单频多模磁绝缘线振荡器的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全面调研磁绝缘线振荡器( MILO)理论的基础上,结合器件自身工作特点,首次提出了一种可以在模式竞争时保持频率稳定的器件-单频多模MILO。单频多模MILO是一种低阻抗正交场高功率微波器件,它不仅具有MILO不需要外加磁场,体积小的优点,还具有在模式竞争下能够输出稳定频率的高功率微波(High Power Microwave,HPM)的特点。能够产生多个模式且频率单一的微波的器件是HPM的一个新兴的研究方向,首先这种器件能够避免模式竞争引起的微波频率不纯,达到更好的实验目的,同时微波远场具有多种模式的方向图特点,能够在模式竞争发生时实现大范围的辐射,而目前国内外暂无相关的研究,因此该研究在MILO研究领域具有一定的推动作用。论文提出了单频多模MILO的实现方式并建立了单频多模MILO的模型,结合冷腔和热腔的分析,优化设计出了工作在1.22GHz的一套单频多模MILO,并在现有的条件下开展了实验,对不同角度的功率密度进行了测量,最终验证了这种多种模式工作时产生单一频率的HPM的MILO的可行性。同时,论文还讨论了MILO适应环境时的一些技术,提出了两种具有特点的新型MILO。
     以下是论文研究的主要内容:
     从HPM的开始,介绍了MILO的优点、基本原理及国内外发展现状,介绍了MILO常用的研究方法,并阐述了单频多模MILO的研究意义。
     从MILO慢波结构入手,结合器件中束波作用机理,提出了单频多模MILO的思路。根据MILO设计时各个参数的选取方法,设计并优化了一套工作频率为1.22GHz的L波段MILO,并通过对慢波结构2维周期化实现单频多模输出。利用开放腔高频分析对单频多模MILO的可行性进行了证明,同时对其进行了3维数值模拟:在自激发引起的模式竞争和非对称条件引起的模式竞争下都能保持输出微波的频率单一。
     根据理论优化设计的结果加工了一套单频多模的磁绝缘线振荡器,并在现有的实验条件下建立了其实验系统,由加速器型脉冲功率源,单频多模MILO,真空系统,微波测试系统组成。利用多组极化方向相互垂直的BJ32波导同轴转换器对辐射空间不同角度的功率密度进行测定,然后通过积分计算出辐射功率和方向图,从实验上验证了这种单频多模MILO的可行性。
     为了满足环境需求,结合理论,数值模拟和实验研究,对L波段磁绝缘线振荡器的阴极支撑方案进行了讨论,同时对起振电压和注入电压的关系进行了分析。
     提出了两种新型的MILO,一种是轴向分区的双频MILO,与角向分区双频不同,它分别作用在上下两段不同周期的慢波结构的基模下,得到稳定的双频TEM模式的微波输出,频率分别为1.25GHz和1.65GHz,便于双频模式变换器的设计,实现集中辐射,同时为双频MILO设计了对应频率的TEM-TE11的模式变换器;另一种是Ku波段的MILO,相对于现阶段重点研究的L波段,能有效提高高功率微波的性能度量因子。
A novel magnetically insulated transmission line oscillator-MILO with mutimodes and single frequency is put forward for the first time in the dissertation after basic theory of MILO has been generally studied. MILO with mutimodes and single frequency is an HPM (high power microwave) device with cross-field and low resistance, which does not only have the advantage of dispensing with magnetic and small volume as the original MILO, but also generate microwave with single frequency during modes competition. This kind of HPM device is a new research direction for it can make the frequency of microwave stable to achieve the experiment purpose better and its far field directional diagram has the characteristic of mutimodes, which enlarge the 3dB width and radiation area. It has a great of academic value, so I put forward hypothesis of MILO with mutimodes and single frequency, create an L-band model and prove its feasibility from high frequency analysis, PIC (particle in cell) simulation and theoretical experiment. At the same time some research of other technology of MILO and two kinds of new MILO is carried out.
     This thesis focuses in the following areas
     Firstly, the investigation of the background of HPM technology and the present development of MILO are introduced and the principle and research methods of MILO are pointed out. Then, the academic value of MILO with mutimodes and single frequency is explained.
