天蓝色链霉菌cvnA、sarA及rrdA基因功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     天蓝色链霉菌A3(2)全基因组序列于2002年完成,在其中发现了13个非常保守的操纵子——conservon(cvn)。cvn由4-5个基因组成(cvnABCD或者cvnABCDE),cvnA和cvnD分别编码一个跟组氨酸激酶具有较弱相似性的膜蛋白和一个类似真核G蛋白的GTP水解酶。我们在天蓝色链霉菌M145中成功构建了分别缺失13个cvnA基因的突变体,并在YBP培养基(添加了不同小分子营养物)上观察它们的表型变化,发现其中3个cvnA基因的缺失影响了菌丝发育和次生代谢。cvnA1突变体比野生型菌株发育更快,产孢更丰富,随着培养基内渗透压的升高,表型差异越来越明显。相对于野生型来说,cvnA1突变体放线紫红素(Act)和十一烷基灵菌红素(Red)的产量增加。在固体培养基YBP上,添加0.2M或更高浓度的NaCl、NaNO_3、KCl或者KNO_3后,cvnA1突变体能大量产生Act。cvnA2突变体在含甘氨酸的YBP培养基上生长发育比野生型要好。cvnA8突变体在含谷氨酰胺的培养基上产Act比野生型要早。生化实验证明CvnA1蛋白没有自磷酸化活性,但能结合并水解ATP。通过遗传互补实验我们发现CvnA1蛋白C端614个氨基酸对于上面所提到的表型不是必需的。进一步的RT-PCR实验发现cvnA1突变体中ramR、ramC、chpE、bldN,redD和redZ的转录水平比野生型显著升高了。这些结果表明CvnA1蛋白通过调控表面活化分子SapB、Chplins以及抗生素合成通路转录活化因子的mRNA水平来调控气生菌丝发育和次生代谢。
     第二部分
     链霉菌在整个生活周期中会经历一个形态分化和次生代谢的复杂过程。我们在天蓝色链霉菌M145中发现了一个在链霉菌中高度保守的新基因sarA(sco4069,sporulation and antibiotic production related gene),该基因编码的蛋白除了跨膜结构域外没有任何已知功能结构域。跟野生型相比,sarA突变体孢子发育变快,Act和Red产量显著降低。RT-PCR分析表明SarA通过调控actⅡ-orf 4和redΖ的mRNA水平来调控抗生素的合成。
     第三部分
     链霉菌除了具有复杂的形态分化外,还能产生多种次生代谢产物特别是抗生素。为了能更深入地了解Red合成的信号调控通路,我们利用一种体内转座系统在天蓝色链霉菌中寻找参与Red合成调控的新基因。我们一共得到了25个不能产生Red的突变体,这些突变体Act的产量也同时受到了不同程度的影响。其中24个突变体的插入位点位于已知的Red生物合成基因簇中,另外一个突变体的插入位点位于rrdA(regulator of redD,sco1104)基因上游40bp。rrdA基因编码一个TetR家族的转录因子蛋白,在链霉菌中高度保守。与野生型相比,rrdA突变株中Red产量提高,Act产量下降,而在过表达rrdA基因的M145菌株中Red的产生受到抑制,Act的产量得到提高。RT-PCR结果表明RrdA通过调控redD的mRNA丰度来负调控Red的合成,而对Act合成特异转录调控因子actⅡ-orf4的转录没有影响,RrdA对Act的正调控作用很可能是因为Act和Red的合成存在底物竞争关系而形成的。
PartⅠ
     In 2002 the first complete Streptomyces species genome(Streptomyces coelicolor A3(2)) was finished,revealing the presence of 13 four or five gene clusters named conservon(cvn,conserved operon).The cvnA and cvnD genes of the clusters (cvnABCDE) encode a membrane protein(CvnA),showing a weak similarity to histidine kinase,and a eukaryotic G protein like GTPase(CvnD),respectively.We constructed null mutants for each of the 13 cvnA genes in S.coelicolor M145 and screened phenotypes for aberrant development on YBP agar with different small molecule nutrient supplements.The null mutant of cvnA1 accelerated aerial mycelia development and well-sporulation at a carbon source independent manner.Comparing to the prototype,cvnA1 mutant increased the actinorhodin(Act) and undecylprodigiosin(Red) productivity.When 0.2 M or higher concentrations of NaCl, NaNO_3,KCl or KNO_3 was added into the solid YBP medium,the mutant over-produced Act dramatically.The cvnA2 null mutant grew better than the prototype on YBP agar with glycine while the cvnA8 null mutant produced more Act earlier than the prototype on media with glutamine.Biochemical analyses revealed that CvnA1 protein could bind ATP/ADP and hydrolyze ATP,but showed no detectable autophosphorylation activity.Genetic complementation assays using various truncated C terminus and N terminus of cvnA1 for cvnA1 null mutant showed that the C terminus 614 amino acids was not necessary for the function mentioned above. RT-PCR results showed that transcriptional levels of ramR,ramC,chpE,bldN,redD and redZ were upregulated significantly in the cvnA1 null mutant.Altogether,these results indicated that CvnA1 influences the aerial morphogenesis and antibiotic production by affecting the expression of surfactants,SapB and Chaplins,and pathway-specific activators in Streptornyces coelicolor respectively.
