扫描近场光学显微镜若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扫描近场光学显微镜(Scanning Near-field Optical Microscopy, SNOM)是将扫描探针显微镜技术移植到了光学领域,从而得到超衍射极限分辨率的光学图像。经过几十年的发展,SNOM横向分辨率大大的提高了,已经从最初的几十纳米提高到十几纳米,并且扫描成像的稳定性很高。虽然SNOM的分辨率比STM、AFM低,但其长处在于能获得样品亚波长分辨的光学图像,在多个研究和产业领域都有着广泛的应用。本文从传统SNOM中存在的扫描非线性,扫描速度慢等问题出发,搭建了基于双DSP控制系统和扫描头模块化的SNOM系统,建立了非线性校正的模型及算法,设计并初步实验了一种高速扫描的石英片-光纤探针组件,和设计了一种基于四个压电陶瓷管的新的XYZ扫描台系统。
     本文的研究工作主要包括以下几个方面:
     1、搭建了以DSP为核心的插板式的SNOM控制系统,为近场光学领域内的研究提供了一个良好的平台。主要模块包括控制扫描和各种信号采集的DSP主控板,探针-样品距离的DSP反馈控制板,用于提供给反馈信号的相位检测控制板等。完成了XY扫描控制算法,和探针-样品距离控制的PID算法。
     2、分析了SNOM扫描器产生非线性的原因,建立了SNOM扫描非线性校正模型,完成了用于非线性校正的软件预校正算法,有效的改善了图像的非线性。设计了一种基于实时监测探针位置附加系统,用于非线性校正的扫描头,预先采集不同电压下探针的位置数据,并通过二次多项式拟合算法和神经网络算法对位置-电压数据进行了处理,得到能输出线性位移的电压-位移模型。
     3、提出了一种高频石英片-光纤探针结构,可以显著提高SNOM扫描速度。利用二阶机械系统模型分析了音叉探针-样品距离控制的原理,比较得出用相位信号来作为反馈信号比振幅信号有更好的响应速度,分析得出SNOM扫描速度慢的主要因素来源于音叉探针,于是我们设计了一种石英片-光纤探针,并尝试了多种粘针方法,测试了其谐振频率,Q值等各种性能。
     4、由于单个压电陶瓷管弯曲量比伸长量大很多,设计了四个压电陶瓷管通过柔性铰链连接样品台的新扫描台结构,可以使样品台满足XYZ各个方向均有较大的动态范围。并用有限元方法对其进行了静态和动态性能的仿真分析。通过对样品台XYZ位移的测量,验证了理论仿真的正确性。
With the help of scanning probe technique applied in optical field, the super high-resolution images beyond the diffraction limit can be obtained with the Scanning Near-field Optical Microscopy(SNOM). In the past decades the lateral and the stability of SNOM has been advanced greatly than before. Though the resolution of which is still lower than Scanning Tunneling Microscopy(STM) and Atomic Force Microscopy(AFM), SNOM has its own advantage to obtain the optical contrast information of the sample. In this thesis the disadvantage of traditional SNOM such as the nonlinearity and the slower scanning speed are discussed and a new set of the modular SNOM with a pair of DSP control system is built; A module of scan head with collecting real timely nonlinearity data is developed and the arithmetic of the scanning nonlinearity correcting is build up; A quartz pitch-optical fiber resonator probe to improve the scanning speed of SNOM and a new type scanner with four piezoelectric tubes are designed and experimented.
     The main research contents of this thesis are listed as follows:
     1. A new set of SNOM using DSP controlling system is built up. There are several modules:the main DSP controlling system, the feedback DSP system which control the tip-sample distance, the phase detecting system which supply the feedback signal to the feedback DSP system, and so on. The XY scan control arithmetic and PID control arithmetic are developed.
     2. The exsistence of nonlinearity in the scanner of SNOM is analysed. Image post-processing software for the correction of scanning nonlinearity is developed. A scanner with a PSD which can get the tip's position in real-time is designed and experimented. The quadratic polynomial model and the BP model of Neural-Net Algorithms are introduced to process the scanner nonlinearity data and to get the modle of linearity correction.