     Secondly, a novel MILO which can generate microwave with stable frequency during modes competition is put forward by adjusting the SWS (slow wave structure) with the theory of interaction between electron beam and microwave. An L-band MILO with mutimodes and single frequency which works at 1.22GHz is designed based on the selecting methods of parameters of MILO structure and its high frequency analysis and PIC simulation are carried out, which proves that this novel MILO’s feasibility of stable frequency during modes competition caused by self-excitation or dissymmetrical excitation.
     Thirdly, a preliminary experiment of this novel MILO is carried out based on the optimized structure in simulation. Experimental system is built based on the condition in existence in laboratory, which contains pulse power supply, MILO, vacuum system and measurement system. Calibration method is also introduced. The radiation power and direction diagram are calculated by measuring the power density at different angle in spaces with BJ-32 antenna. Afterwards the feasibility of this novel MILO is proofed experimentally.
     Fourthly, to satisfy the environment condition, the investigation of cathode’s strut is carried out with theory simulation and experiment and the relation between starting voltage and input voltage for a MILO has also been analyzed.
     Fifthly, two kinds of new MILO, bf-MILO with axial partition and Ku-band MILO, are put forward, one of which has two 2 pieces of SWS with different period and cavity depth and generates stable bi-frequency TEM mode microwave of 1.25GHz and 1.65GHz. This kind of bifrequency MILO is convenient to the modes converter designing compared to the azimuthal partition ones. The other kind of MILO is a Ku-band MILO working at 13GHz, which improve the MILO’s energy metric factor (pf2) obviously comparing the L-band ones.
引文
[1] Benford J, Swedle J.高功率微波,中译本.成都:电子科技大学出版社,1992. 1-49, 307-334.
    [2]廖为民,董志伟,周海京.从DETAR合同的签署看美国高功率微波武器技术研究的现状.高功率微波进展, 2005, 4(2): 1-6
    [3] Barker R J, Schamiloglu E.高功率微波源与技术,中译本.北京:清华大学出版社,2001. 1-36, 423-452.
    [4]王弘刚.调制型虚阴极振荡器的研究[D].博士学位论文.长沙:国防科学技术大学, 2004.
    [5]罗雄,廖成,孟凡宝等.同轴虚阴极谐振效应研究[J].物理学报, 2006, 55(11): 5774~5778.
    [6]陈代兵,刘庆想,何琥等. X波段五腔渡越管振荡器的理论与实验研究[D].硕士学位论文,中国工程物理研究院,2002.
    [7]范植开.渡越管振荡器的理论研究与原理性实验[D].博士学位论文,北京:中国工程物理研究院,1999.
    [8]何琥. X波段六腔渡越管振荡器的理论和实验研究[D].博士学位论文.北京:中国工程物理研究院北京研究生部,2003
    [9] Friedman M, Serlin V, Lau Y. Relativistic klystron amplifier I: high power operation. Intense microwave and particle beams II, Proceeding SPIE. 1991, 1407: 20-25.
    [10] Bugaev S P, Cherepenin V A, Kanavets V I, et al. Relativistic multiwave Cerenkov Generators. IEEE Trans. Plas. Sci. 1990, 18(3): 525-536.
    [11] Bugaev S P, Cherepenin V A, Kanavets V I, et al. Investigation of a millimeter-wavelength-range Relativistic Diffraction Generator. IEEE Trans. Plas. Sci. 1990, 18(3): 518~524.
    [12] Bekefi G, Orzechowski T J. Proceedings of the 1st International Pulsed Power Conference. Lubbock, TX, 9-11, November 1976.
    [13] Lemke R W, Clark M C. Theory and simulation of high-power microwave generation in a magnetically insulated transmission line oscillator. J. Appl. Phys. 1987, 62(8): 3436-3440.
    [14] Clark M C, Marder B M, Bacon L D. Magnetically insulated transmission lines oscilletor. Appl. Phys. Lett. 1988, 52(1): 78-80.
    [15] Marder B M. Simulated Behavior of the Magnetically insulated Oscillator. J. Appl. Phy. 1989, 65: 1338.
    [16] Davis H A, Fulton R D, Sherwood E G. Esistively loaded MILO experiments. Los Alamos Nat. Lab. , Los Alamos, NM, LA-UR-89-1199, Mar, 1989.
