L., Anaerobic Biodegradation of Petroleum Hydrocarbons and Enlightenment of the Prospects for Gasification of Residual Oil. Microbiology/Weishengwuxue Tongbao, 2010. 37(1): p. 96-102.
    23. Jones, D., I. Head, N. Gray, et al., Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2007. 451(7175): p. 176-180.
    24. Boll, M., G. Fuchs, and J. Heider, Anaerobic oxidation of aromatic compounds and hydrocarbons. Current opinion in chemical biology, 2002. 6(5): p. 604-611.
    25. Widdel, F. and R. Rabus, Anaerobic biodegradation of saturated and aromatic hydrocarbons. Current Opinion in Biotechnology, 2001. 12(3): p. 259-276.
    26. Gold, T., The deep, hot biosphere. Proceedings of the National Academy of Sciences, 1992. 89(13): p. 6045-6049.
    27. Whitman, W.B., D.C. Coleman, and W.J. Wiebe, Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences, 1998. 95(12): p. 6578-6583.
    28. Hofmann, B. and J. Farmer, Filamentous fabrics in low-temperature mineral assemblages: are they fossil biomarkers? Implications for the search for a subsurface fossil record on the early Earth and Mars. Planetary and Space Science, 2000. 48(11): p. 1077-1086.
    29. D'Hondt, S., S. Rutherford, and A.J. Spivack, Metabolic activity of subsurface life in deep-sea sediments. Science, 2002. 295(5562): p. 2067-2070.
    30. Jorgensen, B.B. and A. Boetius, Feast and famine-microbial life in the deep-sea bed. Nature Reviews Microbiology, 2007. 5(10): p. 770-781.
    31. Jannasch, H.W. and G.E. Jones, Bacterial populations in sea water as determined by different methods of enumeration. Limnology and Oceanography, 1959. 4(2): p. 128-139.
    32. Kogure, K., U. Simidu, and N. Taga, A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol, 1979. 25(3): p. 415–420.
    33. Amann, R., W. Ludwig, and K. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 1995. 59(1): p. 143-169.
    34. Voordouw, G., S.M. Armstrong, M.F. Reimer, et al., Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Applied and environmental microbiology, 1996. 62(5): p. 1623-1629.
    35. She Y, Zhang F, Xiang T, et al., Microbial diversity in petroleum reservoirs analyzed by PCR-DGGE. Acta Ecologica Sinica, 2005. 25 p. 237-242.
    36. Li, H., S. Yang, B. Mu, et al., Molecular phylogenetic diversity of the microbial community associated with a high-temperature petroleum reservoir at an offshore oilfield. FEMS microbiology ecology, 2007. 60(1): p. 74-84.
    37. Orphan, V., L. Taylor, D. Hafenbradl, et al., Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Applied and Environmental Microbiology, 2000. 66(2): p. 700-711.
    38. Li, H., S. Yang, and B. Mu, Phylogenetic diversity of the archaeal community in a continental high-temperature, water-flooded petroleum reservoir. Current Microbiology, 2007. 55(5): p. 382-388.
    39. Dahle, H., F. Garshol, M. Madsen, et al., Microbial community structure analysis of produced water from a high-temperature North Sea oil-field. Antonie van Leeuwenhoek, 2008. 93(1): p. 37-49.
    40. Kaye, J.Z. and J.A. Baross, Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments. Applied and environmental microbiology, 2004. 70(10): p. 6220-6229.
    41. Parkes, R.J., P. Wellsbury, I.D. Mather, et al., Temperature activation of organic matter and minerals during burial has the potential to sustain the deep biosphere over geological timescales. Organic Geochemistry, 2007. 38(6): p. 845-852.
    42. Yamane K, Hattori Y, Ohtagaki H, et al., Microbial diversity with dominance of 16S rRNA gene sequences with high GC contents at 74 and 98°C subsurface crude oil deposits in Japan. FEMS Microbiol Ecol, 2011. 76: p. 220-235.
    43. Braak, C.J.F. and P. Smilauer, CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). 2002.
    44. Ainley, D.G., C.A. Ribic, and L.B. Spear, Species-habitat relationships among Antarctic seabirds: afunction of physical or biological factors? Condor, 1993: p. 806-816.
