高功率微波多路耦合输出的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高功率微波技术的发展与成熟,能够提升高功率微波输出能力的方法越来越受到人们的重视。研究的主要方向有提高微波的输出功率、增加微波的脉冲宽度、提高束波转换效率以及增加频谱覆盖范围等。然而受到物理和技术等方面的限制,利用单个微波源提高微波输出能力的方法目前已遇到较大困难。一种较为有效地解决此问题的方法就是利用高功率微波多路耦合输出技术。本文主要致力于高功率微波的多路耦合输出的研究,介绍了高功率微波多路耦合输出的理论和实验研究结果。总体看来,高功率微波多路耦合输出的研究为高功率微波技术的发展开辟了令人鼓舞的前景,具有重要的理论和实践意义。本文的主要研究结果和创新点有:
     1.对基于空间滤波原理的线极化波双工器的场增强和空间谐波选择性进行了研究,实现了两路GW级高功率微波的耦合输出。
     文中利用基于平面波展开的模式匹配法对矩形栅组成的线极化波双工器进行分析,得到了矩形栅双工器的性能对结构参数、入射波频率、入射角度以及其它因素的依赖关系。对矩形栅双工器进行了低功率和高功率实验研究。初步的实验研究表明,矩形栅双工器对S/X波段高功率微波的耦合输出表现出较好的双工性能,但是,受矩形栅表面场增强等因素的影响,当微波幅值和脉宽增加到2.0GW、30ns时微波脉宽出现了缩短,并在双工器沿面发现了表面闪络现象。
     为了设计更高功率容量的线极化波双工器,本文提出了利用圆柱栅双工器进行长脉冲高功率微波的耦合输出。利用理论分析方法得到了圆柱栅双工器散射的空间谐波选择的相关原则。所设计的圆柱栅双工器在进一步的实验研究中,表现出相对较好的性能。它对所需频段微波的功率反射和透射效率分别达到了97%和97.5%。在1.8GW、100ns高功率微波的照射实验中,没有发现微波击穿现象。为探讨S/X波段两路高功率微波同步输出的可行性,进一步研究了圆柱栅双工器在介质环境中的高功率性能。研究结果表明,置于1atm气压SF6气体中的圆柱栅双工器可满足S/X波段5.5GW高功率微波同步输出的要求。
     2.对波导滤波型双工器功率容量和传输效率的提高,以及模式的控制进行了研究,实现了两路同波段同极化方向的GW级高功率微波的耦合输出。
     根据波导TEm0模式的特点,提出了一种高功率波导双工器的设计思想:保持波导不连续性为H面不连续性,通过调整波导高度来增加功率容量,同时不影响高功率微波传输特性。利用此方法,设计了一套过模窄带波导双工器。利用有限元方法的数值仿真研究发现,在9.38GHz和9.60GHz处,两通道微波功率传输效率均高于98%,效率高于90%的通带大于120MHz,功率容量高于6.2GW;低功率实验研究结果表明,在9.38GHz和9.60GHz处,两通道微波能量传输效率均高于97%,效率高于90%的通带大于100MHz。在高功率微波实验中,我们对双工器输出波形进行了测量。根据测量的结果计算得到的微波功率约为4.3GW,脉冲宽度约为40ns,微波频率分别为9.41GHz和9.59GHz。这些结果显示,所设计的过模波导双工器可应用于GW级高功率微波拍波的产生和微波功率的合成。
     3.根据前面的研究结果,设计了一套利用混合滤波实现高功率微波耦合输出的结构。
     本文以S/X/X波段3路高功率微波耦合输出为例,验证了混合滤波法的可行性。理论研究的结果表明,当线极化波双工器置于1atm气压SF6气体中时,S/X/X波段3路高功率微波耦合输出的功率容量达10GW以上。进一步的实验研究分别在3.60GHz、9.41GHz和9.59GHz的频率上进行。低功率实验研究表明,在以上工作频率上,各路微波从馈入端口至输出端口的功率传输效率均高于96%;在GW级高功率微波实验研究中,没有发现微波击穿现象。以此初步证明了S/S/C/C/X/X波段6路高功率微波耦合输出的可行性。
     4.在论文的最后,研究了多路高功率圆极化波耦合输出。对栅条型圆极化器和圆极化波双工器进行了必要的改进,以用于高功率微波的圆极化及其耦合输出。通过理论分析和数值仿真的方法,初步验证了S/X各两路高功率圆极化波耦合输出的可行性。
As high power microwave (HPM) technologies gradually matured, the technologies for enhancing the output capacity of HPMs are becoming more and more attractive. Efforts have been made on increasing the output power, pulse duration, conversion efficiency and the frequency spectrum of the HPM devices. However, limited by physics and technology, the approaches for enhancing the output capacity with a single HPM source have encountered difficulties. An alternative method for enhancing the output capacity of HPM sources is taking advantage of coupling output of multichannel HPM sources. In this dissertation, a detailed research on the coupling output of multichannel HPMs is presented. The theoretical and experimental research results reveal that, the research on the coupling output of multichannel HPMs conceives a promising prospect for the development of HPM technologies. The detailed contents and innovative work are listed below.
