重载夹持装置双马达消隙传动系统的建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以250吨锻造操作机夹钳传动系统为研究对象,对夹钳传动系统与控制策略进行了研究。由于系统惯性大、负载变化大,液压元件的非线性、控制阀死区、齿隙、摩擦力矩非线性等特点,很难满足系统的快速启动制动平稳性和精确定位的要求。本文结合锻造操作机夹钳传动系统的要求和特点,提出了一种消除齿轮齿隙的双马达功能互换的传动系统,达到平稳换向和精确定位要求,主要研究如下:
     1、提出了一种消除齿轮齿隙冲击影响的双马达传动系统。为分析齿轮齿隙对系统的影响程度,采用未消除齿轮齿隙的单马达传动系统进行比较,建立了液压传动系统中核心控制元件—插装式比例节流阀的数学模型,建立了夹钳传动系统的非线性模型。
     2、根据频响特性和阶跃响应曲线,利用最小二乘法对插装阀的参数进行了辨识;结合液压马达实验,建立了马达的摩擦力矩模型,并利用逐步回归的方法对马达模型中的相关参数进行了辨识。
     3、将模糊自适应参数整定PID控制算法应用于锻造操作机夹钳传动系统控制,对系统存在控制阀死区、齿轮齿隙和摩擦的非线性等影响因素的控制效果对比表明,常规PID控制器中加入模糊参数自整定后,改善了系统的控制性能,消除了累积误差,满足了规定的精度要求。
     4、对消除了齿轮齿隙影响的夹钳传动系统和存在齿轮齿隙影响的夹钳传动系统进行了仿真对比,结果表明,齿轮齿隙对系统的性能影响较大,双马达功能互换传动的液压系统能很好地消除齿轮齿隙对系统的影响。
     通过仿真分析结果表明所提出的夹钳双马达消隙传动控制系统的响应速度和控制精度能够满足要求,且系统具有启停平稳、抗干扰能力强的特点。
The design and control strategies of the rotational driving system for the grippers of 250 Ton forging manipulators were studied in this thesis. The system has the features such as large inertia, large variation of load, nonlinearities of hydraulic part, dead zone of control valve, gear backlash and nonlinear of friction torque. It is difficult to meet the requirement of fast accelerating, fast retarding and precise positioning. A function exchangeable driving system with two motors was proposed in combination with the requirements and features of forging manipulator gripper driving system to eliminate the effect of gear backlash. The main studies are as follows:
     1、A two motors driving system was proposed for eliminating the effect of backlash. A single motor driving system which can not eliminate the effect of gear backlash was also built to compare with the double motor driving system. The nonlinear models of the driving systems were established.
     2、The parameters of the cartridge valve were identified by the least square method based on the frequency responses and step responses. The frictional torque model of the motors was also set up based on experimental data.
     3、The fuzzy adaptive tuning PID controller was applied to the control of the driving system. The comparison between conventional PID and fuzzy PID shows that fuzzy PID has better control performance for systems with dead-zone of control valve, gear backlash and friction nonlinearities. The accumulated error of the gripper driving system can be eliminated and requirement of precision can be met.
     4、The comparison between gripper rotational driving systems with and without gear backlash shows that gear backlash affects the performance of system significantly and the driving system with double motors can eliminate the effect of gear backlash on the system.
     The analysis of simulation results indicates that the proposed double motor driving system can meet the requirement of response speed and control precision. Moreover, the system has the features such as smoothness of fast response and strong anti-interference capability.
引文
[1]王喜凤.锻造液压机与操作机的发展[J].锻压机械,1998(6):3-5
    [2]王喜凤.大锻件生产与锻造技术发[J].重型机械科技,1999(3):8-11
    [3]余发国,高峰,郭为忠,葛浩.锻造操作机的回顾与展望[J].机械设计与研究.2007(1)12-15.
    [4]王凤喜.锻造操作机技术近期的发展[J].重型机械.1994(6)12-17.
    [5]万胜狄,王运赣,沈元彬.锻造机械化与自动化[M].北京:机械工业出版社。1983.
    [6]孙雅权,方春林.200tm锻造操作机液压系统的维修方法[J].一重技术.1996(2)106-111.
    [7]华中工学院锻压教研室,全液压双动锻造操作机的研究[J].CMET.锻压装备与制造技术.1980(5)26-29.