    [17] Lemke R W, DeMuth G E, Biggs A W. Theoretical and experimental investigation of axial power extraction from a magnetically insulated transmission line oscillator. Proc. SPIE, vol. 1226. Intense Microwave and Particle Beams, Los Angles, CA, Jan. 1990: 199-208.
    [18] Voss D E, et al. Experimental study of a self-magnetically insulated high power microwave cross-field oscillator device. AFWL-TR-88-32, Air Force Weapons Lab., Kirland AFB, NM, Nov., 1988.
    [19] Calico S E, Clark M C, Lemke R W, et al. Experimental and theoretical investigation of a magnetically insulated line oscillator(MILO). Proc. SPIE. 1995, 2557: 50-59.
    [20] Lemke R W, Calico S E, Clark M C. Investigation of a load-limited, magnetically insulated transmission line oscillator(MILO). IEEE Trans. Plasma Sci. 1997, 25(2): 364-373.
    [21] Haworth M D, Baca G, Benford J N, et al. Significant Pulse-Lengthening in a Multi-gigawatt Magnetically Insulated Transmission Line Oscillator. IEEE Trans. Plasma Sci. 1998, 26(3): 312–319.
    [22] Haworth M D, Luginsland J W, Lemke R W. Evidence of a new pulse-shortening mechanism in a load-limited MILO. IEEE Trans. Plasma Sci. 2000, 28: 511–516.
    [23] Haworth M D, Englert T J, Hendricks K J, et al. A comprehensive diagnostic suite for MILO. Rev. Sci. Instrum. 2000, 71: 1539–1547.
    [24] Haworth M D, Luginsland J W, Lemke R W. Improved cathode design for long-pulse MILO operation. IEEE Trans. Plasma Sci. 2001, 29: 388–392.
    [25] Haworth M D, Cartwright K L, Luginsland J W, et al. Improved Electrostatic Design for MILO Cathodes. IEEE Trans. Plasma Sci. 2002, 30: 992–997.
    [26] Hendricks K, Haworth M D, Ferguson P, et al. Upgrades to a 600-ns multigigawatt RKO. IEEE Int. Conf. Plasma Science. 1998: 187.
    [27] Eastwood J W, Hawkins K C, Hook M P. The Tapered MILO. IEEE Trans. Plasma Sci. 1998, 26: 698–713.
    [28] Ashby D E T F, Eastwood J W, Allen J, et al. Comparison between Experiment and Computer Modeling for Simple MILO Configurations. IEEE Trans. Plasma Sci. 1995, 23: 959-969.
    [29]陈代兵,范植开. L波段1GW电磁脉冲弹实验装置研究技术总结.中国国防科学技术报告.中物院应用电子学研究所, 2005.
    [30]杨郁林,丁武. MILO物理分析与数值模拟.强激光与粒子束, 1999, 11(5): 623-627.
    [31]杨郁林,丁武.高频大功率磁绝缘线振荡器的理论设计.强激光与粒子束, 2001, 13(1): 76-78.
    [32]孙会芳,董志伟等. MILO实验模型的频移问题研究.信息与电子工程, 2004, 2(2):95-97.
    [33]孙会芳,董志伟等.改进型磁绝缘线振荡器的设计和数值模拟.强激光与粒子束, 2001, 13(1): 93-96.
    [34]孙会芳,董志伟等.磁绝缘线振荡器中高阶模式的3维数值模拟.强激光与粒子束, 2008, 20(4): 641-644.
    [35]丁武.磁绝缘线振荡器中空间电荷的调制.强激光与粒子束, 2001, 13(2): 213-218.
    [36]丁武.磁绝缘线振荡器中空间电荷的辐射.强激光与粒子束, 2002, 14(1): 743-748.
    [37] Hao Jianhong, Ding Wu. The chaotic behavior of the radiation field in the Magnetically insulated transmission line oscillator. Phys. Rev. E. 2003,67(2):
    [38] Qian B L, Liu Y G et al. Two-dimensional analysis of the relativistic para-potential electron flow in a magnetically insulated line oscillator(MILO). IEEE Trans. Plasma Sci. 2000, 28: 760–766.
    [39]张晓萍,钟辉煌等.磁绝缘线振荡器同轴慢波结构色散特性分析.强激光与粒子束, 2004, 16(3): 363-366
    [40]张晓萍.新型磁绝缘线振荡器的研究: [博士学位论文].长沙:国防科学技术大学, 2004.
