电子设备动态性能有限元建模与优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子设备是现代工农业生产和人们日常生活中不可或缺的工具设备。随着电子设备向集成化、专业化和精密化方向发展,对结构动态性能的要求也越来越高。而电子设备结构动态性能分析与优化是现代电子设备结构性能评估和性能改进的重要方式。本论文针对电子设备结构动态性能有限元建模与优化中所面临的问题,进行了如下研究。
     1)电子设备子结构建模方法研究
     首先,提出了参数化子结构建模方法。该方法在实现对同类结构分析建模的同时,可大大减少建模工作量。其次,利用Numman级数和摄动理论分析了静力凝聚动态子结构方法中因自由度凝聚而产生的误差,并利用板状结构实例对主自由度的选择策略进行了对比分析研究,分析结论和理论分析吻合。
     2)PCB板动态性能等效建模方法研究
     首先,提出了基于有限元模型的PCB板动态性能等效建模方法。该方法利用原PCB板的几何主尺寸作为等效板的几何尺寸,采用单一均匀材料替代原材料,利用质量相等原则获得等效板的等效密度,并利用有限元理论和振动理论推导了基于有限元模型的等效刚度计算方法。同时分析了元器件质量和刚度对等效刚度的影响。其次,针对有限元建模困难或无法进行建模的复杂PCB板,提出了基于实验数据的PCB动态性能等效建模方法,并利用有限元理论和振动理论推导了等效刚度计算方法,同时分析了电子器件的支撑方式对等效刚度的影响。
     3)PCB板最大频率支撑布局拓扑优化方法研究
     基于PCB板支撑结构的特点,建立了最大频率支撑布局拓扑优化方法:利用无质量实体单元模拟支撑部分;利用自由度凝聚技术建立PCB板及其元器件的子结构模型,从而大大缩减了优化的计算量;利用渐进优化方法推导出结构支撑单元的删除敏度并建立了基于ANSYS的计算方法,并分析了支撑刚度对支撑布局优化的影响。最后通过实例验证了优化方法的正确性。
     4)PCB板动态性能优化方法研究
     首先,利用自由度凝聚技术和模态综合方法,建立面向元器件的PCB动态性能布局优化方法。在优化模型的求解上,考虑元器件之间的几何干涉问题,提出改进的遗传算法。其次,结合动态子结构建模分析方法和遗传算法,建立了PCB板支撑布局的优化方法,对支撑位置与PCB板节点不重合问题进行了研究,并结合ANSYS二次开发技术和遗传算法开发了求解程序。
     5)电子设备结构有限元分析优化软件实现方法研究
     针对电子设备结构分析优化软件实现中所面临的问题,建立了面向对象的二次开发软件实现方法。该方法可充分利用有限元分析软件资源,不需要进行有限元底层算法程序开发,开发效率高,且计算结果可得到保证。同时该方法采用了面向对象的思想,因而程序设计思路清晰,调试容易。
     论文取得的主要的创新成果如下。
     1)提出了一种基于有限元模型的PCB板等效建模方法
     针对含有复杂PCB板的电子设备结构动态性能分析,提出了一种基于有限元模型的PCB板等效建模方法。该方法利用原PCB板的几何主尺寸作为等效板的几何尺寸,采用单一均匀材料替代原材料,利用质量相等原则获得等效板的等效密度,并利用有限元理论和振动理论推导了等效刚度计算方法。最后分析了元器件质量和刚度对等效刚度的影响。
     2)提出了一种基于实验数据的PCB板动态性能等效方法
     复杂PCB板,由于很难获得板上电子元器件的结构材料参数和结构形式,导致有限元建模比较困难或无法进行有限元建模。为此,提出了一种基于实验数据的PCB板动态性能等效建模方法。该方法利用原PCB板的几何主尺寸作为等效模型的几何尺寸,采用单一均匀材料替代原材料,利用质量相等原则获得等效模型的等效密度,在并利用有限元理论和振动理论对推导了等效刚度计算方法。最后分析了PCB板的支撑方式对等效刚度的影响,并利用实例计算验证了该方法的可行性能和正确性。
     3)建立了PCB板最大频率支撑布局拓扑优化方法
     PCB板的支持布局会影响其刚度分布,进而影响结构的模态频率。为此,建立了PCB板最大频率支撑拓扑优化方法。该方法利用自由度凝聚方法缩减优化模型计算量,利用渐进优化方法推导了单元删除敏度,并研究建立了基于ANSYS的计算实现方法。最后分析了支撑材料刚度对支撑拓扑优化的影响,并通过两个个优化实例验证了该方法的正确性。
Electronic devices are indispensable to modern industry, agriculture as well as our daily life. Along with the development of electronic devices towards integration, specialization and high accuracy, requirements on their structural dynamic properties have been continuously increasing. Thus the related analysis and optimization based on finite element method (FEM) are now playing more and more important roles in the evaluation and improvement of the structural performance of electronic devices. According to the problems in structural analysis and optimization of electronic devices, this thesis focuses on the researches shown as follows.
