压力机用直驱式电液伺服系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,直驱式电液伺服系统引起了国内外的广泛重视。其基本原理是通过伺服电机或者变频电机和定量泵结合,通过控制电机的转向、转速及转矩,实现对系统的方向、位置及力控制。由于其在节能环保方面的突出优势在国外发展很快,已经在某些领域得到应用。我国对该研究起步较晚,还处在实验室阶段。本课题以压力机为应用背景,对直驱式电液伺服系统的理论和关键技术问题进行研究,无疑具有重要的理论意义和实际的应用价值。
     在查阅国内外大量相关文献基础上,综述了直驱式电液伺服系统的研究现状和应用情况,结合国内直驱式电液伺服系统的研究进展,确定了本文的主要研究方向。
     基于压力机的某一系统参数要求,对直驱式电液伺服系统的动力机构进行了设计计算;基于性能指标要求设计和选取了系统主要元件;采用一组插装式单向阀结合预压力密闭油箱解决液压闭式回路的无动力补油问题,并对其进行了设计;通过采用液压泵和集成阀块的一体化设计,并将其内置于密闭油箱的液压包结构形式,提高了闭式回路补油的可靠性,实现了系统的集成化。
     基于MATLAB和AMESim仿真分析平台,建立了包含无动力补油、安全及泄漏等环节在内的完整的直驱式电液伺服系统的半物理数学模型,仿真分析了主要参数对系统动态性能的影响;提出了前馈和反馈控制相结合、并辅以压力小闭环回路的复合控制策略,提高了系统的动态响应特性。
     针对系统复杂的电磁环境,进行了抗电磁干扰设计;编制了控制软件,实现了系统在线调试、控制功能;研制了直驱式电液伺服系统样机。搭建了试验台,对样机性能进行测试分析,给出了实验结果。通过和仿真分析对比,验证了理论分析的正确性。
In recent years, Direct Drive Electro-Hydraulic Servo System has attracted widely attention at home and abroad. The basic principle is that servo motor or variable-frequency motor drives fixed displacement hydraulic pump, by controlling the motor’s direction of rotation, speed and torque, to realize the system's direction, position and force control. Because of its prominence advantages in the energy-saving and environment-protective, it has been developed rapidly in foreign countries and applied in some areas. Our country begins lately start at the study, still at the laboratory stage. The subject making press for the application background, researching the system’s theoretical issues and key technology, will undoubtedly have Important theoretical significance and practical value.
     Based on lots of relevant materials at home and abroad about, this paper summarized research and application status, combined domestic progress of the system, identified the main research directions of the paper.
     The hydraulic motivity machine was designed based on one design parameter and performance target of press and selected the main components of the system. Initiative oil supply issue of closed circuit was solved by a set of screw-in cartridge check valves and pre-pressure closure oil tank contained PAF breather filter were used in the system.. Using the packet putting hydraulic pump and integrated valves block into the pre-pressure closure oil tank, improved the reliability of the oil supply of the closed loop and realized the system integration.
     On the MATLAB and AMESim simulation platform, built up the semi-physical and mathematical mode of the system contained initiative oil supply oil link, security link and leakage link. By simulating, analyzed the main system parameters’impact to dynamic performance. Proposed compound control scheme of feedback-plus-feed-forward and pressure closed-loop feed-forward, improved the system dynamic response characteristics.
     For the complex electromagnetic environment of system, designed anti-electromagnetic interference device. Authored control software, achieved system on-line debugging and control functions. Developed the sample machine of the system. Built test-bed of the system, tested and analyzed performance of sample machine, experiment results was given. By comparing analysis result and experiment results, we got that theoretical analysis is right.
引文
[1]李志民,张遇杰.同步电动机调速系统[M].北京:机械工业出版社,1996.
    [2] Masanori ITO, Noriki, HIROSE, Etsuro SHIMIZU. Main Engine Revolution Control for Ship with Direct Drive Volume Control System. ISME TOKYO, 2000. VolumeⅡ.
    [3] M.ITO,H.SATO,Y.Maeda. Direct Drive Volume Control of Hydraulic System and its Application to the Steering System of Ship. FLUCOME’97, Hayama. Vol.1:445~450.
    [4]刘庆和.机电液压技术资料简编[M].哈尔滨工业大学,1999.
    [5]桂文浩.直驱式电液伺服装置[D].哈尔滨:哈尔滨工业大学,2003.7.
    [6]佐藤宽.油压装置かに制御阀、配管さ取ヮ去ワにとのょづをにをゐか[J].油空压技术,2001.6: 36~42.
    [7]中島大輔,一柳健.プレスの電氣-油圧複合制御の研究[M].东京工科大学一柳健研究所资料汇编.2000, (5): 5~7.
    [8]大场孝一,ACサボモタ直接驱动双方向回转ボソブにもゐ省ェネ油压サボシステム,油空压技术,2001.6: 52~57そ.
    [9] http://www.yuken.co.jp.日本油研工业株式会社.
    [10] http://www.khi.co.jp/kpm.日本川崎重工业株式会社.
    [11] Williams K, Brown D . Electrically powered actuator design (EPAD) [R] .NASA/ USAF/ Navy, 1997.
    [12] Richard T Schneider . F-35 Fighter incorporates EHA[J]. Hydraulics & Pneumatics .Vol . 55 . 2002:12.
    [13]裴育.EHA控制系统研究[D].北京:北京航空航天大学,2008.1.