     1. The filed-enhancement reduction and spatial-harmonic selection of the spatial-filtering diplexer for linearly polarized microwaves are investigated, and the coupling output of dual-channel gigawatt level HPMs is realized.
     In the dissertation, the plane wave expansion based mode matching method is employed for the analysis of the spatial diplexer consisting of rectangular rods. Based on this method, the influences of the external dimensions, frequencies of the incident waves, incident angles and the other factors on the performances of the diplexers are obtained. Some experiments on the diplexer consisting of rectangular rods have been carried out in our laboratory. The preliminary experiments reveal that, the diplexer exhibits a good performance for the coupling output of S/X band HPMs, however, affected by the field enhancement of the rectangular rods, when the microwave power increase to 2.0GW with pulse duration of 30ns, the pulse shortening and surface flashover are observed.
     In order to design a practical diplexer for high power, long pulse operations of S/X band HPMs, a diplexer consisting of cylindrical rods is proposed and employed in the HPM coupling output system. The corresponding rules for selecting the spatial harmonics of the scattered waves generated by the cylindrical-rod array are obtained. In the further low power and high power experiments, the designed diplexer consisting of cylindrical rods exhibits a relatively better performance for the coupling output of S/X band microwaves. The reflection and transmission efficiencies are as high as 97% and 97.5%, respectively. When the diplexer consisting of cylindrical rods is illuminated with 1.8GW HPMs of 100ns duration, no microwave breakdown has been found. For the sake of validating the feasibility of the simultaneous operation of S/X band high power microwaves, the high power performances of the diplexers consisting of cylindrical rods which are immersed in dielectric environment are discussed. The results reveal that, the diplexer consisting of cylindrical rods immersed in SF6 gas is capable of being applied for the simultaneous operation of S/X band HPMs with power level of 5.5GW.
     2. The enhancement of both the power handling capacity and transmission efficiency and the suppression of the higher order modes in the waveguide-filtering diplexer are studied, and the coupling output of dual-channel gigawatt level HPMs in the same frequency band and polarization direction is realized.
     According to the characteristics of TEm0 mode, an important concept to enhance the power handling capacity of the waveguide components consisting of H-plane discontinuities by enlarging the heights of the main waveguides without any affects on its transmission properties is proposed. A prototype waveguide diplexer is designed and analyzed systematically by the finite element method. The numerical calculations reveal that, the designed diplexer has its transmission efficiency higher than 98% at 9.38GHz and 9.60GHz, the frequency bands with efficiency higher than 90% are more than 120MHz. The low power experiments show that, the transmission efficiencies are higher than 97% at 9.38GHz and 9.60GHz separately. The frequency band with transmission efficiency higher than 90% is more than 100MHz, which is in agreement with the numerical simulation. In the high power experiments, the radiated powers of the beat waves are measured to be about 4.3GW, 40ns, the frequencies are about 9.41GHz and 9.59GHz. These results demonstrate that, the diplexer is applicable to the generation of GW level beat waves and the power combining of HPMs.
     3. Based on the previous work, the hybrid filtering method is employed to realize the coupling output of multichannel HPMs. As an example, the coupling output of the S/X/X band HPMs is investigated for the validating of this method. The theoretical analysis reveals that, when the spatial filter is immersed in SF6 of 1atm, the ultimate power handling capacity of the multichannel coupling output system reaches over 10GW. The further experiments are designed for the operations of the 3.6GHz, 9.41GHz and 9.59GHz HPM sources. The low power experiments reveal that, the transmission efficiencies of each channel from the feeding port to the radiating port are as high as 96% for the operation frequencies. When fed with GW level HPMs, there is no obvious microwave breakdown. Thus, the feasibility for the coupling output of S/S/C/C/X/X band six-channel HPMs is preliminarily demonstrated.
     4. The feasibility for the coupling output of circularly polarized microwaves is discussed in the end. The improved strip circular polarizer and the diplexer for circularly polarized microwaves are employed for the coupling output of circularly polarized HPMs. With theoretical analysis and numerical simulation, the coupling output of S/X band four-channel circularly polarized HPMs is preliminarily validated.
引文
[1] J. Benford and J. A. Swegle. High-Power Microwaves[M]. Norwood, Mass: Artech House, 1992:1~12.
    [2] J. B. Robert, S. Edl.等编,《高功率微波源与技术》翻译组译.高功率微波源与技术[M].北京:清华大学出版社, 2005(6): 1~7.
    [3] E. Schamiloglu. High Power Microwave Sources and Applications[C]. Preprint of paper presented at IEEE MTTS, Fort Worth, Texas, 2004:1001~1004.
    [4] Steven H. Gold, Gregory S. Nusinovich. Review of high-power microwave source research[J]. Rev. Sci. Instrum., 1997(68):3945~3974.
