矩形径向线螺旋阵列天线(子阵)研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的天线技术已经具备相当雄厚的理论和工程基础,但是在新兴的高功率微波研究领域,电磁波具有功率高、输出模式为旋转轴对称模等特点,因此对高功率微波天线提出了新的要求。为此,国内外进行了许多研究工作,提出了模式变换器接辐射喇叭、Vlasov天线、模式转换天线以及径向线阵列天线等高功率微波天线型式。上述天线各有特点,经分析比较,我们认为径向线阵列天线应用于高功率微波领域有其独特的优势,可以实现天线的高功率容量、高效率、小型化和圆极化辐射,但由于耦合探针的调节范围有限而无法实现高增益。为此,本文提出组合式高功率高增益径向线螺旋阵列天线的设计思想,然后从该思想出发,针对其核心部分——矩形子阵,进行了系统的理论、模拟和实验研究,通过研究验证了该矩形子阵设计的可行性,从而拓展了高功率阵列天线的应用。
     高功率高增益矩形径向线螺旋阵列天线的设计思想是以组合式矩形子阵为核心,子阵采用径向线为馈电波导,短螺旋天线为辐射单元,通过耦合探针实现从径向线到单元天线的馈电:辐射单元按照正方形栅格排列在径向线顶板上,通过调节探针的结构尺寸和旋转单元天线实现单元等幅同相激励;将径向线外沿封口为正方形,通过等幅多路功分网络可以组合为更大的矩形阵,以达到提高增益的目的。
     基于上述思想,对矩形径向线螺旋子阵相关的基础理论进行了系统的总结和完善。主要包括:分析了阵列布局与天线性能的关系,由此获得子阵设计的轮廓参数(包括等幅同相激励和单元间距的选取范围);分析了径向线内微波模式,给出了完整的单模传输条件,由此获得矩形子阵的设计原则(包括正方形栅格布局和馈入同轴的尺寸);采用三短路面模式匹配技术(TPMMT)计算了探针的散射矩阵,加深了对探针耦合机理的认识,为探针的选取提供依据。
     通过对同轴-径向线转换器、短螺旋单元天线和耦合探针等关键环节的合理优化,对4单元矩形子阵和4路等幅径向线功分器的模型进行了优化设计,以此为基础设计了组合式16单元矩形子阵。实验结果表明该天线在3.8-4.2 GHz的频带范围内,轴向增益大于17.5 dB,口径效率大于82%,初步验证了矩形径向线螺旋子阵的可行性;但其仅在3.75-3.95 GHz的频带范围内驻波系数小于1.3,且辐射效率和轴向轴比恶化。经分析,认识到子阵各单元为同相馈电,轴向辐射时各螺旋天线相位位置相同(横杆指向一致),导致匹配不佳。
     针对上述不足,通过重新优化子阵阵列布局和耦合探针,改进设计了单层径向线馈电的16单元矩形螺旋子阵,其结构可以有效避免各路耦合输出的同一性,改善馈电系统和单元天线的匹配性能。实验表明,该单层16单元子阵在3.8~4.2 GHz的范围内可以实现良好的轴向辐射,辐射效率大于95%,增益大于17 dB,口径效率大于74%,轴比小于1.30 dB;通过两种16单元子阵性能的比较,推断组合式馈电更有利于实现等幅耦合,但对短螺旋单元天线的匹配性能要求很高;单层径向线馈电轴向长度短,更有利于小型化,辐射效率和圆极化程度较高。
With the development of high-power microwave (HPM) technology, more attention has been progressively paid to the function of HPM antenna as the terminal of HPM system. Due to particularities of HPM, the traditional array antenna can not be used directly into HPM field due to limit of power-handling capacity of power dividers and phase shifters. Therefore, many researches have been made at home and abroad, and such HPM antennas as mode converter with radiant horn, Vlasov antenna, mode-transducing antenna and High-power radial line helical array antenna have been put forward. The antennas mentioned above have their own characteristics. By analysis and comparison we find High-power radial line helical array antenna have some special advantages, which can probably solve many problems exist in HPM radiation. But this antenna can not meet high gain because the probe coupling energy can not regulate arbitrarily. Based upon the above background, the design idea of a new assembled high-power high-gain array antenna is put forward. And then, focused on its key part——square radial line sub-array antenna, theoretical analysis, numerical simulation, and experimental research have been carried out, through which, the feasibility of the design idea of the anew assembled antenna has been proved, and the sub-array model fulfills high efficiency, small size and circularly-polarized directional radiation.