    [8]1176318 Dusseldorf.Improvements in the Oil-Hydraulic Control of Stepwise Movements for the Rapid Acceleration of Large Masses.Germany,Application.18048/68.April,1968.
    [9]陈庆伟,郭毓,杨静忠.提高齿隙非线性系统精度的应用研究[J].南京理工大学学报.2002(24)486-489.
    [10]李连升.电液伺服系统中的消隙传动[J].机床与液压.1975(5)37-44.
    [11]郑云富.电液比例控制技术在输送机构上的应用研究[D].昆明:昆明理工大学.2007.3.
    [12]刘海昌.电液比例位置控制系统在电铅堆垛中的应用研究[D].昆明:昆明理工大学.2004.1.
    [13]何存兴.液压元件[M].北京:机械工业出版社,1981,3.
    [14]陈愈,沈关耿,徐国峻等.液压阀[M].北京:中国铁道出版社,1982.
    [15]Lu Yongxiang.Historical progress and prospects of fluid power transmission and control,Proceedings of the Fifth International Conference on Fluid Power Transmission arm Control,Zhejiang University,People's Republic of China,2001,62-68.
    [16]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报.2003,(10):95-99
    [17]Tanaka,H.Fluid power control technology-present and near future,JSME(Japanese Society of Mechanical Engineers) International Journal,Series C(Dynamics,Control,Robotics,Design and Manufacturing),1994,Vol.37,No.4,IEE,629-637.
    [18]Backe Wolfgang.Research and Development in Fluid Power Technology,Proceedings of First FPNI-PhDSymposium Hamburg 2000.September 17-20,2000,Hamburg,Germany,pp.9-21.
    [19]Edge K.A.,The control of fluid power systems-responding to the challenges,Proceedings of the Institution of Mechanical Engineers,Part I-Journal of Systems and Control Engineering,1997,211(12):91-110
    [20]Billingsley,J.,On the design of position control systems.IE E Proceedings-Control Theory and Applications.July 1991(4)331-336.
    [21]路甬祥主编.液压气动技术手册[M].北京:机械工业出版社.2002.1.
    [22]陈柏金,黄树槐.锻造液压机液压系统传动方式研究[J].锻压技术.2003(2)44-47
    [23]宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社,2007.6.
    [24]Mark Karpenko.Fault tllerant control design for anelectrohydraulic actuator with application to positioning of aircraft flight control surfaces[D].Manitoba:University of Manitoba,2002.
    [25]C.-S.Kim,C.-O.Lee.Speed control of an overcentered variable displacement hydraulic motor with a load-torque observer[J].Control Engineering Practice,1996,4(11):1563-1570.
    [26]Sang Yeal Lee,Hyung Suck Cho.A fuzzy controller for an electro-hydraulic fin actuator using phase plane method[J].Control Engineering Practice,2003,4(1):697-708.
    [27]Sung Ouk Chang,Jin Kul Lee.The Design of a Real-Time Simulator on the Hydraulic Servo System[J].International Journal of the Korean Society of Precision Engineering[J],2003.4(1):9-14.
    [28]OmerKeles,Yucel Ercan.Theoretical and experimental investigation of a pulse-width modulated digital hydraulic position control system[J].Control Engineering Practice,2002,1(10):645-654.
    [29]Jae-Cheon Lee,Seong-Jin Kim.An Investigation into the PID Control for the Electro-Hydraulic Servo System of Skin Pass Mill[J].International Journal of the Korean Society of Precision Engineering,2001,2(4):45-53.
    [30]Lin Su-Chen,Jonathon.Optimal control of an axial piston pump using single-stage and two-stage electrohydraulic servovalves[D].Lowa:Lowa State University,1987.
    [31]David Shann,Ching Wang.Feedback Linearization Based Control of Electrohydraulic Systems with Coulomb Friction[D].Minnesota,University of Minnesota,1995.
    [32]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.10
    [33]吴根茂,邱敏秀,王庆丰,魏建华,孔晓武,傅新.新编实用电液比例技术[M].杭州:浙江大学出版社.2005.
    [34]李洪人.液压控制系统[M].北京:国防工业出版社.1981.
    [35]宋鸿尧,丁忠尧等.液压阀设计与计算[M].北京:机械工业出版社.1982.