     3. A new module of the quartz pitch-optical fiber probe is advanced which has higher scanning speeds than the module of the tuning fork-optical fiber probe. The response speed of tip-sample distance change using the phase regulation is more quickly than that with the amplitude.
     4. A new scanner based on four piezoelectric tubes connected with spring hinge and sample stage is designed. The FEM software of ANSYS is used to analyse the mechanics behavior of the scanner:The XYZ scanning ranges of this new scanner are all bigger in three dimension; This new scanner's static and dynamic properties simulation with the finite element method has carried, and its pre-experiment has accomplished.
引文
[1]张树霖.近场光学显微镜及其应用[M].科学出版社.2000.
    [2]M.Minsky. Microscopy Apparatus:U.S.,3013467[P].
    [3]Pohl DW. Advance in optical and electron microscopy[J]. Academic Press,1991.
    [4]G.Binnig, H.Rohrer. Scanning Tunneling Microscopy [J]. HelvPhysActa,1982,55:726.
    [5]Synge EH. A suggested method for extending the resolution into the ultra-microscopy region[J]. Phil Mag,1928,6(8):356-362.
    [6]Moon RJ. Amplifying and intensifying the fluoroscopic image by means of a scanning X-Ray tube[J]. Science,1950,12(10):389-395.
    [7]O’Keefe JA. Resolving power of visible light[J]. J Opt Soc Am,1956,46(5):359-362.
    [8]Ash EA, Nicholls G. Super-resolution aperture scanning microscope[J]. Nature,1972,(237): 510-512.
    [9]Pohl. DW. Optical stethoscopy:image recording with resolution λ/20[J]. ApplPhys Lett, 1984,44(7):651-653.
    [10]Harootunian A, Betzig E, Isaacson M. Super-resolution flurescence near-field scanning optical microscopy [J]. Appl Phys Lett,1986,49(11):674-676.
    [11]Betzig E, Trautman JK, Harris TD, et al. Breaking the diffraction barrier:optical microscopy on a nanometric scale[J]. Science,1991,251(5000):1468-1470.
    [12]Betzig E, Trautman JK. Near-field optics:microscopy, spectroscopy, and surface modification beyond the diffraction limit[J]. Science,1992,257(5067):189-195.
    [13]Wolf E, Nieto-Vesperinas M. Analyticity of the angular spectrum amplitude of scattered field and some of its consequences[J]. J Opt Soc Am A,1985,2(6):886-890.
    [14]Vigoureux JM, Courjon D. DETECTION OF NONRADIATIVE FIELDS IN LIGHT OF THE HEISENBERG UNCERTAINTY PRINCIPLE AND THE RAYLEIGH CRITERION[J]. Applied Optics,1992,31(16):3170-3177.
    [15]Keller. O. Tensor-product structure of a new electromagnetic propagator for nonlocal surface optics of metals[J]. Phys Rev B,1988,37(18):10588-10607.
    [16]Labani B, Girard C, Bouju X. Optical interaction between a dielectric and a nanometric lattice:implication for near-field microscopy[J]. J Opt Soc Am B,1990,7(6):936-943.
    [17]Kopelman R, Tan WH. NEAR-FIELD OPTICS-IMAGING SINGLE MOLECULES[J]. Science,1993,262(5138):1382-1384.
    [18]Massanell J, Garcia N, Zlatkin A. Nanowriting on ferroelectric surfaces with a scanning near-field optical microscope[J]. optics letters,1996,21(1):12-14.
    [19]Matsumoto T, Anzai Y, Shintani T, et al. Writing 40 nm marks by using a beaked metallic plate near-field optical probe[J]. optics letters,2006,31(2):259-261.
    [20]Kim J, Song K-B. Recent progress of nano-technology with NSOM[J]. Micron, 2007,38(Compendex):409-426.
    [21]Unlu MS, Goldberg BB, Herzog WD, et al. NEAR-FIELD OPTICAL BEAM-INDUCED CURRENT MEASUREMENTS ON HETEROSTRUCTURES[J]. APPLIED PHYSICS LETTERS,1995,67(13):1862-1864.