     1) Study of substructure modeling method in structural analysis of electronic devices
     Firstly, a parametric substructure method is presented, which enables convenient modeling and analysis for homogeneous structures while significantly reduces its human labors. Secondly, the causes of the error in static condensation substructure method are deduced based on Numman series and matrix perturbation theory. Additionally, comparisons among some strategies for selection of master degree of freedom (MDOF) in plate-like structure are also made in the thesis, which shows good consistency with the theoretical conclusions.
     2) Study of equivalent method for modeling of printed circuit board (PCB) dynamic properties
     Firstly, an equivalent method for modeling of PCB dynamic properties based on FEM is presented. In the method, equivalent dimensions are obtained from the main dimension of a real PCB, while equivalent density is calculated by the principle of mass equality, and the equivalent stiffness formula is derived based on vibration theory and FEM, respectively. The effects of size, location and layout of components on equivalent stiffness are discussed. For the complex PCB of which FEM modeling is too difficult, an equivalent modeling method based on experiment data about PCB dynamic properties is also presented, in which equivalent stiffness is derived based on vibration theory and FEM. Additionally, the influence of the support condition on equivalent stiffness is discussed as well.
     3) Study of maximization of PCB natural frequency by optimization of supporting layout
     Based on the structural characters of PCB, a topology optimization method of PCB structure is established. In this method the supporting part is simulated by elastic material with no mass, and the PCB component part is refined by condensation of degree of freedom to reduce computation amount. The sensitivity coefficient for element removal is derived by evolutionary structural optimization (ESO) algorithm. And then, an ANSYS-based computational method is presented. Meanwhile, the influence of stiffness of support material on the maximal frequency of structure is discussed. In the end, optimization examples demonstrate that this method is reasonable and effective in engineering projects.
     4) Study of PCB dynamical property optimization method
     Firstly, by using freedom condensing technology and modal synthesis method, a new component layout optimization method is presented for PCB dynamic properties. By using a modified genetic algorithm, the layout optimization problem for multiple components can be solved. And then, a new support layout optimization method for PCB structure is built up. Additionally, by using the genetic algorithm and second-develop technique, a solving software developed.
     5) Study of software development method for structural analysis and optimization of electric devices
     To resolve the problems of complexity and ineffectiveness in FEM modeling, an object oriented secondary development method is presented. By taking full advantage of the resource of FEM software, the method avoids development of fundamental FEM algorithm, and thus leads to a high development efficiency as well as good reliability. Besides, by using the object-oriented theory, the program design thought is much clearer and the debugging is much easier.
     The originalities in this thesis can be summarized as follows:
     1) An equivalent method for modeling of PCB dynamic properties based on FEM model is presented
     In the method, the equivalent dimension is obtained from the main dimension of real PCB, the equivalent density is calculated by the principle of mass equality, and the equivalent stiffness formula is derived based on the theory of vibration and finite element method. Additionally, the influences of the size, the location and the layout of part on equivalent stiffness are studied.
     2) An equivalent method for modeling of PCB dynamic properties based on experimental data is proposed
     Finite-element modeling of PCB is often very difficulty due to the structural complexity, so an equivalent modeling method of PCB based on experimental data for dynamic property analysis is presented. In the method, the equivalent dimension is obtained from main dimension of real PCB structure, the equivalent density is calculated by the principle of mass equality, and the equivalent stiffness formula is derived based on the theory of vibration and finite element method. Additionally, the influences of joint constrain on equivalent stiffness are studied.