    45. McKenna, P., C. Hoffmann, N. Minkah, et al., The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog, 2008. 4(2): p. e20.
    46. Zhang, C., M. Zhang, S. Wang, et al., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. The ISME Journal, 2010. 4(2): p. 232-241.
    47. Bastin, E., F. Greer, C. Merritt, et al., The presence of sulphate reducing bacteria in oil field waters. Science, 1926. 63(1618): p. 21-24.
    48. Li, H., S. Yang, B. Mu, et al., Molecular analysis of the bacterial community in a continental high-temperature and water-flooded petroleum reservoir. FEMS Microbiology Letters, 2006. 257(1): p. 92-98.
    49. Reysenbach, A.L. and S.L. Cady, Microbiology of ancient and modern hydrothermal systems. TRENDS in Microbiology, 2001. 9(2): p. 79-86.
    50. Farrell, J. and A. Rose, Temperature effects on microorganisms. Annual Reviews in Microbiology, 1967. 21(1): p. 101-120.
    51. Prieur, D., Microbiology of deep-sea hydrothermal vents. Trends in Biotechnology, 1997. 15(7): p. 242-244.
    52. Pradillon, F., B. Shillito, C.M. Young, et al., Deep-sea ecology: Developmental arrest in vent worm embryos. Nature, 2001. 413(6857): p. 698-699.
    53. Grabowski, A., O. Nercessian, F. Fayolle, et al., Microbial diversity in production waters of a low‐temperature biodegraded oil reservoir. FEMS microbiology ecology, 2005. 54(3): p. 427-443.
    54.任红燕,宋志勇,李霏霁,等,胜利油藏不同时间细菌群落结构的比较,微生物学通报, 2010. p. 561-568.
    55. Yuan, S., Y. Xue, P. Gao, et al., Microbial diversity in shengli petroleum reservoirs analyzed by T-RFLP. Acta microbiologica Sinica, 2007. 47(2): p. 290-294.
    56. Jack T, Stehmeier LG, Islam MR, et al., Microbial selective plugging to control water channeling. 1991: Elsevier Science Publishing. 433.
    57. Whitby, C. and T.L. Skovhus, Applied Microbiology and Molecular Biology in Oil Field Systems: Proceedings from the International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (Ismos-2),2009. 2011, Springer Verlag. p. 181.
    58. Schippers, A., L.N. Neretin, J. Kallmeyer, et al., Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 2005. 433(7028): p. 861-864.
    59. Biddle, J.F., J.S. Lipp, M.A. Lever, et al., Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(10): p. 3846-3851.
    60. Magot, M., B. Ollivier, and B. Patel, Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, 2000. 77(2): p. 103-116.
    1. Outlook, A.E., Energy Information Administration. Department of Energy. Vol. DOE/EIA-0383. 2006, Washington, DC.
    2. Jones, D., I. Head, N. Gray, et al., Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2007. 451(7175): p. 176-180.
    3. Dworkin, M., S. Falkow, E. Rosenberg, et al., Anaerobic Biodegradation of Hydrocarbons Including Methane, in The prokaryotes. 2006, Springer New York. p. 1028-1049.
    4. Gieg LM, D.I., Duncan KE, Suflita JM., Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol, 2010. 12(11 ): p. 1462-2920.
    5. Bitton, G., Encyclopedia of environmental microbiology, ed. R.C. Prince. 2002, New York: Wiley. 2402-2416.
    6. Krejci-Graf, K., Rule of density of oils. Bull. Am. Assoc. Petrol. Geologists, 1932. 16: p. 1038.
    7. Palmer, S.E., ed. Effect of biodegradation and water washing on crude oil composition. Organic Geochemistry. 1993, Plenum: New York. 511-534.
    8. Krejci-Graf, K., Rule of density of oils. Bull. Am. Assoc. Petrol. Geologists, 1932. 16: p. 1038-1043.
    9. Palmer, S.E., Effect of biodegradation and water washing on crude oil composition. Organic Geochemistry, 1993: p. 511–533.
    10. Volkman, J.K., R. Alexander, R.I. Kagi, et al., Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia. Organic Geochemistry, 1984. 6: p. 619-632.