    [14] Zavala, Eddie, Fiber . Optic Experience with the Smart Actuation System on F-18 System Research Aircraft, NASA TM-97-206224:7.3-9~25 Achim Helbig.
    [15] Joel R S . F-18 systems research aircraft facility[R] . NASA Technical Memorandum 4433 . 1992.
    [16] Stephen C J . Flight test experience with an electromechanical actuator on the F-18 systems research aircraft [R] . NASA . 1998.
    [17] Robert N . Performance of an electro-hydrostatic actuator on the F-18 systems research aircraft [R] . NASA/TM-97-206224 . 1997.
    [18] Saeid Habbi, Andrew Goldenberg . Design of a new high performance electro hydraulicactuator[R] . In:1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings[C] . New York:IEEE, 1999 . 227~232.
    [19] Parker Hannifin. Electro-Hydraulic actuator[P], Euro Patent 0395420A21990.
    [20] John A. Anderson,. Variable displacement electro-hydrostatic actuator[R]. NAECON91’IEEE National Aerospace and electronics Conference Dayton, 1991:529~534.
    [21] Saeid Habibi,Andrew Goldenberg. Desing of a New High-Performance ElectroHydraulic Actuator[R]. IEEE/ASME transactions on Mechtronics,2006.05Vol(5): 158~164.
    [22] Helbig.A.Injection moulding machine with electric-hydrostatic drives[R].Aachen, German:3rd international fluid power conference . 2002.
    [23] Peter Dahmann. Closed loop and position control of a hydraulic manipulator in brick works with a frequency controlled internal gear pump in motor/pump operation[R]. Aachen, Germany:3rd international fluid power conference. 2002.
    [24]徐兵,欧阳小平,杨华勇.配置蓄能器的变频液压电梯节能控制系统[J].浙江大学学报(工学版),2002, (9):521~525.
    [25]徐兵,杨华勇,冉隆林.采用蓄能器的新型液压电梯的节能控制系统.液压气动与密封,2001, (2): 42~44.
    [26]陈钢,杨华勇.电机变频控制液压电梯系统的自校正自适应控制.浙江大学学报,1997, 1.31( 5):662~667.
    [27]黎勉,罗勇武.交流变频液压调速回路的应用研究[J].机械开发,1996,(4):10~12.
    [28]付永领,徐步力,那波.一种新型无伺服阀电液伺服执行器[J].机床与液压,2002, (7):44~45.
    [29]齐海涛,付永领.基于AMESIM的电静液作动器的仿真研究[J].机床与液压,2007.03 : 84~86.
    [30]权龙.转速可调泵直接闭环控制差动缸伺服系统的动态特性[J].机械工程学报,2003.02 Vol.39(2):13~17.
    [31]权龙.S.Helduser.基于可调速电动机的高动态节能型电液动力源[J].中国机械工程,2003., 14(7):606~609.
    [32] Long quan. Research on the performance of the new type of profortional pressure and flow control valve [R]. Chinese Journal of Mechanical Engineering 2003.09 Vol.16(3): 281~284.
    [33] Long quan. Principle to closed loop control differential cylinder with double speed variable pumps and single loop control signal[R]. Chinese Journal of Mechanical Engineering 2004.02 Vol.17(1): 85~88.
    [34]权龙.转速可调泵直接闭环控制差动缸伺服系统的静态特性[J].机械工程学报,2002.03 Vol.38(3):144~148.
    [35]权龙.伺服电机驱动差动液压缸系统效率的分析研究[J].中国电机工程学报,+ 2006.04.
    [36] Long quan. Improve the kinetic performance of the pump controlled clamping unit in plastic injection molding machine[R].Chinese Journal of Mechanical Engineering ,2006.01.
    [37] Long quan. differential cylinder Servo System Based on Speed Variable Pump and sum Pressure Control Principle[R]. HangZhou China,:ISFP, 2001.04:69~73.
    [38]苏文海.电液混合动力机构及其位置控制系统研究[D].哈尔滨:哈尔滨工业大学,2003.07.
    [39]姜继海,涂婉丽,曹健.直驱式容积控制电液伺服系统动态性能研究[J].液压与气动,2005年08期.
    [40]于风辉.摆式列车直驱式容积控制电液伺服作动器研究[D].成都:西南交通大学,2008.12.
    [41]王占林.近代电气液压伺服控制[M].北京:北京航空航天大学出版社,2005.2.154- 169.
    [42] http://www.nbhhyy.com/cn/index.php.宁波海宏液压有限公司.
    [43]陈敏俊.高性能永磁同步电机矢量控制调速系统的研究[D].杭州:浙江工业大学,2006.12.
    [44]王春行.液压控制系统[M].北京:机械工业出版社,1999.5,40-50,128-129.
    [45]林晓书.无阀电液伺服系统的理论分析与实验研究[D].哈尔滨:哈尔滨工业大学,2003.7.
    [46]刘光临,沈全成,陈奎生.泵控缸速度控制系统动态特性研究[J].液压与气动,2006,(2).
    [47]任好玲,刘玉慧.具有非对称阀的非对称动力机构位置伺服系统的控制策略及仿真研究[J].机床与液压,2006,(4).
    [48]付永领,祁晓野.AMESim系统建模和仿真——从入门到精通.北京:北京航空航天大学出版社,2006.6.
    [49]于黎明,王占林,裘丽华.AMESim环境下EHA模型的建立与分析[C].中国航空学会控制与应用第十二届学术年会论文集.西安:中国航空协会,2006.7.
    [50]孔鹏.Visual C++6.0完全自学手册[M].北京:机械工业出版社,2006.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700