     The filamentous bacteria Streptomyces exhibit a complex life cycle involving morphological differentiation and secondary metabolism.A putative membrane protein gene sarA(sco4069),sporulation and antibiotic production related gene A, was partially characterized in Streptomyces coelicolor M145.The gene product has no characterized functional domains except for the transmembrane domain and is highly conserved in Streptomyces.Compared to the wild type M145,the sarA mutant accelerated sporulation and dramatically decreased the production of Act and Red. RT-PCR analysis showed that SarA influenced the antibiotic production through controlling the mRNA abundance of the actlI-orf4 and redZ.
     PartⅢ
     Streptomyces not only exhibit complex morphological differentiation but also produce a plethora of secondary metabolites,particularly antibiotics.To improve our general understanding of the complex network of Red biosynthesis regulation,we used an in vivo transposition system to identify novel regulators that influence Red production in Streptomyces coelicolor M145.Using this screening system,we obtained 25 Red-deficient mutants.Of these,24 had a transposon inserted in the previously described Red biosynthetic gene cluster and produced different amounts of another secondary metabolite Act.One mutant was shown to have an insertion in a different region of the chromosome upstream of the previously uncharacterized gene rrdA(regulator of redD,sco1104),which encodes a putative TetR family transcription factor.In comparison with wild-type M145,the rrdA null mutant exhibited increased Red production and decreased Act production.High rrdA expression resulted in severe reduction of Red production and Act overproduction.RT-PCR analysis showed that RrdA negatively regulated Red production by controlling redD mRNA abundance,while no change was observed at the transcript level of the Act-specific activator gene actⅡ-orf4.The effects on Act biosynthesis might arise from competition for precursors that are common to both pathways.
引文
[1]Challis GL,Hopwood DA.Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species[J].Proceedings of the National Academy of Sciences of the United States of America 2003,100 Suppl 2:14555-14561.
    [2]Chater KF.Genetics of differentiation in Streptomyces[J].Annual Review of Microbiology 1993,47:685-713.
    [3]Kojima I,Kasuga K,Kobayashi M,Fukasawa A,Mizuno S,Arisawa A,Akagawa H.The rpoZ gene,encoding the RNA polymerase omega subunit,is required for antibiotic production and morphological differentiation in Streptomyces kasugaensis[J].Journal of Bacteriology 2002,184(23):6417-6423.
    [4]Gehring AM,Yoo NJ,Losick R.RNA polymerase sigma factor that blocks morphological differentiation by Streptomyces coelicolor[J].Journal of Bacteriology 2001,183(20):5991-5996.
    [5]Umeyama T,Horinouchi S.Autophosphorylation of a bacterial serine/threonine kinase,AfsK,is inhibited by KbpA,an AfsK-binding protein [J].Journal of Bacteriology 2001,183(19):5506-5512.
    [6]Aceti DJ,Champness WC.Transcriptional regulation of Streptomyees coelicolor pathway-specific antibiotic regulators by the absA and absB loci[J].Journal of Bacteriology 1998,180(12):3100-3106.
    [7]Sola-Landa A,Moura RS,Martin JE The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyees lividans[J].Proceedings of the National Academy of Sciences of the United States o f America 2003,100(10):6133-6138.
    [8]Hopwood DA.Forty years of genetics with Streptomyces:from in vivo through in vitro to in silico[J].Microbiology-SGM 1999,145:2183-2202.
    [9]Bentley SD,Chater KF,Cerdeno-Tarraga AM,Challis GL,Thomson NR,James KD,Harris DE,Quail MA,Kieser H,Harper D et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J].Nature 2002,417(6885):141-147.
    [10]Sukharev SI,Blount P,Martinac B,Blattner FR,Kung C.A large-conductance mechanosensitive channel in E.coli encoded by mscL alone[J].Nature 1994,368(6468):265-268.
    [11]Levina N,Totemeyer S,Stokes NR,Louis P,Mones MA,Booth IR.Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels:identification of genes required for MscS activity[J].EMBO Journal 1999,18(7):1730-1737.
    [12]Wang CX,Ge HX,Hou XP,Li YQ.Roles of larger conductance mechanosensitive channels(MscL) in sporulation and Act secretion in Streptomyces coelicolor[J].Journal of Basic Microbiology 2007,47:518-524.
    [13]Hopwood DA.Genetics analysis and genome structure in Streptomyces coelicolor[J].Bacteriological Reviews 1967,31(4):373-&.
    [14]Merrick MJ.Morphological and genetic-mapping study of bald colony mutants of Streptomyces coelicolor[J].Journal of General Microbiology 1976,96(OCT):299-315.
    [15]Willey J,Schwedock J,Losick R.Multiple extracellular signals govern the production of a morphogenetic protein involved in aerial mycelium formation by Streptomyces coelicolor[J].Genes & Development 1993,7(5):895-903.