     The assembled high-power high-gain array antenna is combined with many square sub-array, which adopts short helical antenna which radiates circularly-polarized wave at its axial direction as radiation unit, uses radial line as feeding waveguide, applies new-type coupling probe to feed energy from radial line to unit antenna. Scheduled excitation magnitude and radiation phase can be reached by adjusting the coupling factor of the probes and rotating the radiation units, and in which way, directional radiation of microwave can be achieved.
     Theoretical elements related to the square sub-array antenna are summarized and ameliorated systemically based upon the basic principle of high-power radial array antenna. The Paper focuses on the far-field radiation field of rectangular array antenna, the research of basic features of radial line, the favorable radiation conditions of circularly-polarized wave conditions at axial direction of low-profile helical antenna and the three plane mode match technique is applied to model the generalized S parameters of coax-waveguide T junctions. In this way, design principles are obtained.
     Coaxial-line to radial-line junction, unit antenna and array arrangement, etc. are optimized rationally to make them meet requirement of the square sub-array, based on which, a helical assembled square array antenna of 16 elements using L—haped coupled probes is put forward, which is combined with 4 helical square array antennas of 4-element and a 4-way radial line equal power divider.Numerical simulation and measurement are accomplished in detail. Measured result shows that in the range of 3.75 GHz to 3.95 GHz, the directivity is upon 17.5 dB, and the VSWR is below 1.3. But due to the radiation phase of each helix is same, reflectance and axial ratio of the array is not ideal.
     For the disadvantage mentioned above, an improved model of 16-element helical square array antenna fed from single radial line is designed. A new type of one side post coupling probe and L-shaped probe are used to feed energy from radial line to unit antenna. The experimental research shows that in the range of 3.8 GHz to 4.2 GHz, the directivity is upon 17 dB, and the VSWR is below 1.3, the aperture efficiency is upon 74%, and the axial ratio is below 1.3 dB. Meanwhile, through comparison, and the advantages and disadvantages of the two models are analyzed.
引文
[1]J. A. Swegle and J. Benford. High-power microwave at 25 years:the current state of development. Proc. Beams'98, vol.1,1998.
    [2]L. D. Bacon and L. F. Rinehart. A brief technology survey of high-power microwave sources. Sandia report,2001.
    [3]J. Benford and J. A. Swegle. High-Power Microwaves. Norwood, Mass:Artech House, 1992.
    [4]J. B. Robert, S. Edl. High-power microwave sources and technologies. New York: The Institute of Electrical and Electronics Engineer, Inc.,2001.
    [5]S. H. Gold and G. S. Nusinovich. Review of high-power microwave source research. Rev. Sci. Instrum.1997,68(10):3945.
    [6]E. Schamiloglu, K. H. Schoenbach and R. Vidmar. Basic research on pulsed power for narrowband high power microwave sources.14th international pulsed power conference. Dallas Texas USA USA,2003.
    [7]M. Kristiansen, E. Schamiloglu, R. Gilgenbach, et al. MURI Program "High energy microwave device consortium" final report.2000.
    [8]J. N. Benford, N. J. Cooksey, J. S. Levine, et al. Techniques for High Power Microwave Source at High Average Power, IEEE Trans. Plasma Sci.1993,21(4):388.
    [9]W. W. Destler and B. Levush. Introduction to the third special issue on high-power microwave generation. IEEE Trans. Plasma Sci.1990,18(3):257.
    [10]D. B. McDermott, A. T. Lin and K. R. Chu. The Ninth special issue on high-power microwave generation. IEEE Trans. Plasma Sci.2002,30(3):731.
    [11]S. T. Pai and Q. Zhang. Introduction to high power pulse technology. Singapore: World Scientific Publishing Co. Ltd,1995.