    [22]Grober RD, Harris TD, Trautman JK, et al. OPTICAL SPECTROSCOPY OF A GAAS/ALGAAS QUANTUM-WIRE STRUCTURE USING NEAR-FIELD SCANNING OPTICAL MICROSCOPY[J]. APPLIED PHYSICS LETTERS,1994,64(11):1421-1423.
    [23]Mooren OL, Erickson ES, Dickenson NE, et al. Extending Near-Field Scanning Optical Microscopy for Biological Studies[J]. JALA-Journal of the Association for Laboratory Automation,2006,11(Compendex):268-272.
    [24]Sugiyama S, Yoshino T, Tsukamoto K, et al. Application of scanning probe microscopy to genetic analysis[J]. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers,2006,45(Compendex):2305-2309.
    [25]Betzig E, Trautman JK, Wolfe R, et al. Near-field magneto-optics and high density data storage[J]. Appl Phys Lett,1992,61(2):142-144.
    [26]Tsujioka T, Irie M. Theoretical study of the recording density limit of a near-field photochromic memory[J]. Journal of the Optical Society of America B-Optical Physics, 1998,15(3):1140-1146.
    [27]Martin Y, Zenhausern F, Wickramasinghe HK. Scattering spectroacopy of molecules at nanometer resolution[J]. Appl Phys Lett,1996,68(18):2475-2477.
    [28]Webster S, Batchelder DN, Smith DA. Submicro resolution measurement of stress in silicon by near-field raman spectroscopy[J]. Appl Phys Lett,1998,72(12):1478-1480.
    [29]Courjon D, Bainier C. Near field microscopy and near field optics[J]. Rep ProgPhys, 1994,57(10):989-1080.
    [30]张英,叶虎年.近场光学探测的光纤微探针研制[J].微细加工技术,1997,2.
    [31]Gallacchi R, Kolsch S, Kneppe H, et al. Well-shaped fibre tips by pulling with a foil heater: proceedings of the 6th International Conference on Near-field Optics and Related Techniques, Enschede, Netherlands, Aug 27-31,2000[C].2001.
    [32]刘秀梅,佳王,李达成高效高分辨光纤微探针的制备及检验[J].光学学报,2000,20.
    [33]Hoffmann P, Dutoit B, Salathe RP. Comparison of mechanically drawn and protection layer chemically etched optical fiber tips:proceedings of the 3rd International Conference on Near-field Optics and Related Techniques (NFO-3), Brno, Czech Republic, May 09-11, 1995[C].1995.
    [34]Yang J, Zhang JS, Li Z, et al. Fabrication of high-quality SNOM probes by pre-treating the fibres before chemical etching[J]. Journal of Microscopy-Oxford,2007,228(1):40-44.
    [35]Veerman JA, Otter AM, Kuipers L, et al. High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling[J]. APPLIED PHYSICS LETTERS,1998,72(24):3115-3117.
    [36]Yatsui T, Kourogi M, Ohtsu M. Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure[J]. APPLIED PHYSICS LETTERS, 1998,73(15):2090-2092.
    [37]张国平,明海,陈晓刚,et al.扫描近场光学显微镜的光纤探针的制作与分析[J].光电工程,1999,2:25-34.
    [38]Essaidi N, Chen Y, Kottler V, et al. Fabrication and characterization of optical-fiber nanoprobes for scanning near-field optical microscopy[J]. Applied Optics, 1998,37(Compendex):609-615.
    [39]Cuche A, Drezet A, Sonnefraud Y, et al. Near-field optical microscopy with a nanodiamond-based single-photon tip[J]. Optics Express,2009,17(Compendex): 19969-19980.
    [40]Huang L, Wang ZF, Li ZM, et al. Electroless nickel plating on optical fiber probe[J]. Chinese Optics Letters,2009,7(6):472-474.
    [41]Isakov DV, Zhang Y, Balk LJ, et al. Optical near-field probe with embedded gallium scattering center[J]. APPLIED PHYSICS LETTERS,2009,94(25):
    [42]Mondal SK, Mitra A, Singh N, et al. Optical fiber nanoprobe preparation for nearfield optical microscopy by chemical etching under surface tension and capillary action[J]. Optics Express, 2009,17(Compendex):19470-19475.