    [16]Kelemen GH,Buttner MJ.Initiation of aerial mycelium formation in Streptomyces[J].Current Opinion in Microbiology 1998,1(6):656-662.
    [17]Chater KF,Chandra G.The evolution of development in Streptomyces analysed by genome comparisons[J].FEMS Microbiology Reviews 2006,30(5):651-672.
    [18]Nodwell JR,Losick R.Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor[J].Journal of Bacteriology 1998,180(5):1334-1337.
    [19]Nodwell JR,McGovern K,Losick R.An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor[J].Molecular Microbiology 1996,22(5):881-893.
    [20]Claessen D,de Jong W,Dijkhuizen L,Wosten HAB.Regulation of Streptomyces development:reach for the sky[J].Trends in Microbiology 2006,14(7):313-319.
    [21]Park HS,Shin SK,Yang YY,Kwon HJ,Suh JW.Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145[J].FEMS Microbiology Letters 2005,249(2):199-206.
    [22]Shin SK,Park HS,Kwon HJ,Yoon HJ,Suh JW.Genetic characterization of two S-Adenosylmethionine-induced ABC transporters reveals their roles in modulations of secondary metabolism and sporulation in Streptomyces coelicolor M145[J].Journal of Microbiology and Biotechnology 2007,17(11):1818-1825.
    [23]Umeyama T,Lee PC,Horinouchi S.Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces[J].Applied Microbiology and Biotechnology 2002,59(4-5):419-425.
    [24]Tomono A,Mashiko M,Shimazu T,Inoue H,Nagasawa H,Yoshida M,Ohnishi Y,Horinouchi S.Self-activation of serine/threonine kinase AfsK on autophosphorylation at.threonine-168[J].Journal of Antibiotics 2006,59(2):117-123.
    [25]Hong SK,Kito M,Beppu T,Horinouchi S.Phosphorylation of the Afsr product,a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2)[J].Journal of Bacteriology 1991,173(7):2311-2318.
    [26]Matsumoto A,Hong SK,Ishizuka H,Horinouchi S,Beppu T.Phosphorylation of the Afsr protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase[J].Gene 1994,146(1):47-56.
    [27]Umeyama T,Horinouchi S.Autophosphorylation of a bacterial serine/threonine kinase,AfsK,is inhibited by KbpA,an AfsK-binding protein [J].Journal of Bacteriology 2001,183(19):5506-5512.
    [28]Horinouchi S,Suzuki H,Beppu T.Nucleotide-sequence of Afsb,a pleiotropic gene involved in secondary metabolism in Streptomyces coelicolor A3(2)and Streptomyces lividans[J].Journal of Bacteriology 1986,168(1):257-269.
    [29]Horinouchi S,Malpartida F,Hopwood DA,Beppu T.Afsb stimulates transcription of the actinorhodin biosynthetic-pathway in Streptomyces coelicolor A3(2) and Streptomyces lividans[J].Molecular & General Genetics 1989,215(2):355-357.
    [30]Horinouchi S,Hara O,Beppu T.Cloning of a pleiotropic gene that positively controls biosynthesis of a-factor,actinorhodin,and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans[J].Journal of Bacteriology 1983,155(3):1238-1248.
    [31]Sawai R,Suzuki A,Takano Y,Lee PC,Horinouchi S.Phosphorylation of AfsR by multiple serine/threonine kinases in Streptomyces coelicolor A3(2)[J]. Gene 2004,334:53-61.
    [32]Horinouchi S.AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2)[J].Journal of Industrial Microbiology & Biotechnology 2003,30(8):462-467.
    [33]Kodani S,Hudson ME,Durrant MC,Buttner MJ,Nodwell JR,Willey JM.The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor[J].Proceedings of the National Academy of Sciences of the United States of America 2004,101(31):11448-11453.
    [34]Claessen D,Rink R,de Jong W,Siebring J,de Vreugd P,Boersma FGH,Dijkhuizen L,Wosten HAB.A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils[J].Genes & Development 2003,17(14):1714-1726.
    [35]Elliot MA,Karoonuthaisiri N,Huang JQ,Bibb MJ,Cohen SN,Kao CM,Buttner MJ.The chaplins:a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor[J].Genes & Development 2003,17(14):1727-1740.
    [36]Tillotson RD,Wosten HAB,Richter M,Willey JM.A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures[J].Molecular Microbiology 1998,30(3):595-602.
    [37]Sahl HG,Bierbaum G.Lantibiotics:Biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria[J].Annual Review of Microbiology 1998,52:41-79.
    [38]Nguyen KT,Willey JM,Nguyen LD,Nguyen LT,Viollier PH,Thompson CJ.A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor[J].Molecular Microbiology 2002,46(5):1223-1238.
    [39]Willey JM,Willems A,Kodani S,Nodwell JR.Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor[J].Molecular Microbiology 2006,59(3):731-742.