    [12]M. Gaudreau, J. Casey, M. Kempkes, et al. Solid-state high voltage pulse modulators for high power microwave applications. Proceedings of EPAC 2000, Vienna Austria, 2000.
    [13]E. Schamiloglu. Basic Research Leading to Compact, Portable Pulsed Power. MURI Consortium:2002 Annual Technical Report,2002.
    [14]M. Gundersen, J. Dicken and W. Nunnally. Compact, portable pulsed power:physics and applications.14th international pulsed power conference, Dallas Texas,2003.
    [15]E. Schamiloglu, K. H. Schoenbach and R. J. Vidmar. On the road to compact pulsed power:adventures in materials, electromagnetic modeling, and thermal management. 14th international pulsed power conference, Dallas Texas USA,2003.
    [16]刘盛纲.相对论电子学.北京:科学出版社,1987.
    [17]R.B.Miller.强流带电粒子束物理学导论.北京:原子能出版社,1990.
    [18]吴鸿适.微波电子学原理.北京:科学出版社,1987.
    [19]H. Mark and B. Chakraborty. Principles of plasma mechanics. Wiley Eastern Limited, 1978.
    [20]徐家鸾,金尚宪.等离子体物理学.北京:原了能出版社,1981.
    [21]林光海译,F.F.Chen著.等离子体物理学导论.北京:人民教育出版社,1980.
    [22]J. A. Swegle, J. W. Poukey and G. T. Leifeste. Backward wave oscillators with rippled wall resonators:analytic theory and numerical simulation. Phys. Fluids.1985, 28(9):2882.
    [23]B. Levush, T. M. Antonsen, A. Bromborsky, et al. Theory of relativistic backward-wave oscillators with end reflections. IEEE Trans. Plasma Sci.1992, 20(3):263.
    [24]D. M. Larald, S. Edl, W. L. Raymond, et al. Efficiency enhancement of high power vacuum BWO's using nonuniform slow wave structure. IEEE Trans. Plasma Sci.1994, 22(5):554.
    [25]L. Baruch, M. A. Thomas, N. V. Alexander, et al. High-efficiency relativistic BWO: theory and design. IEEE Trans. Plasma Sci.1996,24(3):843.
    [26]D. Shiffler, J. A. Nation, G. S. Kerslick. A high-power traveling wave tube amplifier. IEEE Trans. Plasma Sci.1990,18(3):546.
    [27]S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Relativistic multiwave Cerenkov generators. IEEE Trans. Plasma Sci.1990,18(3):525.
    [28]吴坚强.高功率微波的发展和应用.电子科技大学学报,1996,25(7):129-139.
    [29]H. Mark. Beam Weapons Revolution-Directed-Energy Weapons Point the Way for Battlefield Technology. Janes International Defense Review,20008:34.
    [30]G. Cooperstein. Status of particle beam and pulsed power research in the US. Proceeding of Beams 2002. Edited by T. A. Mehlhorn and M. A. Sweeney, Albuquerque UM USA,2002.
    [31]H. Bluhm, W. An, V. Engelko, et al. High power particle beams and pulsed power for industrial applications. Proceeding of Beams 2002. Edited by T. A. Mehlhorn and M. A. Sweeney, Albuquerque UM USA,2002,9.
    [32]吴坚强.高功率微波的发展和应用.电子科技大学学报,1996,25(7):129-139.
    [33]戴大富.高功率微波的发展与现状[J].真空电子技术,2004,第五期,18-24.
    [34]Silver. Microwave antenna theory and design. Mcgraw-Hill Book Company, INC,1949.
    [35]杨仕文.高功率微波高频系统的研究.博士学位论文,成都:电子科技大学,1997.
    [36]Yang S W, Li H F. Numerical modeling of 8mm TM01-TE11 mode converter. Int.J.Infrared and Millimeter waves,1996,17(11):1935-1943.
    [37]牛新建,李宏福,谢仲怜.高功率毫米波圆波导TM01-TE11模式变换分析.强激光与粒了束,2002,14(1):90-94.
    [38]Eisenhart R L. A novel wideband TM01-TE11 mode converter. IEEE Trans on Microwave Theory and Techniques,1988,1(11):249-252.