    [43]Rollinson CM, Orbons SM, Huntington ST, et al. Metal-free scanning optical microscopy with a fractal fiber probe[J]. Optics Express,2009,17(Compendex):1772-1780.
    [44]Tao MM, Jin YL, Gu N, et al. A method to control the fabrication of etched optical fiber probes with nanometric tips[J]. Journal of Optics a-Pure and Applied Optics,2010,12(1):
    [45]Toledocrow R, Yang PC, Chen Y, et al. NEAR-FIELD DIFFERENTIAL SCANNING OPTICAL MICROSCOPE WITH ATOMIC FORCE REGULATION[J]. APPLIED PHYSICS LETTERS,1992,60(24):2957-2959.
    [46]Gregor MJ, Blome PG, Schofer J, et al. Probe-surface interaction in near-field optical microscopy:the nonlinear bending force mechanism[J]. APPLIED PHYSICS LETTERS, 1996,68(Compendex):307-309.
    [47]Naber A, Maas H-J, Razavi K, et al. Dynamic force distance control suited to various probes for scanning near-field optical microscopy[J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999.
    [48]Karrai K, Grober RD. PIEZOELECTRIC TIP-SAMPLE DISTANCE CONTROL FOR NEAR-FIELD OPTICAL MICROSCOPES[J]. APPLIED PHYSICS LETTERS,1995,66(14): 1842-1844.
    [49]Horcas I, Fernández R, Gòmez-Rodriguez JM, et al. WSXM:A software for scanning probe microscopy and a tool[J]. RevScilnstrum,2007,78(1).
    [50]杨进堂.异或门鉴相在计量光棚检测中的应用[J].计量技术,1996,9:11-13.
    [51]B.Elings V, A.Gurley J. Method of driving a piezoelectric scanner linearly with time:USA[P].
    [52]Griffith JE, Miller GL, Green CA, et al. A SCANNING TUNNELING MICROSCOPE WITH A CAPACITANCE-BASED POSITION MONITOR[J]. Journal of Vacuum Science & Technology B,1990,8(6):2023-2027.
    [53]Barrett RC, Quate CF. Optical scan-correction system applied to atomic forec microscopy[J]. REVIEW OF SCIENTIFIC INSTRUMENTS,1991,62(6):1393-1399.
    [54]Holman AE, Laman CD, Scholte P, et al. A calibrated scanning tunneling microscope equipped with capacitive sensors[J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1996,67(6):2274-2280.
    [55]Bukofsky SJ, Selberg SA, Grober RD, et al. Application of near-field optics to critical dimension metrology[J]. APPLIED PHYSICS LETTERS,1997,70(18):2368-2370.
    [56]高思田,赵克功,王春艳.计量型原子力显微镜的非线性误差及轴间耦合误差的校准[J].仪器仪表学报,1999.
    [57]徐铁军,栋潘,佳王,et al.SNOM压电扫描器非线性特征的测量与校正[J].压电与声光,2004.
    [58]李维娜.AFM关于压电陶瓷非线性效应的图像校正[J].大学物理实验,2007.
    [59]Haycocks J, Jackson K. Traceable calibration of transfer standards for scanning probe microscopy[J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology,2005,29(2):168-175.
    [60]Leach R, Haycocks J, Jackson K, et al. Advances in traceable nanometrology at the National Physical Laboratory [J]. Nanotechnology,2001,12(1):R1-R6.
    [61]陈成钧.扫描隧道显微学引论[M].北京:中国轻工业出版社,1996.
    [62]Binnig G, Smith DPE. Single-tube 3-dimensional scanner for scanning tunneling microscopy[J]. RevSciInstrum,1986,57(8):1688-1689.
    [63]Locatelli M, Lamboley G, Michenaud JP, et al. EASY METHOD TO CHARACTERIZE A PIEZOELECTRIC CERAMIC TUBE AS A DISPLACER[J]. REVIEW OF SCIENTIFIC INSTRUMENTS,1988,59(4):661-663.
