高功率线极化径向线阵列天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于新兴的高功率微波领域,高功率微波辐射技术的发展成为该领域发展的一个重要部分。由于高功率微波的一些特殊性质,对高功率微波天线也提出了一些特殊的要求。
     从径向线阵列天线的广泛调研可知,早期的径向线阵列天线多采用缝隙作为辐射单元,缝隙单元通过一定的排列组合可实现线极化或圆极化微波辐射,后期也有采用贴片微带天线和短螺旋天线作为辐射单元,但由于这些天线中存在着慢波结构或介质,使其无法应用于高功率微波领域。然而,随着高功率微波天线的发展,近些年来,种新型的高功率径向线螺旋阵列天线首次将径向线阵列天线引入到高功率微波领域,探索了高功率微波领域中一种新的天线形式。该天线通过采用新型的耦合探针,避免了介质的引入,为实现高功率径向线阵列天线奠定了基础,同时,这种天线自身具有体积小,效率高、功率容量大等特点,使其成为高功率微波天线发展的一个趋势,但这种阵列形式只实现了高功率圆极化波的辐射,因而,实现高功率线极化微波辐射的径向线阵列天线就成为另一个重要的研究内容。本文就以此为着眼点,以径向线馈电为基础,首次提出高功率线极化径向线阵列天线,并对其进行探索和研究。
     新型耦合探针的应用要求单元天线为同轴馈电,因此,同轴馈电的线极化单元天线成为首要研究的内容。首先,文中根据径向线馈电系统及整体天线特性对线极化单元提出了一系列要求;其次,依照要求对相关的线极化天线进行了探索研究,主要包括两方面:一方面,一些基本的包括电偶极子、环天线等形式最简单的线极化天线,以及在这些形式上探索、思考、拓展得到的新型单元天线形式;另一方面,探索圆极化合成线极化波的天线形式。最后,通过对比,选择各项特性均满足要求的水平单圆环线极化天线作为辐射单元。
     为了实现阵列天线轴向最大辐射,以及满足线极化单元激励要求,单圈圆环栅格布局径向线阵列天线成为首选且相对简单的形式,该布局中探针耦合处径向位置相同,耦合波满足等幅同相。但由于该布局中单元数目有限,天线增益相对较低,为了提高增益,需要增加单元数目,扩大圆环圈数,简单的单圈圆环栅格布局就不再满足要求。
     然而,采用多圈圆环栅格布局实现高功率线极化径向线阵列天线,其中存在着一个关键的问题:即:一方面,只有在径向线内微波路径上间隔为一个波导波长的径向位置处,耦合波的相位差为±2π(实际上是相同的),在这些位置上通过调节耦合波幅度使达到一致,激励相同的单元,就可实现阵列天线最大线极化辐射合成场强;而另一方面,又由平面阵列天线的特性可知,当阵列间距为一个波导波长时,将在可见空间内可能不止出现一个栅瓣,为了抑制栅瓣,必须在一定的范围内减小单元间距,这必然使得耦合口处存在着一定的相位差(不为±2π),激励相同的辐射单元就不能实现等幅同相激励。这两方面之间的矛盾即为问题的所在,因此,为了提高阵列天线的增益,则必须解决这一问题。
     经过分析,针对这一关键问题提出两种解决方案,方案一:径向线串联馈电,该方案中仍采用圆环栅格布局,但馈电径向线发生了一定的弯曲,以增加径向线内部的波程,合理的调节尺寸后可以使每圈相位差2π,达到等幅同相激励线极化单元天线;方案二:径向线并联馈电,该方案通过改变阵列天线栅格形式、利用多层馈电组合的方式,使馈电系统中每一条微波路径均匀相同,达到等幅同相激励线极化单元。
     鉴于方案一中弯曲径向线复杂的微波模式特性以及耦合探针的影响,使得整个方案的分析相对较为困难,文中具体地对方案二进行了研究,配合水平单圆环单元天线,共同形成了并联馈电高功率线极化径向线阵列天线。同时,文中对该天线相关的基础理论进行了总结和完善,主要包括:分析了阵列布局与天线性能的关系,由此获得阵列天线设计的参数;了解了径向线中的微波高频特性;分析研究了同轴到径向线转换接头中高阶模对S11参数的影响,加深了对这种带有调配结构的转换接头的认识,为以后整个阵列天线的模式分析提供基础。
     通过对初级功分器、子阵功分器、单元天线等关键环节的合理设计,对L波段高功率线极化径向线阵列天线进行了仿真,仿真结果表明:在中心频率1.57GHz下,天线增益为19.97dBi,口径效率为50.5%,轴向轴比为-52.06dB;在1.37GHz—1.77GHz的频率范围内,增益大于18.64dBi,口径效率大于37.2%,轴向轴比小于-46.45dB;在1.53GHz—1.76GHz的频率范围内,反射系数小于0.2(对应驻波比为1.5),初步证明了该天线实现的可行性。但其反射较大,口径效率较低,以及功率容量等问题,第5章就针对性地对其进行了优化设计,仿真结果表明:在中心频率1.57GHz下,天线增益为18.8dBi,口径效率为85.1%,轴向轴比为-40.07dB;在1.37GHz—1.77GHz的频率范围内,增益大于1 7.58dBi,口径效率大于64.26%,轴向轴比小于-40.07dB;在1.17GHz—1.68GHz的频率范围内,反射系数小于0.2(对应驻波比为1.5);功率容量达到1GW。
     最后,在优化结果的基础上对该天线进行了实验验证,实验结果表明:中心频率下,阵列天线的增益为17.65dBi,口径效率为58.6%,驻波系数为1.19;在1.47—1.77GHz的范围内天线增益大于17.31dBi,轴比小于-38.6dB,天线口径效率大于54%,驻波系数小于1.4。实验结果与数值仿真结果基本一致,更进一步验证了高功率线极化径向线阵列天线的可行性,也具体地实现了该阵列天线。
With the development of high-power microwave (HPM) technology, the HPM antenna has become an important part of the HPM system. Due to paticularities of HPM, HPM antenna shall satisfy some special requirments.
     At the early times, slot antennas which can radiate linear or circular polarized waves by certain arrangement are used as cells of the radial line array antenna. Patch microstrip antennas and low-profile helical antennas are used later. As there are slow wave structures and media in this kind of array antennas, they can't be used in HPM areas. However, with the development of HPM antenna, a novel HPM radial line helical array antenna as a new kind of HPM antennas is proposed recently. In this antenna, a new kind of