    [39]刘庆想,袁成卫.一种新型同轴TEM-圆波导TE11模式变换器.强激光与粒子束,2004,16(11):1421-1424.
    [40]刘庆想,袁成卫.同轴插板式TEM-TE11模式转换器的设计与实验研究.强激光与粒了束,2005,17(6):897-900.
    [41]C. W. Yuan, Q. X. Liu, H. H. Zhong et al.. A Novel TEM-TE11 Mode Converter. IEEE Microwave and wireless components letters,2005,15(8):513-515.
    [42]Vlasov S N and Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into highly directional wave beam. Radiofizika,1974,17(1):148-154.
    [43]Dahlstrom R K, Hadwin L J, Ruth B G, et al. Reflector design for an X-band Vlasov antenna. IEEE AP-S Digest,1990:968-971
    [44]Ruth B G, Dahlstrom R K, Libelo L F. Design and low-power testing of a microwave Vlasov mode convertor. IEEE MTT-S Digest 1989:1277-1280
    [45]Ruth B G, Christian D. R.Schlesiger and Robert K.Dahlstrom. Antenna measurements on the radiator component of X-band Vlasov-type mode convertor. Int. J. Infrared and Millimeter waves,1989,10(7):869-878.
    [46]钟哲夫.伏拉索夫天线在高功率微波发射中的应用.电子科技大学学报,1993,22(8):134-138
    [47]钟哲夫.圆波导劈形端口辐射器的数值分析.强激光与粒子束,1999,11(6):733-736.
    [48]周海京,刘庆想,丁武.Vlasov天线的研究.强激光与粒子束,2002,14(3):431-433.
    [49]袁成卫,凌根深.伏拉索夫模式变换器数值计算.国防科技大学学报,2002,24(2):106-110.
    [50]Ling G S, Yuan C W. Design of a Vlasov antenna with reflector. Int. J. Electronics, 2004,91(4):253-258.
    [51]袁成卫,凌根深.斜切形Vlasov辐射器反射特性研究.强激光与粒子束,2003,15(2):172-175.
    [52]Braunstein J, Connor K, et.al. Analysis of Flared End for Vlasov-type Antenna: Comparison of 2D Finite Element Analysis with Experiment. IEEE Trans. on Magnetics.1994,30(5):3120-3123.
    [53]R. D. Wengenroth et al. A mode transducing antenna. IEEE Trans.on Microwave Theory and Techniques, vol. MTT-26, No.5,1978:332-334.
    [54]Charles.M.KNOP,Louis.F.Libelo.Achievement of pencil-beam radiation from a TM01 mode circular waveguide source.IEEE Trans. on Microwave Theory and Techniques, 1994:42(8):1188-1192.
    [55]C. C. Courtney, et al. Design and measurement of a cassegrain-type coaxial beam-rotating antenna.Sensor and Simulation Note 427,Nov.1998
    [56]C. C. Courtney, C. E. Baum. Design and Optimization of a Conical Transmission-line Feed for a Coaxial Beam-rotating Antenna. Sensor and Simulation Note 429, Dec.1998.
    [57]C. C. Courtney, C. E. Baum. Coaxial Beam-rotating Antenna (COBRA) Concepts. Sensor and Simulation Note 395, Apr.1996.
    [58]C. C. Courtney, D. Slemp, D. Baum, C. E. Baum, R.Torres, W. Prather. Coaxial Beam-rotating Antenna (COBRA) Prototype Measurements. Sensor and Simulation Note 408, July.1997
    [59]C. C. Courtney, C. E. Baum. The Coaxial Beam-rotating Antenna(COBRA):Theory of Operation and Measured Performance. IEEE Trans. Antennas Propagation.2000, 48(2):299-308.
    [60]C. C. Courtney, D. B. Voss, C. E. Baum, et al. A Description and the Measured Performance of Three Coaxial Beam-rotating Antenna Prototypes. IEEE Trans. Antennas Propagation.2002,44(3):30-47
    [61]C. C. Courtney. Design and Numerical Simulation of Coaxial Beam-rotating Antenna Lens. Electronics Letters,2002,38(11):496-498.
    [62]林昌禄.天线工程手册.北京:电子工业出版社,2002.