    [41]张晓萍,钟辉煌等.利用负载电流产生微波的新型MILO.强激光与粒子束, 2003, 15(1): 80-84.
    [42]樊玉伟.紧凑型L波段磁绝缘线振荡器的研究:[硕士学位论文].长沙:国防科学技术大学,2003
    [43]樊玉伟.磁绝缘线振荡器及其相关技术的研究:[博士学位论文].长沙:国防科学技术大学,2007
    [44]陈代兵,孟凡宝,王冬,等.双频磁绝缘线振荡器的粒子模拟[J].高功率微波技术, 2007,15(2):1-7
    [45]陈代兵,孟凡宝,王冬,等. L波段双频磁绝缘线振荡器的设计与粒子模拟[J].强激光与粒子束,2009,21(3) :429-433.
    [46]陈代兵,王冬,范植开,等.多频磁绝缘线振荡器的粒子模拟[J].强激光与粒子束,2009, 19(10):1702-1708
    [47]陈代兵,王冬,范植开,等.双频磁绝缘线振荡器微波产生特性的数值研究[J].强激光与粒子束,2009,21(4) :493-498.
    [48]陈代兵.双频磁绝缘线振荡器的理论与实验研究:[博士学位论文].北京:中国工程物理研究院,2008
    [49]王冬,陈代兵,范植开,等. HEM11模磁绝缘线振荡器的高频分析[J].物理学报,2008,57(8):4875-4882.
    [50]郭焱华. C波段磁绝缘线振荡器的理论与实验研究: [硕士学位论文].绵阳:中国工程物理研究院: 2005.
    [51] Chen D B, Fan Z K, Dong Z W et al. Experimental researches on ladder cathode MILO.第一届欧亚脉冲功率会议(EAPPC?06)论文集.四川成都, 2006: Thu-O13.
    [52]樊玉伟,钟辉煌,郑世勇等. X波段磁绝缘线振荡器的模拟研究.强激光与粒子束, 2006, 18(3): 439-442.
    [53]靳振兴,张晓萍,钱宝良. P波段混合型MILO的粒子模拟研究.第十届高功率粒子束学术交流会.长沙, 2006: 391-395.
    [54]孙会芳,董志伟,周海京等.虚阴极为负载的磁绝缘线振荡器设计和研究.强激光与粒子束, 2005, 17(8): 1126-1128
    [55]杨祥林.微波器件原理.北京:电子工业出版社, 1985.
    [56]刘松.磁绝缘线振荡器的研究: [博士学位论文].长沙国防科学技术大学, 2001.
    [57] Wang Dong, Fan Zhikai, Chen Daibing, et al. Investigation of dispersion characteristics in coaxial disk-loaded slow-wave structures with both symmetric and asymmetric modes. IEEE Trans. Plasma Sci. To be published.
    [58] Wang Dong, Fan Zhikai, Chen Daibing, et al. Rigorous analysis of the coaxial disk-loaded waveguide slow-wave structures. The 5th international conference on microwave and millimeter wave technology proceedings. Guilin, China, 2007: 591-594.
    [59] Zhang Keqian, Li Deji. Electromagnetic Theory for Microwaves and Optoelectronics. Beijing: Publishing House of Electronics Industry, 2001. 286-289, 392-395.
    [60]Л.А.Вайнштейн. Open resonators and open waveguides. Beijing: Science press, 1987.
    [61]何琥. C波段磁绝缘线振荡器的开放腔高频特性分析.强辐射技术与应用, 2006, 5(2): 50-55.
    [62]Л.А.Вайнштейн. Open resonators and open waveguides. Beijing: Science press, 1987.
    [63]王冬,范植开,陈代兵,等. S波段磁绝缘线振荡器的数值模拟拟[J].强激光与粒子束,2007,19(11):1861-1864.
    [64]王冬HEM11模磁绝缘线振荡器的理论与实验研究;[博士学位论文].清华大学,2008。
    [65]米勒.强流带电粒子束物理学导论.中译本.北京:原子能出版社, 1990.
    [66]郭焱华,范植开,何琥. X波段磁绝缘线振荡器的数值模拟[J].强激光与粒子束,2009, 21(4):489-492.