    11. Wenger, L., C. Davis, and G. Isaksen. Multiple controls on petroleum biodegradation and impact on oil quality. 2001.
    12. Horstad, I., S. Larter, and N. Mills, A quantitative model of biological petroleum degradation within the Brent Group reservoir in the Gullfaks field, Norwegian North Sea. Organic Geochemistry, 1992. 19(1-3): p. 107-117.
    13. Head, I., D. Jones, and S. Larter, Biological activity in the deep subsurface and the origin of heavyoil. Nature, 2003. 426(6964): p. 344-352.
    14. Dolfing, J., S.R. Larter, and I.M. Head, Thermodynamic constraints on methanogenic crude oil biodegradation. The ISME journal, 2007. 2(4): p. 442-452.
    15. Muller, F., On methane fermentation of higher alkanes. Antonie van Leeuwenhoek, 1957. 23(1): p. 369-384.
    16. Atlas, R.M., Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiology and Molecular Biology Reviews, 1981. 45(1): p. 180.
    17. Leahy, J.G. and R.R. Colwell, Microbial degradation of hydrocarbons in the environment. Microbiology and Molecular Biology Reviews, 1990. 54(3): p. 305.
    18. Grbic-Galic, D. and T.M. Vogel, Transformation of toluene and benzene by mixed methanogenic cultures. Applied and Environmental Microbiology, 1987. 53(2): p. 254.
    19.李赞豪,李季,原油的厌氧细菌降解作用及其产物特征.石油与天然气地质, 1998. 19(001): p. 28-34.
    20. Aitken, C., D. Jones, and S. Larter, Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, 2004. 431(7006): p. 291-294.
    21. Zengler, K., H.H. Richnow, R. Rosselló-Mora, et al., Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999. 401(6750): p. 266-269.
    22. Ehrenreich, P., A. Behrends, J. Harder, et al., Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Archives of microbiology, 2000. 173(1): p. 58-64.
    23. Rios-Hernandez, L.A., L.M. Gieg, and J.M. Suflita, Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Applied and Environmental Microbiology, 2003. 69(1): p. 434.
    24. Rabus, R., H. Wilkes, A. Schramm, et al., Anaerobic utilization of alkylbenzenes and n-alkanes from crude oil in an enrichment culture of denitrifying bacteria affiliating with the b-subclass of Proteobacteria. Environmental microbiology, 1999. 1(2): p. 145-158.
    25. Townsend, G.T., R.C. Prince, and J.M. Suflita, Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environmental science & technology, 2003. 37(22): p. 5213-5218.
    26. Rueter, P., R. Rabus, H. Wilkest, et al., Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature, 1994. 372(6505): p. 455-458.
    27. Lovley, D.R. and D.J. Lonergan, Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Applied and Environmental Microbiology, 1990. 56(6): p. 1858.
    28. Aeckersberg, F., F. Bak, and F. Widdel, Anaerobic oxidation of saturated hydrocarbons to CO 2 by a new type of sulfate-reducing bacterium. Archives of microbiology, 1991. 156(1): p. 5-14.
    29. Magot, M., Indigenous microbial communities in oil fields. Petroleum Microbiology, 2005: p. 21–33.
    30. Pallasser, R., Recognising biodegradation in gas/oil accumulations through the [delta] 13C compositions of gas components. Organic Geochemistry, 2000. 31(12): p. 1363-1373.
    31. Anderson, R.T. and D.R. Lovley, Biogeochemistry: Hexadecane decay by methanogenesis. Nature, 2000. 404(6779): p. 722-723.
    32. Gieg, L., K. Duncan, and J. Suflita, Bioenergy production via microbial conversion of residual oil to natural gas. Applied and Environmental Microbiology, 2008. 74(10): p. 3022-3029.
    33. Alperin, M.J. and W.S. Reeburgh, Inhibition experiments on anaerobic methane oxidation. Applied and environmental microbiology, 1985. 50(4): p. 940-945.
    34. Iversen, N. and B. Jorgensen, Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr, 1985. 30(5): p. 944-955.
    35. Boetius, A., K. Ravenschlag, C.J. Schubert, et al., A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000. 407(6804): p. 623-626.