    [63]李相强,赵柳,吴晓降,刘庆想.GW级高功率径向线螺旋阵列天线[J].西南交通大学学报,录用待发.
    [64]李相强,刘庆想,赵柳.高功率单层径向线螺旋阵列天线的设计和模拟[J].强激光与粒了束,2005,17(11):1421-1424.(EI accession number:06029637734)
    [65]刘庆想,李相强,袁成卫,赵柳,王欣,李君.高功率双层径向线螺旋阵列天线理论分析与数值模拟[J].电子学报,2005,33(12):2231-2234.(EI accession number: 06109748093)
    [66]李相强,刘庆想,赵柳,王欣.高功率圆极化径向线螺旋阵列天线研究[C].第八届全国激光技术青年学术交流会,福州,2005:544-547.
    [67]李相强,刘庆想,赵柳,王欣,葛名立.高功率双层径向线螺旋阵列天线实验研究[J].强激光与粒子束,2006,18(2):265-268.(EI accession number:06209881985)
    [68]李相强,刘庆想,赵柳,工欣.3圈48单元高功率径向线螺旋阵列天线研究[J].强激光与粒子束,2006,18(5):843-846.(EI accession number:063510092212)
    [69]李相强,刘庆想,赵柳,张健穹,张政权.36单元高功率双层径向线螺旋阵列天线功率容量[J].强激光与粒子束,2007,19(6):943-946.(EI accession number: 073210754071)
    [70]Xiang-Qiang Li,刘庆想,赵柳,Jian-Qiong Zhang, Zheng-Quan Zhang. The high-power radial line helical array antenna[C]. The 6th international conference on electromagnetic field problems and applications, chongqing,2008:145-149.
    [71]Xiang-Qiang Li,刘庆想,Xiao-Jiang Wu,赵柳,Jian-Qiong Zhang, Zheng-Quan Zhang. A GW level high-power radail line helical array antenna[J]. IEEE trans. on antennas and propagation, accepted.
    [72]Y. Susuki and J. Hirokawa, Development of planar antennas, IEICE Trans. Commun. 2003, E86-B(3):909-924.
    [73]H. Nakano, H. Takeda, Y. Kitamura, et al. Low-profile helical array antenna fed from a radial waveguide. IEEE Trans. On Antennas and Propagation,1992,40(3):279-284.
    [74]H. Nakano, S. Okuzawa, K. Ohishi, et al. A curl antenna. IEEE Trans. on Antennas and Propagation,1993,41(11),1570-1575.
    [75]H. Nakano, H. Takeda, T. Honma et al.. An extremely low-profile helical array antenna. Antennas and Propagation Society International Symposium,1990, pp:702-
    [76]T. Noro and Y. Kazama. Helical array antennas with high efficiency, wide frequency bandwidth and simple structure. Antennas and Propagation Society International Symposium,2004, pp:1050-1053.
    [77]吕善伟.天线阵综合[M].北京:北京航空学院出版社,1988.
    [78]J.D.Kraus, Antenna. New York:McGraw-Hill,1947.
    [79]John D. Kraus. The helical antenna. Proceedings of the IRE,1949 March,263-272.
    [80]H. Nakano and J. Yamauchi. Radiation characteristics of helix antenna with parasitic elements. Electron. Leti., vol.16, pp.687-688,1980.
    [81]H. Nakano, Y. Samada and J. Yamauchi. Axial mode helcial antennas. IEEE trans on antennas and propagation,1986,34(9):1143-1148.
    [82]HISAMATSU NAKANO,TAKAO MIKAWA AND JUNJI YAMAUCHI. Investigation of a short conical helix antenna. IEEE Transactions on antennas and propagation, vol. AP-33,No.10,october,1985:1157-1160.
    [83]HISAMATSU NAKANO,NOBUYOSHI ASAKA AND JUNJI YAMAUCHI. Radiation characteristics of short helical antenna and its mutual coupling. Electronics letters,1st march 1984, Vol.20 No.5,202-204.
    [84]H. Nakano, H. Takeda, T. Honma, et al. Extremely Low-profile Helix Radiating a Circularly Polarized Wave. IEEE Trans. On Antennas and Propagation,1991,39(6): 754-756.