    [67]周传明,刘国治,刘永贵,等.高功率微波源[M].原子能出版社,1997.
    [68] Mendel C W, Jr. And Rosenthal. Modeling magnetically insulated devices using flow impedance. Phys. Plasmas 2. 1995: 1332-1342
    [69]余国芬.功能强大的电磁粒子模拟程序-MAGIC及其应用介绍[J].电子科技导报, 1997, 2: 27~29.
    [70] Hurtig T, M?ller C, Larsson A, et al. Numerical simulation of direct extraction of the TE11 mode in a coaxial vircator[A]. Proc of EAPPC. Chengdu, China, 2006.
    [71]雷朝军,喻胜,鄢然等. PIC数值模拟中的输出功率提取探讨[A].第十届高功率粒子束学术交流会议论文集[C].长沙, 2006: 190~193.
    [72] Mendel C W, Jr. And Rosenthal. Modeling magnetically insulated devices using flow impedance[J]. Phys. Plasmas 2. 1995: 1332~1342.
    [73]张章.高功率微波源中脉冲缩短现象的粒子模拟与机理研究[D].硕士学位论文.成都:电子科技大学,2004.
    [74]王冬,陈代兵,范植开等. L波段MILO低真空下工作特性的粒子模拟与实验研究[J].强激光与粒子束, 2007, 19(5): 793~798.
    [75] Yong Zhang, Yuan Long Mo, Rui Min Xu, et al. An Investigation of Periodic Waveguides With Axial and Azimuthal Corrugations[J]. IEEE Trans. Plasma Sci. 2005,33(6):2017-2026.
    [76]张勇.盘荷波导、脊加载盘荷波导和螺旋带慢波系统特性研究[D].博士学位论文.成都:电子科技大学,2003.
    [77]王莹.高功率脉冲电源[M].北京:原子能出版社,1991.
    [78]王冬,陈代兵,范植开等. L波段MILO低真空下工作特性的粒子模拟与实验研究.强激光与粒子束, 2007, 19(5): 793-798.
    [79]达道安.真空设计手册.北京:国防工业出版社,1991
    [80]莫纯昌,陈国平.电真空工艺.北京:国防工业出版社,1980.
    [81]殷毅,杨建华等.温度对水电阻分压器影响的实验研究[A].全国第六届高功率微波学术研讨会[C]. 2004.
    [82]舒挺,王勇.高功率微波的远场测量[J].强激光与粒子束, 2003, 15(5): 485-488.
    [83]刘克成,宋学诚.天线原理.长沙:国防科学技术大学出版社, 1989.
    [84]陈代兵,范植开等.开口波导有效接收面积的测量.强激光与粒子束, 2004, 16(4): 474-476
    [85]王冬,秦奋,陈代兵,文杰等. L波段双阶梯阴极磁绝缘线振荡器的粒子模拟与实验研究[J].强激光与粒子束, 2010,22(4):857-860.
    [86]陈代兵,王冬,秦奋,文杰等.磁绝缘线振荡器的起振电压与注入电压关系的分析[J].高功率微波技术,2010,18(4):10-16.
    [87] Ginzburg N S, Rozental R M, Sergeev A S. Dual band operation of the relativistic BWO[C]//4th IEEE International Conference on Vacuum Electronics. 2003; 181-182
    [88]杨梓强,李家胤,梁正。双波段高功率微波源的实验研究[J].电子科技大学学报(增刊),1996,25(7):76-80.(Yang Ziqiang, Li Jiayin, Liang Zheng. Experimental investigation of high power microwave source operating simultaneously at two frequency bands. Journal of University of Electronic Science and Technology of China (Supplement),1996,25(7):76-80 )
    [89]王听,钱宝良,张建德等。双波段相对论返波振荡器模拟研究[J].强激光与粒子束, 2009,21(4) :499-502.(Particle simulation of dual-band relativistic backward-wave oscillator. High Power Laser and Particle Beams, 2009,21(4) :499-502)
    [90]刘庆想,袁成卫.一种新型同轴TEM-圆波导TE11模式变换器.强激光与粒子束, 2004, 16(11): 1421-1424.
    [91]刘庆想,袁成卫.同轴插板式TEM—TE11模式转换器的设计与实验研究.强激光与粒子束, 2005, 17(6): 897-900.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700