coupling probes is adopted which avoid the presence of media. These characteristics of the probe establish base for design of high-power radial line array antenna. At the same time, this antenna as a new means for high-power microwave radiation can fulfill high-power capacity, high efficiency, miniaturized. But this array form realized circular polarized radiation only, therefore HPM linear polarized radial line array antenna becomes another important aspect in research. In this paper, HPM linear polarized radial line array antenna is proposed firstly on the basic of radial line feed, and series of exploration and research are made in this paper.
     The novel coupling probe requires the feed port of the cell antenna is coaxial feed, so linear polarized cell of coaxial feed become the most inportant aspect of the reseach. At first, series of requirements to the linear is proposed to the cell based on the radial line feed system and characteristic of the whole array antenna. Then, in the area of the linear polarized antennas are investigated based on the requirements in these two aspects:(1) a lot of basic antenna shapes including dipole and loop antennas and their new form etc. are investigated; (2) antennas of linear polarized radiation composed by circular polarized antennas are investigated on the other side. Finally, a planar single circular linear polarize antenna is chosen which satisfies each characteristic as a radiation cell by contrast.
     To realize the characteristic of the maximal radiation in coaxial direction and satisfy the requestment of linear polarized stimulation, single circular grid radial line array antenna which has a simple form becomes the best choice. In this array, each radial position of the probes is the same and the magnitude and the phase of coupling waves is the same. As the number of the array cell is limited, the gain of the antenna is low. To improve the gain, the number of the cells and the circles is need to increase, as a simple single circular grid can't meet all the requestments.
     However, there is a most important question when using multi-ring grid array to realize HPM linear polarized radial line array antenna. Only when the distance of the wave path of the radial lines isλ(wavelength in the waveguide), the differencing of coupling wave phase is±2π(as a matter of fact, it's the same), it is possible to realize highest resultant field intensity of the maximum of the linear polarized radiation on these positions by regulating the amplitude of the coupling wave and simulating the same cells; On the other side, from the characteristic of the planar array antenna it is known that when the spacing isλ(wavelength in the waveguide), there are more than one grid lobes appear. To restrain the grid lobes, the distance of the cell must be reduced which make the coupling port have some phase differencing.(which is not equal±2π), simulate on the same radiation cells cannot realize same magnitude and phase simulation. To improve the gain of the array antenna, this is the most important question.