    [5] James Benford, Space Applications of High Power Microwaves[J]. IEEE Transactions on Plasma Science, 2008(36):258~265.
    [6] L. D. Bacon and L. F. Rinehart. A brief technology survey of high-power microwave sources[C]. Sandia report, 2001:1~20.
    [7] H. P. Bohlen, CPI Inc., Palo Alto. Advanced High-power Microwave Vacuum Electron Device Development. Proceedings of the 1999 Particle Accelerator Conference[C], New York, 1999:445~449.
    [8] J. N. Benford, N. J. Cooksey, J. S. Levine, et al. Techniques for High Power Microwave Source at High Average Power[J]. IEEE Trans. Plasma Sci. 1993, 21(4):388.
    [9] W. W. Destler and B. Levush. Introduction to the third special issue on high-power microwave generation[J]. IEEE Trans. Plasma Sci. 1990, 18(3):257.
    [10] D. B. McDermott, A. T. Lin and K. R. Chu. The Ninth special issue on high-power microwave generation[J]. IEEE Trans. Plasma Sci. 2002, 30(3):731.
    [11]周传明,刘国治,刘永贵,李家胤,丁武等编著,高功率微波源[M].北京:原子能出版社,2007:2.
    [12] S. T. Pai and Q. Zhang. Introduction to high power pulse technology[M]. Singapore: World Scientific Publishing Co. Ltd, 1995:1~30.
    [13] M. Gaudreau, J. Casey, M. Kempkes, et al. Solid-state high voltage pulse modulators for high power microwave applications[C]. Proceedings of EPAC 2000, Vienna Austria, 2000.
    [14] E. Schamiloglu. Basic Research Leading to Compact, Portable Pulsed Power[C]. MURI Consortium: 2002 Annual Technical Report, 2002.
    [15]王淦昌,高功率粒子束及其应用[J].强激光与粒子束, 1989, 1(1): 1–21.
    [16]刘锡三,高功率脉冲技术,北京:国防工业出版社, 2005:1~20.
    [17] Joler M., Christodoulou C., Gaudet J., et al., Study of high energy storage Blumlein transmission lines as high power microwave drivers[C]. 14th International Conference on High Power Particle Beams, Albuquerque, New Mexico, USA, 2002:25–28.
    [18] M. Thumm, S. Alberti, A. Arnold, et al. EU megawatt-class 140-GHz CW Gyrotron[J]. IEEE Trans. on Plasma Science, 2007(35):143~153.
    [19] A. Kasugai, K. Sakamoto, K. Takahashi, et al. Steady-state operation of 170GHz-1MW gyrotron for ITER[J]. Nucl. Fusion, 2008(48):045009 (6pp).
    [20] G.G. Denisov, A.G. Litvak, V.E. Myasnikov, et al. Development in Russia of high-powergyrotrons for fusion[J]. Nucl. Fusion, 2008(48):054007 (5pp).
    [21] J.P. Hogge, T. P. Goodman, S. Alberti, et al. First experimental results from the European Union 2-MW coaxial cavity ITER gyrotron prototype[J]. Fusion Science and Technology, 2009(55):204~212.
    [22]刘盛纲.相对论电子学[M].北京:科学出版社, 1987:1~25.
    [23] R. B. Miller.强流带电粒子束物理学导论[M].北京:原子能出版社, 1990:1~17.
    [24]吴鸿适.微波电子学原理[M].北京:科学出版社, 1987.
    [25] Lawson J.D. The physics of charged-particle beams[M]. 2nd ed. New York: Oxford University Press, 1988.
    [26] H. Mark and B. Chakraborty. Principles of plasma mechanics[J]. Wiley Eastern Limited, 1978.
    [27]徐家鸾,金尚宪.等离子体物理学[J].北京:原子能出版社, 1981.
    [28]林光海译, F. F. Chen著.等离子体物理学导论.北京:人民教育出版社, 1980.
    [29] H. Mark. Beam Weapons Revolution-Directed-Energy Weapons Point the Way for Battlefield Technology. Janes International Defense Review, 2000(8):34.
    [30] Thumm M. State-of-the-Art of high power gyro-devices and free electron masers update 2006[C]. Forschungszentrum Karlsruhe FZKA 7289, 2007:1~113.
    [31] Thumm, M. High power gyro-devices for plasma heating and other applications. Int. J. Infrared and Millimeter Waves, 2005(26):483~503.
    [32] Igami H., Notake T., Yoshimura Y., et al. S and LHD Experimental Group, 2005, High power injection and steady state ECRH operation in LHD[C]. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, Nizhny Novgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod. 2006(2):398~408.
    [33] Bohanov A.F., Golubev S.V., Izotov I.V., et al. 2005, ECR ion source with quasi-gasdynamic plasmaconfinement regime[C]. Proc. 6th Int. Workshop on Strong Microwaves in Plasmas, NizhnyNovgorod, ed. A.G. Litvak, Inst. of Applied Physics, Russian Academy of Sciences, NizhnyNovgorod, 2006(2):657~665.