    [40]Keijser BJF,van Wezel GP,Canters GW,Kieser T,Vijgenboom E.The ram-dependence of Streptomyces lividans differentiation is bypassed by copper[J].Journal of Molecular Microbiology and Biotechnology 2000,2(4):565-574.
    [41]Ma HT,Kendall K.Cloning and analysis of a gene-cluster from Streptomyces coelicolor that causes accelerated aerial mycelium formation in Streptomyces lividans[J].Journal of Bacteriology 1994,176(12):3800-3811.
    [42]Flardh K,Buttner MJ.Streptomyces morphogenetics:dissecting differentiation in a filamentous bacterium[J].Nature Reviews Microbiology 2008,7(1):36-49.
    [43]McKenzie NL,Nodwell JR.Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters[J].Journal of Bacteriology 2007,189(14):5284-5292.
    [44]Brian P,Riggle FJ,Santos RA,Champness WC.Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-eneoded putative signal transduction system[J].Journal of Bacteriology 1996,-178(11):3221-3231.
    [45]Anderson TB,Brian P,Champness WC.Genetic and transcriptional analysis of absA,an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor[J].Molecular Microbiology 2001,39(3):553-566.
    [46]Adamidis T,Riggle P,Champness W.Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation[J].Journal of Bacteriology 1990,172(6):2962-2969.
    [47]Sheeler NL,MacMillan SV,Nodwell JR.Biochemical activities of the absA two-component system of Streptomyces coelicolor[J].Journal of Bacteriology 2005,187(2):687-696.
    [48]Martin JF.Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system:an unfinished story[J].Journal of Bacteriology 2004,186(16):5197-5201.
    [49]Sola-Landa A,Rodriguez-Garcia A,Franco-Dominguez E,Martin JF.Binding of PhoP to promoters of phosphate-regulated genes in Streptomyces coelicolor:identification of PHO boxes[J].Molecular Microbiology 2005,56(5):1373-1385.
    [50]Rodriguez-Garcia A,Barreiro C,Santos-Beneit F,Sola-Landa A,Martin JF. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a Delta phoP mutant[J].Proteomics 2007,7(14):2410-2429.
    [51]Sola-Landa A,Rodriguez-Garci A,Apel AK,Martin JF.Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor[J].Nucleic Acids Research 2008,36(4):1358-1368.
    [52]Sola-Landa A,Moura RS,Martin JF.The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans[J].Proceedings of the National Academy of Sciences of the United States of America 2003,100(10):6133-6138.
    [53]Apel AK,Sola-Landa A,Rodriguez-Garcia A,Martin JE Phosphate control of phoA,phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions[J].Microbiology-SGM 2007,153:3527-3537.
    [54]Wehmeier S,Varghese AS,Gurcha SS,Tissot B,Panico M,Hitchen P,Morris HR,Besra GS,Dell A,Smith MCM.Glycosylation of the phosphate binding protein,PstS,in Streptomyces coelicolor by a pathway that resembles protein O-mannosylation in eukaryotes[J].Molecular Microbiology 2009,71(2):421-433.
    [55]Paget MSB,Leibovitz E,Buttner MJ.A putative two-component signal transduction system regulates sigma(E),a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2)[J].Molecular Microbiology 1999,33(1):97-107.
    [56]Hong HJ,Paget MSB,Buttner MJ.A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics[J].Molecular Microbiology 2002,44(5):1199-1211.
    [57]Hutchings MI,Hong HJ,Leibovitz E,Sutcliffe IC,Buttner MJ.The sigma(E)cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein,CseA[J].Journal of Bacteriology 2006,188(20):7222-7229.
    [58]Paget MSB,Chamberlin L,Atrih A,Foster SJ,Buttner MJ.Evidence that the extracytoplasmic function sigma factor sigma(E) is required for normal cell wall structure in Streptomyces coelicolor A3(2)[J].Journal of Bacteriology 1999,181(1):204-211.
    [59]Jordan S,Hutchings MI,Mascher T.Cell envelope stress response in gram-positive bacteria[J].FEMS Microbiology Reviews 2008,32(1):107-146.
    [60]Hutchings MI,Hong HJ,Buttner MJ.The vancomycin resistance VanRS two-component signal transduction system of Streptomyees coelicolor[J].Molecular Microbiology 2006,59(3):923-935.
    [61]Hong HJ,Hutchings MI,Neu JM,Wright GD,Paget MSB,Buttner MJ.Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene(yanK) required for drug resistance[J].Molecular Microbiology 2004,52(4):1107-1121.
    [62]Paolo SS,Huang J,Cohen SN,Thompson CJ.rag Genes:Novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor[J].Molecular Microbiology 2006,61(5):1167-1186.
    [63]Ishizuka H,Horinouchi S,Kieser HM,Hopwood DA,Beppu T.A putative 2-component regulatory system involved in secondary metabolism in Streptomyces spp[J].Journal of Bacteriology 1992,174(23):7585-7594.