     To solve this question, this paper proposed two solutions to the key problem by analyzing. Solution 1:Radial line is fed in series, in this project, the layout of circular grid is still adopted, while the radial line bent to a certain extent which is in order to increase the wave-path in the internal of the waveguide. There can be 2πphase-difference among different circles by adjusting the dimension properly, finally the linear polarized antenna is excited by the excitation with equal amplitude and phase. Solution 2:Radial line is fed in parallel, in this project, In order to make every microwave route in the feed system have the same wave-path, grid form of array antenna is changed and multi-layer feed is adopted. Finally the excitation of linear polarized element antenna is in-amplitude and in-phase.
     As the effect of complex wave mode characteristics of the bend radial line and the coupling probes, the analysis of first solution is difficult. So second solution is investigated in this paper, combined with the horizontal ring cell antenna, parallel connection feed HPM linear polarized radial line array antenna is formed. Meanwhile, theoretical elements related to the antenna are summarized and ameliorated systemically based on the basic principle in this paper including these aspects:the connection between the overall arrangement of the array and antenna performance is analysed, basing on this analysis, parameters in the array design are abtained; characteristics of the microwave high frenquency are comprehend; the infection to S11 parameter by the mode in the coaxial-line-radial-line junction is theoretic analyzed and calculated, knowledge about this structure is deeply recognized which establish theoretical base for the mode analysis of the whole array antenna.
     Base on this reasonable design of the primary power divider, array unit divider and the cell antennas etc, numerical simulation and measurement of the HPM linearly-polarized radial line array antenna of L-band is simulated. Simulation results indicate that this structure is feasible to realize the linear polarized radial waveguide array antenna. The Gain of the antenna is 19.97dBi at the frequency of 1.57GHz, The aperture efficiency is 50.5%,the axial ratio is-52.06dB. In the range of 1.37 GHz to1.77 GHz, the gain is over 18.64dBi, The aperture efficiency is above 37.2%, the axial ratio is below-46.45dB; In the range of 1.53 GHz to 1.76 GHz, the reflecting coefficient is below 0.2 (which is the same as VSWR is 1.5). The resules above prove that this antenna is feasible, but there are some questions in this antennas, the reflection of this antenna is a little high and the aperture efficiency is low, the power capacity is not big enough. To solve these questions, optimum simulation is carried on in the chapter 5. The simulation results indicate that the Gain is 18.8dBi at the central frency of 1.57GHz, the aperture efficiency is above 64.26%,the axial ratio is-40.07dB, in the range of 1.37 GHz tol.77 GHz, the Gain is over 17.58dBi, the axial ratio is below-40.07dB, in the range of 1.17 GHz to 1.68 GHz, the reflecting coefficient is below 0.2(which is the same as the VSWR equals 1.5); the power capacity can reaches 1GW.
     Finally, experiment is carried on the basic of the results of the numberical simulation. It shows that on the central frequency of 1.57GHz, the gain of the array is 17.65dBi, the aperture efficiency is 58.6%, the VSWR is 1.19; In the range of 1.47 to 1.77 GHz, the Gain is over 17.31dBi, the axial ratio is below-38.6dB. The aperture efficiency is over 54%, and the VSWR is lowre than 1.4. The experimental results is almost accorded with simulated results which means that HPM radial line array antenna can meet the property of a linear polarized radiation.