    [34] Ogawa I., Iwata M., Idehara T., et al. Plasma scattering measurement using a submillimeter wave gyrotron (Gyrotron FUII) as a power source[J]. Fusion Engineering and Design, 1997(34-35):455~458.
    [35] Kasugai A., Sakamoto K., Takahashi K., et al. 1 MW and long pulse operation of Gaussian beam output gyrotron with CVD diamond window for fusion devices[J]. Fusion and Engineering and Design, 2001(53):399~406.
    [36] Sakamoto K., Kasugai A., Ikeda Y. et al. Development of 170 and 110 GHz gyrotrons for fusion devices[J]. Nucl. Fusion, 2003(43):729~737.
    [37] Li H., Xie Z.-L., Wang, W., et al. A 35-GHz low-voltage third-harmonic gyrotron with a permanent magnet system[J]. IEEE Trans. on Plasma Science, 2003(PS-31):264~271.
    [38] Gaponov-Grekhov, A.V., Granatstein, V.L., Application of high power microwaves[M]. Artech House, Boston, London, 1994:1~22.
    [39] Thumm, M. Novel applications of millimeter and submillimeter wave gyo-devices[J]. Int. J. Infrared and Millimeter Waves. 2001(22):377~386.
    [40] Thumm, M. Free-electron masers vs. gyrotrons: prospects for high-power sources at millimeter and submillimeter wavelengths[J]. Nuclear Instruments & Methods in Physics Research. 2002(A 483):196~194.
    [41] Felch, K., Huey, H., Jory, H. Gyrotrons for ECH application[J]. J. Fusion Energy, 1990(9):59~75.
    [42] Granatstein, V.L. Levush, B. Danly, et al. A quarter century of gyrotron research and development[J]. IEEE Trans. on Plasma Science, 1997(PS-25): 1322~1335. , ,
    [43] Goldenberg A.L., Denisov G.G., et al. Cyclotron resonance masers: state of the art[J]. Radiophys. and Quantum Electronics, 1996(39):423~446.
    [44] S.P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Relativistic multiwave Cerenkov generator[J]. IEEE Trans. Plasma Sci., 1990(18):525–536.
    [45] J. A. Swegle, J. W. Poukey and G. T. Leifeste. Backward wave oscillators with rippled wall resonators: analytic theory and numerical simulation[J]. Phys. Fluids. 1985, 28(9):2882.
    [46] B. Levush, T. M. Antonsen, A. Bromborsky, et al. Theory of relativistic backward-wave oscillators with end reflections[J]. IEEE Trans. Plasma Sci. 1992, 20(3):263.
    [47] D. Shiffler, J. A. Nation, G. S. Kerslick. A high-power traveling wave tube amplifier[J]. IEEE Trans. Plasma Sci. 1990, 18(3):546.
    [48]舒挺.多波切伦柯夫振荡器的研究[D].博士学位论文长沙:国防科技大学, 1998.
    [49] S.P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Investigation of a millimeter-wavelength range relativistic diffraction generator[J]. IEEE Trans. Plasma Sci., 1990(18): 518~524.
    [50] Friedman,M., J. Krall, Y.Y. Lau, and V. Serlin. Efficient generation of Multi-GW Microwave power by a Klystron-like Amplifier[J]. Rev. Sci. Instrum., 1990(61):171.
    [51] Yu-Wei Fan, Huihuang Zhong, Ting Shu, et al. Complex magnetically insulated transmission line oscillator[J]. Physics of plasmas 2008(15):083108.
    [52] Yu-Wei Fan, Huihuang Zhong, Zhiqiang Li, et al. Repetition rate operation of an improved magnetically insulated transmission line oscillator. 2008(15):083102.
    [53] Yu-Wei Fan, Huihuang Zhong, Zhiqiang Li, et al. Recent progress of the improved magnetically insulated transmission line oscillator[J]. Review of scientific instruments 2008(79):034703.
    [54] Yu-Wei Fan, Huihuang Zhong, Ting Shu, et al. Theoretical investigation of the fundamental mode frequency of the magnetically insulated transmission line oscillator[J]. Physics of plasmas 2008(15): 123504.
    [55] Carmel, Y., Granatstein, V.L., and Gover, A., Demonstration of a two-stagebackward wave oscillation free-electron laser[J]. Phys. Rev. Lett., 1983(51):566.
    [56] A.L.Goldenberg, Litvak A.V. Recent progress of high power millimeter wavelength gyrodevices[J]. Physics of plasma 1995(2):2562.
    [57] Fan Yu-Wei, Shu Ting, Liu Yonggui, et al. A magnetically insulated transmission line oscillator with compact dump[J]. Chin. Phys. Lett. 2005(1):164~167.
    [58] A. V. Gunin, A. I. Klimov, S. D. Korovin, et al. Relativistic X-Band BWO with 3-GW Output Power[J]. IEEE Trans. on Plasma Sci. 1998(26):326.