    [64]Shu D,Chen L,Wang WH,Yu ZY,Ren C,Zhang WW,Yang S,Lu YH,Jiang WH.afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor[J].Applied Microbiology and Biotechnology 2009,81(6):1149-1160.
    [65]Chang HM,Chen MY,Shieh YT,Bibb MJ,Chen CW.The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin[J].Molecular Microbiology 1996,21(5):1075-1085.
    [66]Homerova D,Sprusansky O,Kutejova E,Kormanec J.Some features of DNA-binding proteins involved in the regulation of the Streptomyces aureofaciens gap gene,encoding glyceraldehyde-3-phosphate dehydrogenase [J].Folia Microbiologica 2002,47(4):311-317.
    [67]Tsujibo H,Hatano N,Okamoto T,Endo H,Miyamoto K,Inamori Y.Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system[J].FEMS Microbiology Letters 1999,181(1):83-90.
    [68]Lu Y,Wang W,Shu D,Zhang W,Chen L,Qin Z,Yang S,Jiang W. Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type Ⅰ polyketide in Streptomyces coelicolor[J].Applied Microbiology and Biotechnology 2007,77(3):625-635.
    [69]Huang JQ,Lih CJ,Pan KH,Cohen SN.Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays[J].Genes & Development 2001,15(23):3183-3192.
    [70]Li Y,Chen P,Chen S,Wu D,Zhang J.A pair of two-component regulatory genes ecrA1/A2 in Streptomyces coelicolor[J].Journal of Zhejiang University Science 2004(5):173-179.
    [71]Wang CX,Ge HX,Dong HJ,Zhu CG,Li YQ,Zheng J,Cen PL.A novel pair of two-component signal transduction system ecrE(1)/ecrE(2) regulating antibiotic biosynthesis in Streptomyces coelicolor[J].Biologia 2007,62(5):511-516.
    [72]Raivio TL,Silhavy TJ.Periplasmic stress and ECF sigma factors[J].Annual Review of Microbiology 2001,55:591-624.
    [73]Paget MSB,Bae JB,Hahn MY,Li W,Kleanthous C,Roe JH,Buttner MJ.Mutational analysis of RsrA,a zinc-binding anti-sigma factor with a thiol-disulphide redox switch[J].Molecular Microbiology 2001,39(4):1036-1047.
    [74]Park JH,Roe JH.Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sigma(R) in Streptomyces coelicolor[J].Molecular Microbiology 2008,68(4):861-870.
    [75]Paget MSB,Kang JG,Roe JH,Buttner MJ.sigma(R),an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2)[J].Embo Journal 1998,17(19):5776-5782.
    [76]Ilbert M,Graf PCF,Jakob U.Zinc center as redox switch-New function for an old motif[J].Antioxidants & Redox Signaling 2006,8(5-6):835-846.
    [77]Li W,Bottrill AR,Bibb MJ,Buttner MJ,Paget MSB,Kleanthous C.The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor[J].Journal of Molecular Biology 2003,333(2):461-472.
    [78]Kang JG,Paget MSB,Seok YJ,Hahn MY,Bae JB,Hahn JS,Kleanthous C, Buttner MJ,Roe JH.RsrA,an anti-sigma factor regulated by redox change[J].Embo Journal 1999,18(15):4292-4298.
    [79]Komatsu M,Kuwahara Y,Hiroishi A,Hosono K,Beppu T,Ueda K.Cloning of the conserved regulatory operon by its aerial mycelium-inducing activity in an amfR mutant of Streptomyces griseus[J].Gene 2003,306:79-89.
    [80]Komatsu M,Takano H,Hiratsuka T,Ishigaki Y,Shimada K,Beppu T,Ueda K.Proteins encoded by the conservon of Streptomyces coelieolor A3(2) comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system[J].Molecular Microbiology 2006,62(6):1534-1546.
    [1]Chater KF.Genetics of differentiation in Streptomyces[J].Annual Review of Microbiology 1993,47:685-713.
    [2]Willey JM,Willems A,Kodani S,Nodwell JR.Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor[J].Molecular Microbiology 2006,59(3):731-742.
    [3]Claessen D,de Jong W,Dijkhuizen L,Wosten HAB.Regulation of Streptomyces development:reach for the sky[J].Trends in Microbiology 2006,14(7):313-319.
    [4]Chater KF.Regulation of sporulation in Streptomyces coelicolor A3(2):a checkpoint multiplex[J].Current Opinion in Microbiology 2001,4(6):667-673.
    [5]Aceti DJ,Champness WC.Transcriptional regulation of Streptornyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci[J].Journal of Bacteriology 1998,180(12):3100-3106.
    [6]Bibb M.1995 Colworth Prize Lecture.The regulation of antibiotic production in Streptornyces coelicolor A3(2)[J].Microbiology-SGM 1996,142(Pt 6):1335-1344.
    [7]Gramajo HC,Takano E,Bibb MJ.Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated[J].Molecular Microbiology 1993,7(6):837-845.
    [8]Guthrie E,Flaxman C,White J,Hodgson D,Bibb M,Chater KF.A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket[J].Microbiology-SGM 1998,144(3):727-738.