引文
[1]A. F. Stevenson. Theory of Slots in Rectangular Wave-Guides [J]. Journal of Applied Physics,1948,19(1):24-38
    [2]R. W. Bickmore, Radiation Pattern Synthesis with Annular Slots[J]. University of California,1954,ERL Report No.112 Series 60
    [3]Charles, M. Knop. An Annular Slot Feed For a Surface-Wave Beacon Antenna[J].Technical Memorandum No.385,Research and Development Laboratories, Hughes Aircraft Company,1954
    [4]F. J. Goebel Jr, K. C. Kelly, Arbitrary polarization from annular slot planar antennas[J],IRE Trans Antennas Propagate 1961,AP-9:342-349
    [5]K. C. Kelly, F. J. Goebel Jr. Annular slot monopulse antenna arrays[J],IEEE Trans Antennas Propagat,1964,12(4):391-403
    [6]N. Goto, M. Yamamoto. Circularly polarized radial-line slot antennas [J]. IECE Rep, 1980,AP80-87
    [7]M. Ando, K. Sakurai, N. Goto, et al. A radial line slot antenna for 12 GHz satellite TV reception[J],IEEE Trans Antennas Propagate,1985, AP-33:1347-1353
    [8]M. Ando, K. Sakurai, N. Goto. Characteristics of a radial line slot antenna for 12GHz band satellite TV reception[J], IEEE Trans Antennas Propagate,1986, Ap-34:1269-1272
    [9]H. Sasazawa, Y. Oshima, K. Samurai, et al. Slot coupling in a radial line slot antenna for 12-GHz band satellite TV reception[J],IEEE Trans Antennas Propagate, 1988,36:1221-1226
    [10]E. Rammos. New wideband high-gain stripline planar array for 12 GHz satellite TV[J],Electron Lett,1982,18:252-253
    [11]J. C. Williams. A 36 GHz printed planar array[J],Electron Lett,1978,14:136-137
    [12]M. Ando, T. Numata, J. Takada, et al. A linearly polarized radial line slot antennal[J],IEEE Trans Antennas Propagate,1988,36:1675-1680
    [13]M. Takahashi, J. Takada, M. Ando, et al. A slot design for uniform aperture field distribution in single-layered radial line slot antennas [J], IEEE Trans Antennas Propagat, 1991,39:954-959
    [14]J. Takada, M. Ando, N. Goto. A reflection canceling slot set in a linearly polarized radial line slot antennal[J],IEEE Trans Antenna Propagate,1992,AP-40:433-438
    [15]K. Kechagias, E. Vafiadis, J. Sahalos. On the RLSA antenna optimum design for DBS reception[J],IEEE Trans Brodcasting,1998,44:460-469
    [16]A. Akiyama, T. Yamamoto, M. Ando, et al. Numerical optimization of slot parameters for a concentric array radial line slot antenna[J], Proc. Microwave Antennas Propagate,1998, 145:141-145
    [17]M. Takahashi, M. Ando, N. Goto, et al. Dual circularly polarized radial line slot antenna[J],IEEE Trans Antennas Propagate,1995,43:874-876
    [18]J. Takada, A. Tanisho, K. Ito, et al. Circularly polarized conical beam radial line slot antennal[J], Electron Lett,1994,30(21):1729-1730
    [19]A. Akiyama, T. Yamamoto, M Ando, et al. Conical beam radial line slot antennas for 60GHz band wireless LAN[J],in Proc 1998 IEEE Antennas Propagate Soc Int Symp, 3:1421-1424
    [20]P. Davis, M. Bialkowski. Experimental investigations into a linearly polarized radial slot antenna for DBS TV in Australia[J],IEEE Trans Antennas Propagate,1997, 45:1123-1129
    [21]P. Davis, M. Bialkowski. Lineary polarized radial-line slot-array antennas with improved return-loss performance[J], IEEE Antennas Propagate Mag,1999,41:52-61
    [22]M. Ando, M. Natori, T. Ikeda, et al. A matching spiral for a single-layered radial line slot antennal[J],Trans IEICE,1990, E-73(8):1322-1325