    [64]Tiedje T, Brown A. PERFORMANCE LIMITS FOR THE SCANNING TUNNELING MICROSCOPE[J], JOURNAL OF APPLIED PHYSICS,1990,68(2):649-654.
    [65]Chen CJ. Electromechanical deflections of piezoelectric tubes with quartered electrodes[J]. APPLIED PHYSICS LETTERS,1992,60(1):132-134.
    [66]Wei C, Zhang HH, Tao L, et al. A circular arc bending model of piezoelectric tube scanners[J]. REVIEW OF SCIENTIFIC INSTRUMENTS,1996,67(6):2286-2288.
    [67]Yang SY, Huang WH. Three-dimensional displacements of a piezoelectric tube scanner[J]. REVIEW OF SCIENTIFIC INSTRUMENTS,1998,69(1):226-229.
    [68]崔玉国,孙宝元,董维杰,et al.压电陶瓷执行器迟滞与非线性成因分析 [J].光学精密工程,2003.
    [69]钟维烈.铁电体物理学[M].北京:科学出版社,1996.
    [70]张良莹.电介质物理[M].西安:西安交通大学出版社,1991.
    [71]许煜寰.铁电与压电材料[M].北京:科学出版社,1978.
    [72]Cidade GAG, Weissmuller G, Bisch PM. A microcontroller-based system for piezoscanner nonlinearity correction:Atomic force microscope[J]. REVIEW OF SCIENTIFIC INSTRUMENTS,1998,69(10):3593-3597.
    [73]Bukofsky SJ, Grober RD. Video rate near-field scanning optical microscopy[J]. APPLIED PHYSICS LETTERS,1997,71(19):2749-2751.
    [74]Humphris ADL, Hobbs JK, Miles MJ. Ultrahigh-speed scanning near-field optical microscopy capable of over 100 frames per second[J]. APPLIED PHYSICS LETTERS, 2003,83(1):6-8.
    [75]Simon A, Brunner R, White JO, et al. Shear-force distance control at megahertz frequencies for near-field scanning optical microscopy[J], REVIEW OF SCIENTIFIC INSTRUMENTS, 2001,72(11):4178-4182.
    [76]Andersson SB, Park J. Tip steering for fast imaging in AFM:proceedings of the 2005 American Control Conference, ACC, June 8,2005-June 10,2005, Portland, OR, United states,2005[C]. Institute of Electrical and Electronics Engineers Inc.
    [77]Ando T, Kodera N, Maruyama D, et al. A high-speed atomic force microscope for studying biological macromolecules in action[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2002,41(7B):4851-4856.
    [78]Ando T, Kodera N, Uchihashi T, et al. High-speed atomic force microscopy for capturing dynamic behavior of protein molecules at work:proceedings of,2005[C]. Surface Science Society of Japan.
    [79]Ando T, Maruyama D, Saito K, et al. The high-speed AFM and motion pictures.[J]. Biophysical Journal,2001,80(1):303a-303a.
    [80]Barrett RC, Quate CF. High-Speed, Large-Scale Imaging with the Atomic Force Microscope[J]. Journal of Vacuum Science & Technology B,1991,9(2):302-306.
    [81]Rost MJ, van Baarle GJC, Katan AJ, et al. Video-rate scanning probe control challenges: setting the stage for a microscopy revolution[J]. Asian Journal of Control, 2009,11(Compendex):110-129.
    [82]Albrecht TR, Grutter P, Home D, et al. FREQUENCY-MODULATION DETECTION USING HIGH-Q CANTILEVERS FOR ENHANCED FORCE MICROSCOPE SENSITIVITY[J]. JOURNAL OF APPLIED PHYSICS,1991,69(2):668-673.
    [83]波托姆维E.石英晶体元件设计导论[M].宇宙出版社,1987.
    [84]赵声衡.石英晶体振荡器[M[].长沙:湖南大学出版社,1997.
    [85]秦自楷.压电石英晶体[M].北京:国防工业出版社,1980.
    [86]崔艳梅,刘向锋,高志.大位移压电陶瓷驱动器的有限元分析[J].传感技术学报,2007.
    [87]秦磊,王振华,孙立宁.四分压电陶瓷管的动力学研究[J].压电与声光,2007,29(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700