     3) A PCB dynamical property layout optimization method is built up
     Support layout will affect the stiffness distribution of PCB, and then affect the modal frequency. The method of maximization of PCB natural frequency with optimal support layout is built up. Using condensation method of degree of freedom for reduce computation amount. And the sensitivity number for element removal is derived by using evolutionary structural optimization algorithm and the implementation method by using ANSYS is built up. In the end, the influences of support material stiffness on the maximal frequency of structure are discussed. Application examples show the optimization method is effective and efficient in engineering projects.
引文
[1]杜敏,李琦,王少威,张钊.电子设备中的耦合问题研究[J].桂林电子科技大学学报,2010,30(4): 338-342.
    [2] Billington SL, Barnes RW, Breen JE. Alternate substructure systems for standard highway bridges[J]. Journal of Bridge Engineering, 2001, 6(2):87-94.
    [3] De Salvo Vera, Muscolino Giuseppe, Palmeri Alessandro. A substructure approach tailored to the dynamic analysis of multi-span continuous beams under moving loads[J]. Journal of Sound and Vibration, 2010, 329(15):3101-3120.
    [4] Li Wei-Ming, Hong Jia-Zhen. An improved model updating method of reduced-models for finite element model. Journal of Shanghai Jiaotong University (Science), 2010, 15(3):377-384.
    [5] Kim Bum Suk, Kim Bong Soo, Yoo Hong Hee. Analysis of vibration characteristics of a full vehicle model using substructure synthesis method[J]. Transactions of the Korean Society of Mechanical Engineers, 2010, 34(5):519-525.
    [6] Fei Liu, Qiang Wang, Lihua Liang, Yong Liu. Dynamic substructure method for prediction of solder joint reliability of IC package under drop test[C]. 2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010, 1,1-5
    [7] Fei Liu, Lihua Liang, Yong Liu. An improved substructure method for prediction of solders joint reliability in thermal cycle[C]. 2009 International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2009 ,311-316.
    [8] Chaojiang Fu. Parallel Computing for Finite Element Structural Modal Analysis on Workstation Cluster[C]. 2009 1st International Conference on Information Science and Engineering, ICISE 2009, 299-302.
    [9]韦建刚,陈宝春,吴庆雄.压弯钢管拱极限承载力计算的等效梁柱法[J].计算力学学报,2009,26(1):87-93.
    [10]李海军,郭万林.单壁碳纳米管的等效梁单元有限元模型[J].力学学报, 2006, 38(4): 488-495.
    [11]王解军,肖景新.钢纤维混凝土与钢结合梁桥面板等效板单元模型及其应用[J].中南公路工程, 2004, 29(3): 31-32+37
    [12]尹静.等效刚度板法对网架的受力性能分析[J].山西建筑, 2008, 34(25):97-98.
    [13]苏文政,刘书田,张永存.桁架板等效刚度分析[J].计算力学学报, 2007, 24(6): 763-767.
    [14] Kapania Rakesh K, Liu Youhua. Static and vibration analyses of general wing structures using equivalent-plate models[J].AIAA journal, 2000, 38(7): 1269-1277.
    [15] Livne Eli1. Nonlinear equivalent plate modeling of wing box structures[J]. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 1999, 346-372
    [16] Choi Hongsoo1, Ding Jow-Lian, Bandyopadhyay Amita, Bose Susmita. Finite element analysis of piezoelectric thin film membrane structures. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(10): 2036-2044
    [17]任建峰.电子设备结构动力响应研究中的关键技术[D].西安:西安电子科技大学, 2006.
    [18] Tanimoto Y, Nishiwaki T, Shiomi T, Maekawa Z. A numerical modeling for eigenvibration analysis of honeycomb sandwich panels[J]. Composite interfaces, 2001, 8(6): 393-402.
    [19] Pasias V, Karra D.A, Papademetriou R.C. Traffic engineering in multi-service networks comparing genetic and simulated annealing optimization techniques [C]. 2004 IEEE International Joint Conference on Neural Networks - Proceedings, 2325- 2330.