    [59] B. Piosczyk, A. Arnold, G. Dammertz, et al. Coaxial Cavity Gyrotron—Recent Experimental Results[J]. IEEE Transactions on Plasma Science. 2002(30):819~827.
    [60] Thumm M. High-power millimeter wave mode converter in over-mode circular waveguides using periodic wall perturbations[J]. Int J Electronics, 1984, 57(6):1225~1246.
    [61] Thumm M, Kumric H. TE03-TE01 mode converters for use with a 150GHz gyrotron[J]. Int J of IR/MM Waves, 1987, 8(3):227~240.
    [62] Manfred K. Thumm, and Walter Kasparek. Passive High-Power Microwave Components[J]. IEEE Trans. on Plasma Sci. 2002(26):755~786.
    [63] Chengwei Yuan, Yuwei Fan, Huihuang Zhong, et al. A Novel Mode-Transducing Antenna for High-Power Microwave Application[J]. IEEE Transactions on antennas and propagation. 2006(54): 3022~3025.
    [64]刘庆想,袁成卫.一种新型同轴TEM2圆波导TE11模式变换器[J].强激光与粒子束,2004,16(11):1421~1424.
    [65]袁成卫,钟辉煌,刘庆想.同轴插板式模式转换器反射特性研究.国防科技大学学报,2005,27(5):121~125.
    [66]袁成卫,刘庆想,钟辉煌.大尺寸模式转换天线的设计和实验研究.强激光与粒子束,2005,17(9):1405~1408.
    [67]刘庆想,袁成卫.同轴插板式TEM-TE11模式转换器的设计与实验研究[J].强激光与粒子束,2005,17(6):897~900.
    [68]袁成卫,刘庆想,钟辉煌.新型高功率微波模式转换天线研究.电波科学学报. 2005, 20(6):716~719. [ 69 ]袁成卫,刘庆想,钟辉煌.变截面同轴波导模式耦合系数研究.强激光与粒子束,2005,17(8):1251~1255.
    [70] M. B?ckstr?m, Barbro Nordstr?m, Karl G. L?vstrand. Is HPM a threat against the civil society[C]. Proceedings of the 27th General Assembly of the URSI, Maastricht, Netherlands, August 2002
    [71] Frank Sabath, Heyno Garbe. Risk Potential of Radiated HPEM Environments[C]. IEEE International Symposium on Electromagnetic Compatibility, 2009.
    [72] Odd Harry Arnesen, Ernst Krogager, Mats B?ckstr?m, et al. High power microwave effects on civilian equipment[C]. URSI General Meeting, New Delhi in October 2005.
    [73] G.L. Li, C.W. Yuan, J.Y. Zhang, et al. A diplexer for gigawatt class high power microwaves. Laser and Particle Beams,2008(26):371~377.
    [74] W.L. Stuzman, G.A.Thiele. Antenna Theory and Design, Second Edition[M]. New York: John Wiley & Sons. 1981:1~100.
    [75] G.L. Matthaei, Young, E.M.T Jones. Microwave Filters, Impedance Matching Networks and Coupling Structures[M], McGraw-Hill, 1980: 843~961.
    [76] Robert E. Collin, Foundations for microwave engineering, second edition[M]. New York: John Wiley & Sons. 2001: 1~201.
    [77] Richard C.Johnson, editor. Antenna Engineering Handbook, third edition[M]. McGraw-Hill Book Company, 1993: chapter 24~46.
    [78] David. M.Pozar. Microwave engineering, second edition[M]. New York: John Wiley & Sons. 1998: 1~92.
    [79] Chen, S.C., Bekefi, G., and Temkin, R., Injection locking of a long-pulse relativisticmagnetron[J]. Proc. SPIE, 1991(67): 1407.
    [80] Woo, W. et al., Phase locking of high power microwave oscillators[J]. J. Appl. Phys., 1989(65): 861.
    [81] Benford, J. Sze H., Woo W., Smith R.R., Harteneck B. Phase locking of relativistic magnetrons[J]. Phys. Rev. Lett., 1989(62): 969.
    [82] Sze H., Price D., Harteneck B. Phase locking of two strongly-coupled vircators[J]. J. Appl. Phys., 1990(67): 2278.
    [83] C.C. Chen. Diffraction of electromagnetic waves by conducting screen perforated periodically with circular holes[J]. IEEE Trans. Microwave Theory Tech. 1971(19):475~481.
    [84] C.C. Chen. Transmission of microwave through perforated flat plates of finite thickness[J]. IEEE Trans. Microwave Theory Tech. 1973(21):1~6.
    [85] C.C. Chen. Transmission through a conducting screen perforated periodically with apertures [J]. IEEE Trans. Microwave Theory Tech., 1970(18): 627~632.
    [86] J. C. Chen. Computation of Reflected and Transmitted Horn Radiation Patterns for a Dichroic Plate[R]. TDA Progress Report, 1994(42-119): 236~254.