    [85]N. Marcuvitz. Waveguide handbook. New York:McGraw-Hill,1951
    [86]张克潜,李德杰.微波与光电子学中的电磁理论(第二版).北京:电子工业出版社,2001.
    [87]赵柳,刘庆想,李相强,李君.径向波导模式分析[J].四川省电子学会高能电子学专业委员会第四届学术交流会论文集:424-428.
    [88]李相强.高功率径向线螺旋阵列天线研究.博十学位论文,成都:西南交通大学,2008
    [89]R. E. Collin. Field theory of guided waves. New York:McGraw-Hill,1960.
    [90]黄宏嘉.微波原理.北京:科学出版社,1964.
    [91]Hui-Wen Yao,Kawthar A.Zaki. modeling of generalized coaxial probes in rectangular waveguide.IEEE trans.on microwave theory and techniques,1995,43(12):2805-2811.
    [92]Hui-Wen Yao,Kawthar A.Zaki,Ali E.Atia, Rafi Hershtig. Full wave modeling of conducting posts in rectangular waveguides and its applications to slot coupled combine filters.IEEE trans. on microwave theory and techniques,1995, 43(12):2824-2830.
    [93]X.P.Liang, Kawthar A.Zaki,Ali E.Atia. A rigorous three plane mode matching technique for characterizing waveguide T-junctions,and its application inmultiplexer desine. IEEE trans. on microwave theory and techniques,1991,39:2138-2147.
    [94]S.W.Chen, Kawthar A.Zaki. Dielectric ring resonators loaded in waveguide and on substrate. IEEE trans. on microwave theory and techniques,1991,MTT-39:2069-2076.
    [95]R.E.Keam, A.G.Williamson. Analysis of a general coaxial-line/radial-line region junction. IEEE trans. on microwave theory and techniques,1993,41:516-520.
    [96]张本全.微波无源器件设计中的模式匹配法研究.博十学位论文,成都:电子科技大学,2004.
    [97]袁成卫.新型高功率模式变换器与模式转换天线研究.博士学位论文,长沙:国防科技大学,2006.
    [98]李浩,钟哲夫.运用模匹配法设计高功率高效率多模馈源.强激光与粒子束,2005,17(8):1243-1246.
    [99]L. R. Sergio, G. Benito, S. P. Magdalena. Mode matching analysis with cylindrical and plane waves. IEEE Antennas and Propagation Society International Symposium, 2005,pp:280-283.
    [100]Pawel Matras, Rainer Bunger and Fritz Arndt. Mode-Matching Analysis of the step discontinuity in elliptical waveguides. IEEE Microwave and guided wave letters, 1996,6(3):143-145.
    [101]Uma Balaji and Ruediger Vahldieck. Radial mode matching analysis of ridged circular waveguides. IEEE trans. on microwave theory and techniques,1996,44(7): 1183-1186.
    [102]张晓萍,钟辉煌,袁成卫.微波源中同轴提取区支撑杆的理论分析与设计.微波学报,2004,20(2):46-50.
    [103]赵柳,张健穹,吴晓降,刘庆想,李相强,张政权.4单元矩形径向线螺旋阵列天线的理论分析和数值模拟[J].强激光与粒了束,2007,19(11):1869-1872.(EIaccession number:080411058984)
    [104]黎安尧.微波技术基础[M],1998,电子科技大学出版社.
    [105]Christopher S, Abid Hussain VA, Easwaran MS et al. Design aspects of compact high power multiport unequal power dividers, IEEE international symposium on phased array systems and technology,63-67,1996.
    [106]Fritz ARNDT, Ingo AHRENS, Uwe Papziner et al. Optimized E-plane T-junction series power dividers. IEEE Trans. on microwave theory and techniques, vol. MTT-35, No.11,1987.
    [107]Kai Chang, Mingyi Li and Kenneth A. Hummer. High power four-way power divider/combiner. IEEE MTT-S International microwave symposium digest, vol.3, 1329-1332,1990.
    [108]Shuguang Chen. A radial waveguide power divider for Ka band phased array antennas, 2002 3rd international conference on microwave and millimeter wave technology proceedings,948-951,2002..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700