    [9]Takano E,Gramajo HC,Strauch E,Andres N,White J,Bibb MJ.Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2)[J].Molecular Microbiology 1992,6(19):2797-2804.
    [10]White J,Bibb M.bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade [J].Journal of Bacteriology 1997,179(3):627-633.
    [11]Nguyen KT,Willey JM,Nguyen LD,Nguyen LT,Viollier PH,Thompson CJ. A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor[J].Molecular Microbiology 2002,46(5):1223-1238.
    [12]Keijser BJF,van Wezel GP,Canters GW,Vijgenboom E.Developmental regulation of the Streptomyces lividans ram genes:Involvement of RamR in regulation of the ramCSAB operon[J].Journal of Bacteriology 2002,184(16):4420-4429.
    [13]Kodani S,Hudson ME,Durrant MC,Buttner MJ,Nodwell JR,Willey JM.The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor[J].Proceedings of the National Academy of Sciences of the United States of America 2004,101(31):11448-11453.
    [14]Capstick DS,Willey JM,Buttner MJ,Elliot MA.SapB and the chaplins:connections between morphogenetic proteins in Streptomyces coelicolor[J].Molecular Microbiology 2007,64(3):602-613.
    [15]Claessen D;Rink R,de Jong W,Siebring J,de Vreugd P,Boersma FGH,Dijkhuizen L,Wosten HAB.A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils[J].Genes & Development 2003,17(14):1714-1726.
    [16]Elliot MA,Karoonuthaisiri N,Huang JQ,Bibb MJ,Cohen SN,Kao CM,Buttner MJ.The chaplins:a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor[J].Genes & Development 2003,17(14):1727-1740.
    [17]Talbot NJ.Aerial morphogenesis:Enter the chaplins[J].Current Biology 2003,13(18):R696-R698.
    [18]Bentley SD,Chater KF,Cerdeno-Tarraga AM,Challis GL,Thomson NR,James KD,Harris DE,Quail MA,Kieser H,Harper D et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J].Nature 2002,417(6885):141-147.
    [19]Ikeda H,Ishikawa J,Hanamoto A,Shinose M,Kikuchi H,Shiba T,Sakaki Y,Hattori M,Omura S.Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis[J].Nature Biotechnology 2003,21(5):526-531.
    [20]Komatsu M,Kuwahara Y,Hiroishi A,Hosono K,Beppu T,Ueda K.Cloning of the conserved regulatory operon by its aerial mycelium-inducing activity in an amfR mutant of Streptomyces griseus[J].Gene 2003,306:79-89.
    [21]Komatsu M,Takano H,Hiratsuka T,Ishigaki Y,Shimada K,Beppu T,Ueda K.Proteins encoded by the conservon of Streptomyces coelicolor A3(2)comprise a membrane-associated heterocomplex that resembles eukaryotic G protein-coupled regulatory system[J].Molecular Microbiology 2006,62(6):1534-1546.
    [22]Wang HA,Qin L,Lu P,Pang ZX,Deng ZX,Zhao GP.cvhA gene of Streptomyces hygroscopicus 10-22 encodes a negative regulator for mycelia development[J].Acta Biochimica et Biophysica Sinica(Shanghai) 2006,38(4):271-280.
    [23]Kieser T,Bibb MJ,Butter MJ,Chater KF,Hopwood DA.Practical Streptomyces genetics[M].Norwich,England:The John Innes Foundation;2000.
    [24]Sambrook J,Russell DW.Molecular cloning:a laboratory manual,3 edn[M].New Youk:Cold Spring Harbor Laboratory Press;2001.
    [25]Hammes W,Schleifer KH,Kandler O.Mode of action of glycine on the biosynthesis of peptidoglycan[J].Journal of Bacteriology 1973,116(2):1029-1053.
    [26]Minami M,Ando T,Hashikawa SN,Torii K,Hasegawa T,Israel DA,Ina K,Kusugami K,Goto H,Ohta M.Effect of glycine on Helicobacter pylori in vitro[J].Antimicrobial Agents and Chemotherapy 2004,48(10):3782-3788.
    [27]Gehring AM,Wang ST,Keams DB,Storer NY,Losick R.Novel genes that influence development in Streptomyces coelicolor[J].Journal of Bacteriology 2004,186(11):3570-3577.
    [28]Forchhammer K.Glutamine signalling in bacteria[J].Frontiers in Bioscience 2007,12:358-370.
    [29]Elliot M,Damji F,Passantino R,Chater K,Leskiw B.The bldD gene of Streptomyces coelicolor A3(2):a regulatory gene involved in morphogenesis and antibiotic production[J].Journal of Bacteriology 1998,180(6):1549-1555.
    [30]Elliot MA,Bibb MJ,Buttner MJ,Leskiw BK.BIdD is a direct regulator of key developmental genes in Streptomyces coelicolor A3(2)[J].Molecular Microbiology 2001,40(1):257-269.