    [20] Meltaus J, Hamalainen P, Salomaa MM, Plessky VP. Genetic optimization algorithms in the design of coupled SAW filters[C]. Proceedings - 2004 IEEE Ultrasonics Symposium: A Conference of the IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Society, UFFC-S ,Vol.3,1901- 1904.
    [21] Cabello JM, Cejudo JM, Luque M, et al. Optimization of the sizing of a solar thermal electricity plant: Mathematical programming versus genetic algorithms[C]. 2009 IEEE Congress on Evolutionary Computation, CEC 2009 ,1193-1200.
    [22] Ho W, Ji P. A genetic algorithm to optimise the component placement process in PCB assembly[J]. International Journal of Advanced Manufacturing Technology, 2005, 26(12): 1397-1401.
    [23] Mashohor S, Evans JR, Arslan T. Genetic algorithm based printed circuit board (PCB)inspection system. 2004 IEEE International Symposium on Consumer Electronics - Proceedings, 519-522.
    [24] Hardas Chinmaya S, Doolen Toni L, Jensen Dean H. Development of a genetic algorithm for component placement sequence optimization in printed circuit board assembly[J]. Computers and Industrial Engineering, 2008, 55(1):165-182
    [25] Jain Sakait, Gea Hae Chang. PCB layout design using a genetic algorithm[J]. Journal of Electronic Packaging, Transactions of the ASME, 1996, 118(1):11-15
    [26] Zhang Jinshuo, Xie Shuguo, Liu Yan. Satellite antenna layout and optimization in electromagnetic compatibility design[C]. International Conference on Space Information Technology 2009, Vol. 7651.
    [27]唐飞,腾弘飞.一种改进的遗传算法及其在布局优化中的应用[J].软件学报[J], 1999, 10(10): 1096-1102.
    [28]朱继元,周德俭,吴兆华.板级电路振动分析及元器件布局优化技术研究[J].电子机械工程, 2007, 23(1): 1-4+10.
    [29]刘文广,吴凡.基于APDL的PCB元件布局优化[J].电子工艺技术, 2009, 30(3): 151-153.
    [30] Yang De-Qing, Liu Yong-Jun, Jin Xian-Ding. Structural topology optimal design to reduce vibration and noise of thin plate[J]. Journal of Ship Mechanics, 2003, 7(5):91-96
    [31] Matsuzaki A, Endoh S, Morishita H, et al. A study on miniaturization of antenna loaded with magnetic materials by using topology optimization[C]. 2007 IEEE Antennas and Propagation Society International Symposium, AP-S, 2602-2605.
    [32] Semyung Wang, Youn D, Moon H, Kang J. Topology optimization of electromagnetic systems considering magnetization direction[J]. Magnetics, IEEE Transactions on , 2005, 41(5): 1808- 1811
    [33] Boroomand B, Barekatein AR. On topology optimization of linear and nonlinear plate problems[J]. Structural and Multidisciplinary Optimization, 2009, 39(1):17-27.
    [34] Khalaf AA, Saka MP. Evolutionary structural optimization of steel gusset plates[J]. Journal of Constructional Steel Research, 2007, 63(1):71-81.
    [35] Nguyen Quan, Tong Liyong, Gu Yuanxian. Evolutionary piezoelectric actuators design optimisation for static shape control of smart plates[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 197(1):47-60.
    [36] Wang D. Optimization of support positions to minimize the maximal deflection of structures[J]. International Journal of Solids and Structures, 2004, 41(26): 7445- 7458.
    [37] Wang D, Jiang JS, Zhang WH. Optimization of support positions to maximize the fundamental frequency of structures[J]. International Journal for Numerical Methods in Engineering, 2004, 61(10):1584-1602.
    [38] Zhu Jihong, ZhangWeihong. Maximization of structural natural frequency with optimalsupport layout[J]. Struct Multidisc Optim, 2006, 31(6): 462-469.
    [39] Guyan R J. Reduction of stiffness and mass matrices[J]. AIAA Journal, 1965, 3(2): 56-75.
    [40]王文亮,杜作润.结构振动与动态子结构方法[M].上海:复旦大学出版社, 1985.
    [41] Craig R R. review of time-domain and frequency-domain component mode synthesis method[J]. AMD (Symposia Series)(American Society of Mechanical Engineers, Applied Mechanics Division), 1985, (67):1-30.