    [87] Richard C Hall, Raj Mittra, Kenneth M. Mitzner. Scattering from Finite Thickness Resistive Strip Gratings[J]. IEEE Trans. Antennas Prop., 1988 (36): 504~510.
    [88] James P. Montgomery. Scattering by an Infinite Array of Multiple Parallel Strips[J]. IEEE Trans. Antennas Prop., 1979(27): 798~807
    [89] Hyun Ho Park and Hyo Joon Eom. Electromagnetic Scattering from Multiple Rectangular Apertures in a Thick Conducting Screen. IEEE Trans. Antennas Prop., 1999 (47): 1056~1060.
    [90] Charles F. Bunting, William A. Davis. A Functional for Dynamic Finite-Element Solutions in Electromagnetics. IEEE Trans. Antennas Prop., 1999 (47): 149~156.
    [91] P. Besso, M. Bozzi, M. Formaggi, et al. Deep Space Antenna for Rosetta Mission: Design and Testing of the S/X-Band Dichroic Mirror [J]. IEEE Trans. Antennas Propag., 2003(AP-51): 388~394.
    [92] William A. Imbriale, M. S. Esquivel, F. Manshadi. Novel Solutions to Low-Frequency Problems with Geometrically Designed Beam-Waveguide Systems[J]. IEEE Trans. Antennas Propag., 1998(46): 1790~1796.
    [93] Kamil Agi, Larald D. Moreland, Ed Schamiloglu, et al. Photonic crystals: a new quasi-optical component for high-power microwaves[J]. IEEE Transactions on Plasma Science, 1996(24): 1067~1071.
    [94] K. Agi, M. Mojahedi,K.J. Malloy, et al. Investigation of the Dispersive Propertiesof Photonic Crystals Using High-Power Microwaves[C]. IEEE International Conference on Plasma Science. 1997: 192.
    [95]钟哲夫,刘盛纲.用束波导与真空椭圆软波导传输的高功率微波发射系统研究[J].强激光与粒子束,1996(3): 337~341.
    [96]董毅敏,钟哲夫,李浩. HPM双工器的模匹配方法研究.材料导报[J],2007(21):159~161.
    [97] Piermario Besso, Maurizio Bozzi, Max Brenner, et al. Accurate Modeling of the Interaction between Feeds and Dichroic Mirrors[C]. Proceedings of the 36th European Microwave Conference. Manchester UK, 2006: 691~694.
    [98] S.D.Gedney, R.Mittra. Analysis of the eleetromagnetic seattering by thick gratings using acombined FEM/MM solution[J]. IEEE Trans. Antennas Propag., 1991(39): 1605~1614.
    [99] R.E.Jorgenson, R.Mittra. Oblique seattering from lossy strp structures with one-dimensional periodicity[J]. IEEE Trans. Antennas Propag., 1990 (39): 212~219.
    [100] G. Pelosi, A. Cocchi, A. Monorchio. A hybrid FEM-based procedure for the scattering from photonic crystals illuminated by a Gaussian beam, IEEE. Trans. Antennas Propagat. 1997(45):185~186.
    [101] J. Shmoys, A. Hessel, Analysis and design of frequency scanned transmission gratings[J]. Radio Science. 198: 513–518.
    [102] K. Yasumoto and H. Jia, Three-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders[C]. Proc. 2002 China-Japan Joint Meeting on Microwaves. 2002: 301~304,.
    [103] Kang Soo H, Eom Hyo J, Park Tah J. TM Scattering from a Slit in a Thick Conducting Screen: Revisited[J]. IEEE Trans MTT,1993(41): 895~899.
    [104] H. Jia, K. Yasumoto, A novel formulation of the Fourier model method in S-matrix form for arbitrary shaped gratings. Int J Infrared Millimeter Waves[J]. 2004(25): 1591~1609.
    [105] E. Yablonovitch. Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett. 1987(58): 2059~2062.
    [106]方进勇,宁辉,张世龙,乔登江.利用速调管放大器产生高功率微波拍波实验研究[J].物理学报. 2003(52): 911~913.
    [107]费曼,莱顿著,费曼物理学讲义第一卷[M].上海科学技术出版社,2009年10月: 470~479.
    [108] R Ihmels, F Arndt. Rigorous modal S-matrix analysis of the cross iris in rectangular waveguides[J]. IEEE Microwave Guided wave Lett. 1992(2): 400~402.
    [109] H Patzelt, F Arndt. Double-Plane steps in rectangular waveguides and their applications for transformers, irises and filters[J]. IEEE Trans.MTT. 1982(30): 771~776.
    [110]刘发林,徐善驾.波导不连续性的加速收敛算法研究[J].中国科学技术大学学报,2001(31): 476~481.
    [111] Falin Liu, Shanjia Xu. E-plane waveguide filters with partially filled dielectrics for wide bandwith[J]. Microwave and optical technology letters, 2001(31): 175~177.