    [31]Elliot MA,Leskiw BK.The BldD protein from Streptomyces coelicolor is a DNA-binding protein[J].Journal of Bacteriology 1999,181(21):6832-6835.
    [32]Kim IK,Lee CJ,Kim MK,Kim JM,Kim JH,Yim HS,Cha SS,Kang SO.Crystal structure of the DNA-binding domain of BldD,a central regulator of aerial mycelium formation in Streptomyces coelicolor A3(2)[J].Molecular Microbiology 2006,60(5):1179-1193.
    [33]Lee CJ,Won HS,Kim JM,Lee BJ,Kang SO.Molecular domain organization of BldD,an essential transcriptional regulator for developmental process of Streptomyces coelicolor A3(2)[J].Proteins-Structure Function and Bioinformatics 2007,68(1):344-352.
    [34]Lee CJ,Won HS,Kim JM,Lee BJ,Yim HS,Kang SO.Intramolecular interaction of the transcription factor BldD in Streptomyces coelicolor[J].Biophysical Journal 2004,86(1):82A-82A.
    [1]Chater KF.Genetics of differentiation in Streptomyces[J].Annual Review of Microbiology 1993,47:685-713.
    [2]Hesketh A,Chen WQ,Ryding J,Chang S,Bibb M.The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2)[J].Genome Biology 2007,8(8):R161.
    [3]Capstick DS,Willey JM,Buttner MJ,Elliot MA.SapB and the chaplins:connections between morphogenetic proteins in Streptomyces coelicolor[J].Molecular Microbiology 2007,64(3):602-613.
    [4]Willey JM,Willems A,Kodani S,Nodwell JR.Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor[J].Molecular Microbiology 2006,59(3):731-742.
    [5]Kodani S,Lodato MA,Durrant MC,Picart F,Willey JM.SapT,a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes[J].Molecular Microbiology 2005,58(5):1368-1380.
    [6]Ohnishi Y,Seo JW,Horinouchi S.Deprogrammed sporulation in Streptomyces [J].FEMS Microbiology Letters 2002,216(1):1-7.
    [7]Challis GL,Hopwood DA.Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species[J].Proceedings of the National Academy of Sciences of the United States of America 2003,100 Suppl 2:14555-14561.
    [8]Chater KF.Regulation of sporulation in Streptomyces coelicolor A3(2):a checkpoint multiplex[J].Current Opinion in Microbiology 2001,4:667-673.
    [9]Bibb M.Regulation of secondary metabolism in streptomycetes[J].Current Opinion in Microbiology 2005,8:208-215.
    [10]Chater KF,Chandra G.The use of the rare UUA codon to define “expression space” for genes involved in secondary metabolism,development and environmental adaptation in Streptomyces[J].Journal of Microbiology 2008,46(1):1-11.
    [11]McKenzie N,Nodwell J.Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters[J].Journal of Bacteriology 2007,189(14):5284-5292.
    [12]Sola-Landa A,Moura RS,Martin JF.The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans[J].Proceedings of the National Academy of Sciences of the United States of America 2003,100(10):6133-6138.
    [13]Lee P,Umeyama T,Horinouchi S.afsS is a target of AfsR,a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2)[J].Molecular Microbiology 2002,43(6):1413-1430.
    [14]White J,Bibb M.bldA dependence of undecylprodigiosin production in Streptomyces coelieolor A3(2) involves a pathway-specific regulatory cascade [J].Journal of Bacteriology 1997,179(3):627-633.
    [15]Guthrie E,Flaxman C,White J,Hodgson D,Bibb M,Chater KF.A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket[J].Microbiology-SGM 1998,144(3):727-738.
    [16]Aceti DJ,Champness WC.Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci[J].Journal of Bacteriology 1998,180(12):3100-3106.
    [17]Bibb M.1995 Colworth Prize Lecture.The regulation of antibiotic production in Streptomyces coelicolor A3(2)[J].Microbiology-SGM 1996,142(Pt 6):1335-1344.
    [18]Gramajo HC,Takano E,Bibb MJ.Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated[J].Molecular Microbiology 1993,7(6):837-845.
    [19]Takano E,Gramajo HC,Strauch E,Andres N,White J,Bibb MJ.Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2)[J].Molecular Microbiology 1992,6(19):2797-2804.
    [1]Challis GL,Hopwood DA.Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species[J].Proceedings of the National Academy of Sciences of the United States of America 2003,100 Suppl 2:14555-14561.
    [2]Chater KF.Genetics of differentiation in Streptomyces[J].Annual Review of Microbiology 1993,47:685-713.
    [3]Aceti DJ,Champness WC.Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci[J].Journal of Bacteriology 1998,180(12):3100-3106.
    [4]Bibb M.1995 Colworth Prize Lecture.The regulation of antibiotic production in Streptomyces coelicolor A3(2)[J].Microbiology-SGM 1996,142(Pt 6):1335-1344.
    [5]Gramajo HC,Takano E,Bibb MJ.Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3(2) is transcriptionally regulated[J].Molecular Microbiology 1993,7(6):837-845.