    [36]赵周礼,周恩涛,周士昌,李文,王少丹.卷取机助卷辊电液伺服系统传递函数辨识[J],冶金 自动化[J].2006(6)45-47.
    [37]花克勤.用辨识的方法确定伺服阀的数学模型[J],机床与液压[J].2004(1)87-91.
    [38]LIU S,YAO B.Automated onboard modeling of cartridge valve flow mapping[J],IEEE/ASME Transactions on mechatromics,2006(4)381-388.
    [39]侯明亮,毛恩荣.电液换向阀的状态变量模型与仿真研究[J].系统仿真学报.2007(2)421-428.
    [40]Valerie Pommier,Jocelyn Sabatier,Patrick Lanusse,Alain Oustaloup.Crone control of a nonlinear hydraulic actuator.Control Engineering Practice 10(2002)391-402
    [41]熊美华.电液比例阀控制马达速度控制系统分析与仿真研究[D].西安:长安大学.2004.5.
    [42]Michael.Yuwang,Weljie Zhao.Numerical Modelling and Analysis of Automotive Transmission Rattle,Journal of vibration and control,8:921-943,2002.
    [43]赵国峰,陈庆伟,胡维礼.双电机传动伺服系统齿隙非线性自适应控制[J].南京理工大学学报.2007(2)187-192.
    [44]郭世怀,闫民,刘毅.齿轮耦合系统动力学DEM建模研究[J].林业机械与木工设备.2005(12)25-31
    [45]彭熙伟,比例阀控马达电液控制伺服系统应用研究[D].北京:北京理工大学,1997,1
    [46]Hong Sun and George T.-C.Chiu.Motion Synchronization for dual-Cylinder Electrohydraulic Lift Systems.IEEE/ASMETRANSACTIONS ON ECHATRONICS.2002(7) 171-181
    [47]王喜明.基于LuGre模型的摩擦力矩补偿研究[D].西安:中国科学院西安光学精密机械研究所.2007.6.
    [48]彭熙伟,耿庆波,王晓平.液压马达低速摩擦转矩特性的实验研究[J].北京理工大学学报.2006(11)999-1003.
    [49]C.-S.Kim and C.-O.Lee Speed control of an overcentered variable -displacement hydraulic motor with a load-torque observer Control Eng.Practice,Vol.4,No.11,1563-1570,1996.
    [50]John Watton and Ki-Soo Kwon,Neural network modelling of fluid power control systems using internal state variables,Mechatronics Volume 6,Issue 7,October 1996,Pages 817-827
    [51]陶建峰,王旭永,刘成良等.负载变形敏感双马达同步传动系统建模与仿真[J].系统仿真学报,2007,19(7)1574-1578.
    [52]EA Prasetiawan,R Zhang,AG Alleyne,TC Tsao Modeling and control design of a powertrain simulation testbed for earthmoving vehicles,M.S.Univ.of Illinois.
    [53]曹健,李尚义,赵克定.仿真转台用新型连续回转液压伺服马达摩擦特性研究[J].宇航学报,2003,24(4):374-377.
    [54]R Zhang,A Alleyne,E Prasetiawan Modeling and H/H MIMO Control of an Earthmoving Vehicle Powertrain Journal of Dynamic Systems,Measurement,and Control,200212(4) 625-636
    [55]吴盛林,刘春芳,超低速高精度转台中摩擦力矩的动态补偿,南京理工大学学报(自然科学版)
    [56]彭熙伟,耿庆波,王晓平,液压马达低速转矩特性的实验研究[J].北京理工大学学报.2006(11),999-1003.
    [57]袁利才.大惯性柔性负载对电液速度伺服系统特性影响的分析与研究[D].太原:太原理工大学.2004.5
    [58]吴学礼,贾辉然.非线性过程的智能方法研究与应用[M].北京:国防工业出版社,2006
    [59]陶永华.新型PID控制及应用.机械工业出版社,2002.11;
    [60]全廷立,基于模糊PID的汽车起动机综合性能自动测试系统研究与开发[D].长沙:中南大学,2007.5.
    [61]陈群峰.发射装置高性能伺服系统研究与应用[D].南京:南京理工大学.2007.6
    [62]周海波,邓华,段吉安.热超声倒装芯片运动平台的模糊PID控制[J].系统仿真学报.2007(13)2944-2954.
    [63]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [64]朱孝录.齿轮传动设计手册[M].北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700