    [42] Biondi B, Muscolino G, Sofi A. A substructure approach for the dynamic analysis of train-track-bridge system[J]. Computers and Structures, 2005,83(28): 2271 -2281 .
    [43]刘孝保,杜平安,乔雪原.主自由度对子结构静力凝聚模态分析的误差影响研究[J].中国机械工程, 2011, 22(3): 274-277+234.
    [44] Craig R. R. A Review of Time Domain and Frequency Domain Component Mode Synthesis Methods[J]. International Journal of Analytical and Experimental Modal Analysis, 1987, (2):59-72
    [45] Craig R R, Bampton M D D. Coupling of Substructures for Dynamic Analysis[J]. AIAA Journal, 1968, (12):1313-1319.
    [46]杨秋伟,刘济科.一种改进的模型缩聚方法[J].力学与实践, 2006, 28(2): 70-72.
    [47]陈塑寰.结构振动分析的矩阵摄动理论.重庆:重庆出版社[M], 1991:94-100.
    [48]杜平安,刘清友.特殊型式梁的子结构建模方法[J].电子科技大学学报, 2000, 29(5): 512-514.
    [49] Ma Guodong, Liu Gang. Parameterized modelling and Calculation for Spatial Integral Structure Base on Integration of VC and APDL[J]. Journal of Wuhan University of Technology, 2004, 28(3): 447-449.
    [50] Xue Souyi. Finite Element Method[M]. Beijing: china building material publishing house, 2005:161-162
    [51] Groth H. L. calculation of stresses in bonded joints using the substructure technique[J]. International Journal of Adhesion and Adhesives, 1986, 6( 1):31-35
    [52]张健飞,姜弘道.有限元子结构并行算法的性能分析[J].力学与实践, 2002, (5): 35-37
    [53] Craig, Roy R Jr. Brief tutorial on substructure analysis and testing[C]. Proceedings of the International Modal Analysis Conference - IMAC, 2000,Vol.1: 899-908.
    [54] Guo Anping, Batzer, SteveSub. Structure analysis of a flexible system contact-impact event. Journal of Vibration and Acoustics, 2004, 126(1):26-131.
    [55] Lei Wang, Meek, John L. Multi-level substructuring and its implementation in programming.Advances in Engineering Software, 16(3), 1993:195
    [56]刘济科,杨秋伟,邹铁方.结构损伤识别中的模型缩聚问题[J].中山大学学报(自然科学版), 2006, 45(1):1-8.
    [57]赵又群,柴山,曲庆文,姚福生.非线性转子系统动态特性分析的模态──摄动方法[J].机械工程学报, 2002 ,38(1):39-41.
    [58]李彦梅,徐英,张立伟,等.上游单弯头对内锥流量计性能影响的仿真与实验研究[J].仪器仪表学报,2009, 30(6): 1195-1201.
    [59]黄志奇,王厚军,陈东义.可穿戴计算机主板振动优化模型研究[J].电子测量与仪器学报, 2009, 23(10):31-36.
    [60] Amya RA, Agliettia GS, Richardsonb G. Sensitivity analysis of simplified PCB finite element models[J]. Microelectronics Reliability, 2009, 49(7):791-799.
    [61]姜宇,肖鸿,刘兴鹏,等.一种新型宽带单面异向介质结构的分析与设计[J].电子测量与仪器学报,2009, 23(8):27-31.
    [62] Wei Jiangang, Wu Qingxiong, Chen Baochun, et al. Equivalent beam-column method to estimate in-plane critical loads of parabolic fixed steel arches[J]. Journal of Bridge Engineering, 2009, 14(5):346-354.
    [63] Xia ZhiFan, Wang JianHua, Xu Bin, et al. Equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads[J]. Journal of Shanghai Jiaotong University (Science), 2009, 14(4):385-392.
    [64] Vepa Ranjan. Aeroelastic analysis of wing structures using equivalent plate models[J]. AIAA Journal, 2008, 46(5): 1216-1225.
    [65]杨宇军,叶松林,游少雄,等.插板式PCB的内置式减振设计方法及其PSD动力学仿真[J].振动与冲击, 2007, 26(2): 39-42+174.