    [112]李胜先,傅君眉,吴须大.一种微波及毫米波滤波器的精确设计方法[J].中国空间科学技术, 2005(6): 14~18
    [113]汪杰,尹雷,洪伟.毫米波双工器的精确优化设计[J].红外与毫米波学报, 2000(19): 297~301.
    [114]黄建,甘体国.波导E面金属膜片滤波器的分析[J].微波学报, 1999(15): 257~261.
    [115]张本全,王锡良,阮颖铮.波导金属插片窄带滤波器研制[J].电波科学学报,2002(17): 237~239.
    [116] Ben A. Munk, Frequency selective surfaces, theory and design[M]. New York: John Wiley & Sons. 2000: 1~25.
    [117] John D. Kraus and Ronald J. Marhefka, Antennas: For All applications, Third Edition[M]. Beijing: Publishing House of Electronics Industry, 2006: 497.
    [118] Zhang Keqian, Li Dejie, Electromagnetic theory for microwave and optoelectronics[M]. Beijing: Publishing House of Electronics Industry, 2006: 173~226.
    [119] H. Jia and K. Yasumoto, S-matrix solution of electromagnetic scattering from periodic arrays of metallic cylinders with arbitrary cross section, IEEE Antennas and Wireless Propagation Lett. 2004(3): 41~44.
    [120] Z. Li, L. Lin. Photonic band structures solved by a plane-wave-based transfer-matrix method[J]. Phys. Rev. E, 2003(67): 046607.
    [121] Kane Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation. 1966(14): 302~307.
    [122] A. Taflove and M. E. Brodwin (1975). Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations[J]. IEEE Transactions on Microwave Theory and Techniques. 1975(23): 623~630.
    [123] S. D. Gedney. An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices. IEEE Transactions on Antennas and Propagation[J]. 1995(44): 1630~1639.
    [124] J. G. Maloney and M. P. Kesler. Analysis of Periodic Structures, Chap. 6 in Advances in Computational Electrodynamics: the Finite-Difference Time-Domain Method, A. Taflove, ed [M]. Artech House publishers, 1998.
    [125] Zhang Keqian, Li Dejie, Electromagnetic theory for microwave and optoelectronics[M]. Beijing: Publishing House of Electronics Industry, 2006: 382~487.
    [126] C.H. Liang, L. Li, and X. J. Dang, Inequality condition for grating lobes of planar phased array[J]. Progress in Electromagnetics Research B, 2008(4):101~103.
    [127] Bray M. G.,Werner D. H., Boeringer D. W., Machuga D. W. Optimization of thinned a periodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning[J]. IEEE Transactions on Antennas and Propagation. 2002(50):1732~1742.
    [128] A. Hessel, A. A. Oliner, A New Theory of Wood’s Anomalies on Optical Gratings[J]. Appl. Opt. 1965(4): 1275~1297.
    [129] Rechard J. Caneron, Chandra M. Kudsia, Kaafat R. Mansour. Microwave filters for communication systems: foundamentals, design, and applications, Chapter 20, high power considerations in microwave filters networks[M]. New York: John Wiley & Sons. 2007: 711~744.
    [130]袁成卫.新型高功率微波共轴模式转换器及模式转换天线研究研究[D].博士学位论文长沙:国防科技大学, 2006. [ 131 ]徐善驾,杨利.一种分析任意形状介质栅绕射特性的有效方法.应用科学学报,1999,17(3):253~258.
    [132] H. Jia and K. Yasumoto, Wave scattering from periodic metallic cylinders with arbitrary cross section for a general angle of incidence[C]. Proc. Asia-Pacific Radio Science Conference, 2004: 101~104.
    [133] Guolin Li, Ting Shu, Chengwei Yuan, Jun Zhang and Zhenxing Jin, Combining microwave beams with high peak power and long pulse duration, Physics of Plasmas, 2010, 17.
    [134]方进勇,李平,乔登江.利用行波管放大器产生微波波段拍波实验[J].国防科大学报. 2002(4): 65~68.
    [135]李国林,舒挺,袁成卫. S波段高功率微波波导输出多工器研究[J],强激光与粒子束,2007,19 (4): 667~670.
    [136]黄健,甘体国.波导E面金属膜片滤波器的分析[J].微波学报,1999 ,15 (3):257~261.
    [137]刘发林.波导E面偏置金属插片宽带滤波器[J].微波学报,1998 ,14 (12): 324~329.
    [138]刘渝.波导E面金属膜片的分析及其在滤波器设计中的应用[J].电子科技, 2005(192): 45~48.
    [139] R. F. Harrington, Time Harmonic Electromagnetic Fields[M]. IEEE Press and John Wiley & Sons, Inc. 2001.
    [140] J. P. Webb, et al. Finite-Element Solution of Three-Dimensional Electromagnetic Problems. IEE Proceedings, 1983, 130(2):153~159.