    [23]M. Takahashi, Y. Nakagawa, M.A be. Lowsidelobes for radial line antennal[J]
    [24]M.E Bialkowski, P. Kabacik. An equivalent circuit model of a radial line planar antenna with coupling probes[J], Antenna and Propagate Society International Symposium,2002 IEEE.2002,3(16-21):392-395
    [25]H. Nakano, H. Takeda, Y. kitamura, et al. Low-profile helical array antennal fed from a radial waveguide [J].IEEE Trans on Antennas and Propagation,1992,40(3):279-284
    [26]H. Mark. Beam Weapons Revolution-Directed-Energy Weapons Point the Way for Battlefield Technology. Janes International Defense Review,2000,8:34
    [27]G. Cooperstein. Status of particle beam and pulsed power research in the US. Proceeding of Beams 2002. Edited by T. A. Mehlhorn and M. A. Sweeney, Albuquerque UM USA,2002
    [28]H. Bluhm, W. An, V. Engelko, et al. High power particle beams and pulsed power for industrial applications. Proceeding of Beams 2002. Edited by T. A. Mehlhorn and M. A. Sweeney, Albuquerque UM USA,2002,9
    [29]吴坚强.高功率微波的发展和应用[J].电子科技大学学报.1996,25(7):129-139
    [30]戴大富.高功率微波的发展与现状[J].真空电子技术.2004,第五期:18-24
    [31]杨仕文.高功率微波高频系统的研究[D].电子科技大学博士学位论文.1997
    [32]Yang S W, Li H F. Numerical modeling of 8mm TM01-TE11 mode converter[J]. Int. J. Infrared and Millimeter waves.1996,17(11):1935-1943
    [33]牛新建,李宏福,谢仲怜.高功率毫米波圆波导TM01-TE11模式变换分析[J].强激光与粒子束.2002,14(1):90-94
    [34]R. L. Eisenhart.A novel wideband TM01-TE11 mode converter[J].IEEE Trans on Microwave Theory and Techniques,1988,1(11):249-252
    [35]刘庆想,袁成卫.一种新型同轴TEM-圆波导TE11模式变换器[J].强激光与粒子束.2004,16(11):1421-1424
    [36]刘庆想,袁成卫.同轴插板式TEM-TE11模式转换器的设计与实验研究[J].强激光与粒子束.2005,17(6):897-900
    [37]C. W. Yuan, 刘庆想, H. H. Zhong et al.. A Novel TEM-TE11 Mode Converter[J]. IEEE Microwave and wireless components letters,2005,15(8):513-515
    [38]S. N. Vlasov, I. M. Orlova. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into highly directional wave beam [J]. Radiofizika, 1974,17(1):148-154
    [39]周海京,刘庆想,丁武Vlasov天线的研究[J].强激光与粒子束.2002,14(3):431-433
    [40]袁成卫,凌根深.伏拉索夫模式变换器数值计算[J].国防科技大学学报.2002,24(2):106-110
    [41]Ling G S, Yuan C W. Design of a Vlasov antenna with reflector [J]. Int. J. Electronics, 2004,91(4):253-258
    [42]袁成卫,凌根深.斜切形Vlasov辐射器反射特性研究[J].强激光与粒子束.2003,15(2):172-175
    [43]J. Braunstein, K. Connor, et.al. Analysis of Flared End for Vlasov-type Antenna: Comparison of 2D Finite Element Analysis with Experiment [J]. IEEE Trans. on Magnetics. 1994,30(5):3120-3123
    [44]C. C. Courtney, et al. Design and measurement of a cassegrain-type coaxial beam-rotating antenna. Sensor and Simulation Note 427,Nov.1998
    [45]C. C. Courtney, C. E. Baum. Design and Optimization of a Conical Transmission-line Feed for a Coaxial Beam-rotating Antenna. Sensor and Simulation Note 429,1998
    [46]C. C. Courtney, C. E. Baum. Coaxial Beam-rotating Antenna (COBRA) Concepts. Sensor and Simulation Note 395,1996
    [47]C. C. Courtney, D. Slemp, D. Baum, C. E. Baum, R. Torres, W. Prather. Coaxial Beam-rotating Antenna (COBRA) Prototype Measurements. Sensor and Simulation Note 408,1997
    [48]C. C. Courtney, C. E. Baum. The Coaxial Beam-rotating Antenna (COBRA):Theory of Operation and Measured Performance. IEEE Trans. Antennas Propagation.2000, 48(2):299-308