    36. Michaelis, W., R. Seifert, K. Nauhaus, et al., Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science, 2002. 297(5583): p. 1013-1015.
    37. McCartney, D. and J. Oleszkiewicz, Sulfide inhibition of anaerobic degradation of lactate and acetate. Water Research, 1991. 25(2): p. 203-209.
    38. Widdel, F., A. Boetius, and R. Rabus, Anaerobic biodegradation of hydrocarbons including methane. 2 ed. The prokaryotes. 2006. 1028-1049.
    39. Muyzer, G., E. De Waal, and A. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993. 59(3): p. 695-700.
    40. Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology and Molecular Biology Reviews, 1995. 59(1): p. 143-169.
    41. Raskin L, Poulsen L, Noguera D, et al., Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization. Applied and Environmental Microbiology, 1994. 60(4): p. 1241.
    42. Sogin, M.L., H.G. Morrison, J.A. Huber, et al., Microbial diversity in the deep sea and the underexplored“rare biosphere”. Proceedings of the National Academy of Sciences, 2006. 103(32): p. 12115-12120.
    43. Fritze, H., S. Niini, K. Mikkola, et al., Soil microbial effects of a Cu-Ni smelter in southwestern Finland. Biology and Fertility of Soils, 1989. 8(1): p. 87-94.
    44. Braak, C.J.F., CANOCO-an extension of DECORANA to analyze species-environment relationships. Plant Ecology, 1988. 75(3): p. 159-160.
    45. Roling, W.F.M., I.M. Head, and S.R. Larter, The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Research in microbiology, 2003. 154(5): p. 321-328.
    46.王立影, M. Maurice,李辉,等,石油烃的厌氧生物降解对油藏残余油气化开采的启示,微生物学通报, 2010. p. 96-102.
    47. Lovley, D.R., M.J. Baedecker, D.J. Lonergan, et al., Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature, 1989. 339(6222): p. 297-300.
    48. Larter, S., A. Wilhelms, I. Head, et al., The controls on the composition of biodegraded oils in the deep subsurface--part 1: biodegradation rates in petroleum reservoirs. Organic Geochemistry, 2003. 34(4): p. 601-613.
    49. Zengler, K., H. Richnow, R. Rosselló-Mora, et al., Methane formation from long-chain alkanes by anaerobic microorganisms. Nature, 1999. 401(6750): p. 266-269.
    50.任红燕,宋志勇,李霏霁,等,胜利油藏不同时间细菌群落结构的比较,微生物学通报, 2010. p. 561-568.
    51. UEKI, A., K. UEKI, and K. MATSUDA, Effect of sulfate reduction on methanogenesis in the anaerobic digestion of animal waste. Journal of General and Applied Microbiology, 1988. 34(3): p. 297-301.
    52. Nilsen, R.K., T. Torsvik, and T. Lien, Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. International journal of systematic and evolutionary microbiology, 1996. 46(2): p. 397-402.
    53. Rabus, R. and F. Widdel, Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Archives of microbiology, 1995. 163(2): p. 96-103.
    54.刘聿太,沼气发酵微生物及厌氧技术. 1990,北京:科学出版社.
    55. Pham, V., L. Hnatow, S. Zhang, et al., Characterizing microbial diversity in production water from an Alaskan mesothermic petroleum reservoir with two independent molecular methods. Environmental microbiology, 2009. 11(1): p. 176-187.
    56. Gieg, L.M., K.E. Duncan, and J.M. Suflita, Bioenergy production via microbial conversion of residual oil to natural gas. Applied and Environmental Microbiology, 2008. 74(10): p. 3022-3029.
    57. Bekins, B., E. Godsy, and E. Warren, Distribution of microbial physiologic types in an aquifer contaminated by crude oil. Microbial Ecology, 1999. 37(4): p. 263-275.
    58. Clarens, M., N. Bernet, J.P. Delgens, et al., Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS microbiology ecology, 1998. 25(3): p. 271-276.
    59. Whiticar, M.J. and E. Faber, Methane oxidation in sediment and water column environments--Isotope evidence. Organic Geochemistry, 1986. 10(4-6): p. 759-768.
    60. Magot, M., B. Ollivier, and B. Patel, Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek, 2000. 77(2): p. 103-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700