    [66]张义民.机械振动[M].北京:清华大学出版社,2007.
    [67] YM Xie,GP Stevenf. Evolutionary structural optimization for dynamic problems[J]. Compufers & Structures, 1996, 58(6): 1067-1073.
    [68]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [69] Prusty B Gangadhara, Satsangi S K. Finite element transient dynamic analysis of laminated stiffened shells[J]. Journal of Sound and Vibration, 2001, 248(2): 456-468.
    [70]隋修武,谢望,张国雄,樊玉铭.有限元分析在谐振筒式密度传感器结构设计中的应用[J].仪器仪表学报, 2008, 29(2): 381-386.
    [71] Amya R A, Agliettia G S, Richardsonb G. Sensitivity analysis of simplified Printed Circuit Board finite element models[J]. Microelectronics Reliability, 2009, 49(7):791-799.
    [72]陈山林,刘东.变厚度环板等效厚度的近似估计[J].仪器仪表学报, 1992, 13(3): 299-303.
    [73]杜平安,刘建涛,刘孝保.电子器件振动特性有限元模型参数的等效计算方法[J].电子学报, 2010, 38(8): 1867-1873.
    [74] Roberts J C, Stillo D M. Random vibration analysis of a printed wiring board with electronic components[J]. Journal of the IES, 1991, 34(1):25-31.
    [75]李彦梅,徐英,张立伟,张涛,李强.上游单弯头对内锥流量计性能影响的仿真与实验研究[J].仪器仪表学报, 2009, 30(6): 1195-1201.
    [76]杨平,陈子夏,谭广斌. PBGA组件的动态特性仿真与实验研究[J].振动与冲击, 2009, 28(3): 168-170+207.
    [77]尚鸿雁,张广军.枕型PSD动态响应特性研究[J].仪器仪表学报, 2005, 26(3): 34-36.
    [78] Diaz Alejandro R, Sigmund Ole. A topology optimization method for design of negative permeability metamaterials[J]. Structural and Multidisciplinary Optimization, 2010, 41(2): 163-177.
    [79] Bendse M P. Optimal shape design as a material distribution problem[J]. Structural and Multidisciplinary Optimization. 1989, 1(4): 193-202.
    [80]隋允康,叶红玲,杜家政.结构拓扑优化的发展及其模型转化为独立层次的迫切性[J].工程力学. 2005, 22(S1): 107-118.
    [81]周克民,李俊峰,李霞.结构拓扑优化研究方法综述[J].力学进展. 2005, 35(01): 69-76.
    [82] Sigmund O. Morphology-based black and white filters for topology optimization[J]. Structural and Multidisciplinary Optimization. 2007, 33(4): 401-424.
    [83] Sigmund O, Petersson J. Numerical instabilities in topology optimization: A surveyon procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Tructural Optimization. 1998, 16(1): 68-75.
    [84] Zhou M, Shyy Y K, Thomas H L. Checkerboard and minimum member size control in topology optimization[J]. Structural and Multidisciplinary Optimization. 2001, 21(2):152-158.
    [85]李晓明,高泽溪,吕善伟.电路板上电子元件位置的优化[J].电子学报, 1999, 27(7):76-78
    [86]周向阳,陈立平,黄正东.连续体结构与支撑综合拓扑优化设计方法[J].农业机械学报, 2008, 39(4):120-131,68.
    [87]周殊,潘炜,罗斌等.一种基于粒子群优化方法的改进量子遗传算法及应用[J].电子学报, 2006, 34(5):897-901.
    [88]杨帆,张雪霞.遗传算法在微带天线优化中的应用[J].电子学报, 2000, 28(9): 91-95.
    [89]段宝岩,徐国华.杆系类天线结构的拓扑优化设计[J].电子学报, 1992, 20(3):27-34.
    [90] BUHL T. Simultaneous topology optimization of structure and supports[J]. Struct Multidiscipl Optim, 2001, 23(5):336–346.
    [91]荣见华,谢忆民,姜节胜等.渐进结构优化设计的现状与进展[J].长沙交通学院学报, 2001, 17(3):16-23.
    [92] X. Huang, Z.H. Zuo, Y.M. Xie. Evolutionary topological optimization of vibrating continuum structures for natural frequencies[J]. Computers and Structures, 2010, 88(5-6):357–364.