    [49]C. C. Courtney, D. B. Voss, C. E. Baum, et al. A Description and the Measured Performance of Three Coaxial Beam-rotating Antenna Prototypes. IEEE Trans. Antennas Propagation.2002,44(3):30-47
    [50]C. C. Courtney. Design and Numerical Simulation of Coaxial Beam-rotating Antenna Lens. Electronics Letters,2002,38(11):496-498
    [51]刘庆想,李相强,袁成卫,等.高功率双层径向线螺旋阵列天线理论分析与数值模拟[J].电子学报.2005,33(12):2231—2234
    [52]李相强,刘庆想,赵柳.高功率单层径向线螺旋阵列天线的设计和模拟[J].强激光与粒子束.2005,17(11):1421—1424
    [53]李相强,刘庆想,赵柳,等.高功率双层径向线螺旋阵列天线实验研究[J].强激光与粒子束.2006,18(2):265—268
    [54]林昌禄.天线工程手册[M].北京:电子工业出版社,2002
    [55]王欣,刘庆想.一种新型顶部加载单极天线[J].强激光与粒子束.2010,22(7)
    [56]刘庆想,李相强,袁成卫,等.高功率双层径向线螺旋阵列天线理论分析与数值模拟[J].电子学报,2005,33(12):2231-2234
    [57]李相强,刘庆想,赵柳.高功率单层径向线螺旋阵列天线的设计和模拟[J].强激光与粒子束.2005,17(11):1421-1424
    [58]赵柳,张健穹,等.4单元矩形径向线螺旋阵列天线的理论分析和数值模拟[J].强激光与粒子束.2007,19(11):1869-1872
    [59]赵柳,李相强,陈晓波,等.16单元组合式矩形径向线螺旋阵列天线的设计[J].电波科学学报.2008,23(4):640-644
    [60]邓遥林.L波段高功率径向线阵列天线的设计与模拟[D].西南交通大学硕士学位论文,2009
    [61]康行健.天线原理与设计[M].北京:北京理工大学出版社,1993
    [62]张德齐.微波天线基础[M].北京:北京工业学院出版社,1985
    [63]吕善伟.天线阵综合[M].北京:北京航空学院出版社,1988
    [64]赵柳,刘庆想等.径向波导模式分析[C].四川省电子学会高能电子学专业委员会.第四届学术交流会,2005
    [65]李相强.高功率径向线螺旋阵列天线研究[D].西南交通大学博士学位论文.2006
    [66]张克潜,李德杰.微波与光电子学中的电磁理论[M].第二版.北京:电子工业出版 社,2001
    [67]Y. Susuki, J. Hirokawa. Development of planar antennas, IEICE Trans. Commun. 2003, E86-B(3):909-924
    [68]H. Nakano, H. Takeda, Y. Kitamura, et al. Low-profile helical array antenna fed from a radial waveguide. IEEE Trans. On Antennas and Propagation,1992,40(3):279-284
    [69]E. Marek, Bialkowski, Paul W. Davis. Analysis of a circular patch antenna radiating in a parallel-plate radial guide. IEEE trans. on antennas and propagation,2002,50(2): 180-187
    [70]E. Seebald. High transformation ratio for impedance matching with a radial line[J]. Electronics letters,1980,16(2):50-51
    [71]R. B. Keam and A. G Williamson. Analysis of a general coaxial-line/radial-line region junction [J]. IEEE trans. on microwave theory and techniques,1993,41(3):516-520
    [72]R. B. Keam and A. G. Williamson. Radial-line to coaxial-line junction with a dielectrically sheathed post [J]. IEEE Microwave and guided wave letters,1992,2(3): 102-104
    [73]Duolong Wu and Chengli Ruan. Analysis on a radial-line/coaxial-line junction [J]. Electronics letters,1998,34(10):994-996
    [74]Oleksey S. Kim. Generalized analysis of a coaxial waveguide to radial waveguide junction [J]. MMET 2000 Proceedings:500-502
    [75]R.L. Eisenhart, P.T. Greiling, L.K. Roberts, R.S. Robertson. A Useful Equivalence for a Coaxial-Waveguide Junction[J] Microwave Theory and Techniques, IEEE Transactions on Volume 26, Issue 3, Mar 1978 Page(s):172-174
    [76]A.G Williamson. Analysis and modelling of a coaxial-line/rectangular-waveguide junction [J]. Micro waves, Optics and Antennas, IEE Proceedings H Volume 129, Issue 5, October 1982 Page(s):262-270
    [77]M.E. Bialkowski, P.J. Khan. Determination of admittance of coaxial-line/rectangular waveguide junction [J]. Electronics Letters Volume 19, Issue 20,1983 Page(s):832-834
    [78]A.G. Williamson. Cross-Coupled Coaxial-Line/Rectangular-Waveguide Junction (Short Papers) [J]. Microwave Theory and Techniques, IEEE Transactions on Volume 33, Issue 3, Mar 1985 Page(s):277-280