    [6]Guthrie E,Flaxman C,White J,Hodgson D,Bibb M,Chater KF.A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket[J].Microbiology-SGM 1998,144(3):727-738.
    [7]Takano E,Gramajo HC,Strauch E,Andres N,White J,Bibb MJ.Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces eoelicolor A3(2)[J].Molecular Microbiology 1992,6(19):2797-2804.
    [8]White J,Bibb M.bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade [J].Journal of Bacteriology 1997,179(3):627-633.
    [9]Bibb M.Regulation of secondary metabolism in streptomycetes[J].Current Opinion in Microbiology 2005,8:208-215.
    [10]McKenzie N,Nodwell J.Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters[J].Journal of Bacteriology 2007,189(14):5284-5292.
    [11]Sola-Landa A,Moura RS,Martin JE The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans[J].Proceedings of the National Academy of Sciences of the United States of America 2003,100(10):6133-6138.
    [12]Uguru GC,Stephens KE,Stead JA,Towle JE,Baumberg S,McDowall KJ.Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor[J].Molecular Microbiology 2005,58(1):131-150.
    [13]Umeyama T,Horinouchi S.Autophosphorylation of a bacterial serine/threonine kinase,AfsK,is inhibited by KbpA,an AfsK-binding protein [J].Journal of Bacteriology 2001,183(19):5506-5512.
    [14]Huang J,Shi J,Molle V,Sohlberg B,Weaver D,Bibb MJ,Karoonuthaisiri N,Lih CJ,Kao CM,Buttner MJ et al.Cross-regulation among disparate antibiotic biosynthetic pathways of Streptomyces coelicolor[J].Molecular Microbiology 2005,58(5):1276-1287.
    [15]Williamson NR,Fineran PC,Leeper FJ,Salmond GPC.The biosynthesis and regulation of bacterial prodiginines[J].Nature Reviews Microbiology 2006,4:887-899.
    [16]Schmitt-John T,Engels JW.Promoter constructions for efficient secretion expression in Streptomyces lividans[J].Applied Microbiology and Biotechnology 1992,36(4):493-498.
    [17]Takano E,White J,Thompson CJ,Bibb MJ.Construction of thiostrepton-inducible,high-copy-number expression vectors for use in Streptomyces spp[J].Gene 1995,166:133-137.
    [18]Tahlan K,Ahn SK,Sing A,Bodnaruk TD,Willems AR,Davidson AR,Nodwell JR.Initiation of actinorhodin export in Streptomyces coelicolor[J].Molecular Microbiology 2007,63(4):951-961.
    [19]Huang J,Lih C-J,Pan K-H,Cohen SN.Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays[J].Genes & Development 2001,15:3183-3192.
    [20]Narva KE,Feitelson JS.Nucleotide sequence and transcriptional analysis of the redD Locus of Streptomyces coelicolor A3(2)[J].Journal of Bacteriology 1990,172(1):326-333.
    [21]Sun Y,Zhou X,Liu J,Bao K,Zhang G,Tu G,Kieser T,Deng Z.'Streptomyces nanchangensis',a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin,contains multiple polyketide gene clusters[J].Microbiology-SGM 2002,148(Pt 2):361-371.
    [22]Bertrand KP,Postle K,Lewis V.Wray J,Reznikoff WS.Overlapping divergent promoters control expression of Tn10 tetracycline resistance[J].Gene 1983,23(2):149-156.
    [23]Hillen W,Berens C.Mechanisms underlying expression of Tn10 encoded tetracycline resistance[J].Annual Review of Microbiology 1994,48:345-369.
    [24]Bentley SD,Chater KF,Cerdeno-Tarraga AM,Challis GL,Thomson NR,James KD,Harris DE,Quail MA,Kieser H,Harper D et al.Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J].Nature 2002,417(6885):141-147.
    [25]Ramos JL,Martinez-Bueno M,Molina-Henares AJ,Teran W,Watanabe K,Zhang X,Gallegos MT,Brennan R,Tobes R.The TetR family of transcriptional repressors[J].Microbiology and Molocular Biology Reviews 2005,69(2):326-356.
    [26]Cho Y-H,Kim E-J,Chung H-J,Choi J-H,Chater KF,Ahn B-E,Shin J-H,Roe J-H.The pqrAB operon is responsible for paraquat resistance in Streptomyces coelicolor[J].Journal of Bacteriology 2003,185(23):6756-6763.
    [27]Folcher M,Morris RP,dale G,Salah-Bey-Hocini K,Viollier PH,Thompson CJ.A transcriptional regulator of a pristinamycin resistance gene in Streptomyces coelicolor[J].Journal of Biological Chemistry 2001,276(2):1479-1485.
    [28]Onaka H,Nakagawa T,Horinouchi S.Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis[J].Molecular Microbiology 1998,28(4):743-753.
    [29]Takano E,Chakraburtty R,Nihira T,Yamada Y,Bibb MJ.A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptornyces coelicolor A3(2)[J].Molecular Microbiology 2001,41(5):1015-1028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700