    [93]朱继宏,张卫红,邱克鹏.结构动力学拓扑优化局部模态现象分析[J].航空学报, 2005, 26(4):619-623.
    [94]王周缅,马良. PCB布线的元胞蚂蚁算法研究[J].北京师范大学学报(自然科学版), 2007, 43(2): 170-174.
    [95]李琳,盛君.混合界面直接分支模态综合法[J].应用力学学报, 2005, 22(2): 315-319.
    [96]楼梦麟.结构动力分析的子结构方法[M].上海:同济大学出版社, 1997.
    [97] G Masson, B Ait Brik, S Cogan, et al. Component mode synthesis (CMS)based on an enriched ritz approach for efficient structural optimization [J]. Journal of Sound and Vibration, 2006, 29(6):845–860.
    [98] chen suhuan yang zhijun. The layout optimization of stiffeners for plate-shell structures[J]. Acta Mechanica solida sinica, 2005, 18(4): 365-373.
    [99] Huo Jun-Zhou, Li Guang-Qiang, Teng Hong-Fei. Layout optimization of a satellite module using a parallel genetic-Powell-ant colony hybrid algorithm[J], Journal of Dalian University of technology, 2006, 46(5): 679-684.
    [100] Stiver Dave. Beating the heat[J]. Printed Circuit Design, 2003, 20(2): 8-10+27.
    [101] Noteboom Ron, Ali Hesham H. new genetic algorithm for single row routing[J]. Midwest Symposium on Circuits and Systems, 1995, 12(2): 765-768.
    [102] Yang Qiuwei Liu Jike. An improved method for structural finite element modal reduction[J]. Mechanics in Engineering, 2006, 28(2):70-72.
    [103]胡如夫,孙庆鸿,陈南,等.高精度内圆磨床结构动态优化设计研究[J].中国机械工程,2002, 13(18):1542-1544.
    [104] Jain, Sakait, Gea Hae Chang. PCB layout design using a genetic algorithm[J]. Journal of Electronic Packaging, Transactions of the ASME, 1996, 118(1): 11-15.
    [105]杨国军,崔平远,李琳琳.遗传算法在神经网络控制中的应用与实现[J].系统仿真学报,2001, 139(5): 567-570.
    [106]仇君,朱晓慧,黄伟,刘光浩.基于APDL语言的钻床立柱结构分析与优化[J].机械设计与制造, 2010, (2): 162-164.
    [107]姜峰,李博宁,丁丽娜.面向对象的钢筋混凝土有限元非线性分析程序设计[J].计算力学学报, 2003, 20(5): 592-596
    [108]李海江,杨刚,易南概.面向对象的串并行有限元分析系统[J].计算力学学报, 2006, 23(5): 588-593.
    [109]张向,许晶月,沈启,阮雪榆.面向对象的有限元程序设计[J].计算力学学报, 1999, 16(2): 216-226
    [110]魏泳涛,于建华,陈君楷.面向对象的有限元程序框架[J].四川大学学报(工程科学版), 2000, 32(3): 34-38
    [111]郑永阳,高鹏.利用ANSYS-APDL语言的有限元结构仿真[J].工程建设与设计, 2007, (11): 34-36
    [112]严仲兴.浅谈面向对象的程序设计思想[J].电脑知识与技术(学术交流), 2006, 12(35): 1391+158.
    [113]刘敬军,张申生.综合面向对象和面向过程的对象过程方法[J].计算机工程, 1998, 24(4): 13-15.
    [114]王雷,邢艳洪.基于ANSYS的系列化零部件的参数化有限元建模[J].机械设计与制造, 2008, (6): 86-88.
    [115]周晴.发动机测试探针振动特性有限元分析系统的研究与开发[D].电子科技大学:电子科技大学, 2010.
    [116]于雁云,林焰,纪卓尚,陆丛红.基于参数化表达的船舶结构有限元分析方法[J].船舶力学, 2008, 12(1): 74-79.
    [117]刘柏严,张旭堂,刘文剑,彭高亮.基于Pro/E二次开发的夹具设计参数化技术研究[J].哈尔滨工业大学学报, 2005, 37(6): 833-835+857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700