    [79]R.B. Keam, A.G Williamson. Analysis and Design of Coaxial-Line/Rectangular Waveguide Junction with a Dielectrically Sheathed Centre Probe[J]. Microwave Conference, 1992. APMC '92.1992 Asia-Pacific Volume 2,11-13 August 1992 Page(s):845-848
    [80]R.B. Keam, A.G. Williamson. Analysis of coaxial-line/rectangular waveguide junction with dielectrically sheathed probe [J]. Electronics Letters Volume 28, Issue 3,30 Jan. 1992 Page(s):240-241
    [81]R.B. Keam, A.G.Williamson. Broadband design of coaxial line/rectangular waveguide probe transition [J]. Microwaves, Antennas and Propagation, IEE Proceedings-Volume 141, Issue 1, Feb.1994 Page(s):53-58
    [82]J.K. Piotrowski. Analysis of a coaxial line-circular waveguide junction used for measurement of materials [J]. Microwaves, Radar and Wireless Communications.2000. MIKON-2000.13th International Conference on Volume 1,22-24 May 2000 Page(s):333-336 vol.1
    [83]C.Capsalis, C.P.Chronopoulous, N.K.Uzunoglu. A rigorous analysis of a coaxial to shielded microstrip line transition [J]. Microwave Theory and Techniques, IEEE Transactions on Volume 37, Issue 7, July 1989 Page(s):1091-1098
    [84]Zhongxiang Shen; R.H. MacPhie. Waveguide modal analysis of single and stacked probe-fed microstrip antennas with circular geometries [J]. Antennas and Propagation Society International Symposium,1997. IEEE.,1997 Digest Volume 2,13-18 July 1997 Page(s):598-601 vol.2
    [85]A.G. Williamson. Equivalent circuit for radial-line/coaxial-line junction [J]. Electronics Letters Volume 17, Issue 8, April 16 1981 Page(s):300-301
    [86]M.E. Bialkowski, P.J. Khan. Modal Analysis of a Coaxial-Line Waveguide Junction [J]. Microwave Symposium Digest, MTT-S International,198383(1):424-426
    [87]A.G. Williamson. Radial-Line/Coaxial-Line Stepped Junction (Short Papers) [J]. Microwave Theory and Techniques, IEEE Transactions,1985,33(1):56-59
    [88]R.B. Keam, A.G. Williamson. radial-line to coaxial-line junction with a dielectrically sheathed post [J].Microwave and Guided Wave Letters, IEEE [see also IEEE Microwave and Wireless Components Letters],1992,2(3):102-104
    [89]R.B. Keam, A. Williamson. Analysis of a general coaxial-line-radial-line region junction [J]. Microwave Theory and Techniques, IEEE Transactions on,1993,41(3):516-520
    [90]P.J. Hum, M.S. Leong, P.S. Kooi, T.S.Yeo. analysis of coaxial-line to radial-line junction with dielectrically sheathed post by finite-difference time-domain method[J]. Electronics Letters,1993,29(5):458-459
    [91]Duolong Wu, Chengli Ruan. Analysis on a radial-line/coaxial-line junction [J]. Electronics Letters.1998,34(10):994-996
    [92]D.V Otto. the admittance of cylindrical antennas driven from a coaxial line[J].Radio Science,1967,2(9):424-426
    [93]樊德森,多端口矩形波导E面波导结数值分析[J].电子学报.1991,19(4):72-78
    [94]樊德森,矩形波导H面多端口波导结分析[J].全国微波会议,1991:191-197
    [95]水从容.径向传输线电路理论和径向同轴线接头的研究,国防科技大学硕士学位论文,1996
    [96]王新稳.微波技术与天线[M].第二版.北京:电子工业出版社,2006[97] M.Wind, H.Rapapor.微波测量方法[M].吴培亨等译.上海:上海科学技术出版社,1963
    [98]杨儒贵.电磁场与电磁波[M].北京:高等教育出版社,2003
    [99]张志涌,徐彦琴.MATLAB教程—基于6.x版本[M].北京:北京航空航天大学出版社,2001
    [100]R.A. Jameson, in Proc. ASI Conf. on High Brightness Accelerators, (Pitlochry),1986, p.497
    [101]约翰.克劳斯.天线(下册)[M].第三版.北京:电子工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700