    [141]刘庆想,袁成卫,一种新型同轴TEM-圆波导TE11模式变换器[J].强激光与粒子束,2004 ,16(11):1623.
    [142] B. Plaum, E. Holzhauer, and W. Kasparek, Optimization of a Frequecy Diplexer Based on The Talbot Effect in Oversized Rectangular Waveguides[J]. International Journal of Infrared and Millimeter Waves. 2003, 24(3): 311~326.
    [143] S.V.Kuzikov. Wavebeam multiplication Phenomena to Rf Power Distribution Systems of High-Energy Linear Accelerators. International Journal of Infrared and Millimeter Waves. 1998, 19(11): 1523~1539.
    [144]甘本祓,吴万春.现代微波滤波器的结构与设计(上册)[M].科学出版社,1973: 173~177.
    [145]杨乃恒等译.天馈系统中波导元件理论与计算机辅助设计[M].南京:电子工业部第十四研究所,1995: 6~39.
    [146] Ling G S, Zhou J J. Converters for the TE11 Mode Generation from TM01 Vircator at 4GHz[J]. Chin. Phys.Lett. 2001, 18(9):1285~1287.
    [147] J. L. Doane. Mode converters for generating the HE11 mode from TE01 in a circular waveguide. Int. J. Electronics, 1982, 53(6): 573~585.
    [148] Thumm M, Kumric H. TE03-TE01 mode converters for use with a 150GHz gyrotron[J]. Int J of IR/MM Waves, 1987, 8(3):227~240.
    [149]李少甫,缪铁莺,张桂荣,于爱民,龚海涛.用天线阵测量圆柱过模波导中虚阴极振荡器产生的高功率微波模式和功率[J].强激光与粒子束,2003(7): 685~688.
    [150] Robert Adler, A Study of Locking Phenomena in Oscillators[J]. Proceedings of the IEEE, 1973, 61(10): 1380~1385.
    [151] Li Shengxian, Wu Xuda. A rigorous calculation of coupling iris in waveguide filter and output multiplexers for communication satellites[C]. SCRS 99, Yantai, China, 1999: 62~68.
    [152] Philippe Guillot, Patrick Couffignal, Henri Baudrand, Bernard Theron. Improvement in calculation of some surface integrals: application to junction characterization in cavity filter design. IEEE Trans. on MTT, 1993: 2156~2160.
    [153] Cameron R.J, Rhodes J.D. Asymmetric realizations for dual mode bandpass filters. IEEE Trans. on MTT, 1981: 51~58.
    [154]林为干.微波网络[M].北京:国防工业出版社,1978.
    [155] H. Zeh, D. Rosowsky. 15 Channel Contiguous Ku-band High Power Output Multiplexer. AIAA-94-1033-CP: 938~843.
    [156]陈开周.最优化计算方法[M].西安:西安电子科技大学出版社,1985.
    [157]徐善驾,张耀江.栅条型圆极化器性能的分析[M].电子学报,1996(3): 53~55.
    [158]刘惠中.栅条型和网络型极化器.电子学报,1981,9(3): 37~44.
    [159]张丽平.一种高功率波导圆极化器的设计方法.现代电子,2002(3): 25~28.
    [160] Vlasov S N and Orlova I M. Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into highly directional wave beam[J]. Radiofizika, 1974, 17(1): 148~154.
    [161] M. Thumm. Modes and mode conversion in microwave devices, in“Generation and Application of High Power Microwaves”[M]. Ed. R.A.Cairns and A.D.R.Phelps, IOP, Bristol, 121, 1997.
    [162] A.V. Chirkov , G. G. Denisov, M. L. Kulygin, V. Il Malygin, S. A. Malygin, A. B. Pavel’ev, and E. A. Soluyanova. Use of Huygens’s principle for analysis and synthesis of the fields in oversized waveguides. Radiophysics & Quantum Electronics. 2006, 49(5): 344~353.
    [163] J. Jin., M. Thumm, B. Piosczyk, S. Kern, J. Flamm, and T. Rzesnicki. Novel Numerical Method for the Analysis and Synthesis of the Fields in Highly Oversized Waveguide Mode Converters. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(7): 1661~1668.
    [164] P. F. Goldsmith. Quasi-Optical Techniques. Proceedings of the IEEE, 1992, 80(11).
    [165] W.B. Joyce and B.C. DeLoach. Alignment of Gaussian beams. Applied Optics. 1984(23): 4187~4196.
    [166] G. Li, J. Jin, T. Rzesnicki, S. Kern, M. Thumm. Analysis of a Quasi-Optical Launcher towards a Step-Tunable 2MW Coaxial-Cavity Gyrotron. IEEE Trans. Plasmas Sci., Special Issue on High Power Microwave Generation, June, 2010.
    [167] T. Rzesnicki, B. Piosczyk, S. Kern, et al. 2.2MW record power of the 170GHz European pre-prototype coaxial-cavity gyrotron for ITER[J]. IEEE Transactions on plasma science, special issur on high power microwave generation, June, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700