被动式直接甲醇燃料电池结构设计及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被动式直接甲醇燃料电池(被动式Direct Methanol Fuel Cell,被动式DMFC)是直接利用甲醇水溶液或甲醇蒸汽作为燃料、氧气或空气作为氧化剂的一种燃料电池。被动式DMFC具有不使用动力泵为电极供料,完全摒弃外置的甲醇蠕动泵和空气泵的特点,减少了电池的功耗,提高了能量利用率,被认为是最有希望取代锂离子电池成为新一代便携设备电源的技术之一。本文从改善阴极水淹和阳极甲醇渗透问题着手,优化电池的运行条件,研究影响电池不同放置方式长时间放电稳定性的因素,设计新型流场结构以改善阴极水淹问题,并揭示了甲醇浓度、甲醇摩尔量、阳极流场开放面积、阳极产物等因素与甲醇渗透的相互影响关系,并在此基础上设计并研发了两种被动式DMFC电堆。
     研究了制约被动式DMFC性能的因素,优化了电池的运行参数。被动式DMFC中的膜电极(Membrane electrode assembly,MEA)采用恒电压0.25 V放电活化的最佳时间为36 h。甲醇溶液浓度最佳值为1.5~2.0 mol·L-1,30℃时电池的最高功率密度达到13 mW·cm~(-2)。较慢的物质传输速率是制约电池性能的主要因素,而温度的提高可以改善甲醇与氧气的传质过程,提高电池性能。提高阴极催化剂载量可以显著提高电池的自加热温度,提高电化学反应速率与扩散速率,对电池性能的影响更为显著,电池阴阳极催化剂载量最佳值为4.0 mg·cm~(-2),20℃时电池的最高功率密度达到11.4 mW·cm~(-2)。空气湿度的增加对电池的极化性能影响较小,但对电池的长时间放电性能影响较大。被动式DMFC的阴阳极分别采用点状流场与平行沟槽流场时具有较好的性能。
     研究了阴极水淹对电池长时间放电性能的影响。电池采用阳极向上放置方式时,依靠重力的作用,能够顺利地将阴极生成的水排出,阴极水淹状况较轻,具有较好的长时间放电性能。制约电池阳极向下放置放电性能的主要因素是阳极产生的CO2阻碍了甲醇反应的通道。制约电池垂直放置方式长时间放电性能的主要原因是阴极水淹问题。针对阴极水淹问题,设计了一种新型的阴极流场结构,采用新型流场结构的电池22.2 mA·cm~(-2)放电10 h的电压衰减率为9.9 %,而采用传统流场的电池电压衰减率为15.3 %。新型流场可以减小电池对环境湿度的敏感度,环境相对湿度从10 %升至90 %时,电池33.3 mA·cm~(-2)放电5 h的电压衰减率仅上升4.4 %。
     研究了甲醇渗透对电池性能的影响。随着阳极流场开放面积的减小,甲醇渗透速率逐渐降低,阳极流场开放面积的降低,提高了电池使用高浓度甲醇时的极化性能。高浓度的甲醇溶液可以提高甲醇的扩散速率,在电池大电流放电的操作条件下具有较好的长时间放电性能。甲醇总量的改变并不会影响电池的放电时间与法拉第效率。
     设计了被动式DMFC电堆,使用表面镀金的印刷线路板作为电堆集流体时,由于存在较严重的腐蚀问题,影响电堆的长时间运行。电堆在运行过程中,各单体电池性能均一性较好,最大功率为480 mW。电堆在恒、变电流下均可稳定运行,电堆在恒电流200 mA下运行的法拉第效率为46.6 %。该电堆在连续5个放电周期内保持了较稳定的性能,电堆间歇放电的法拉第效率为43.5 %。
The passive direct methanol fuel cell (DMFC) is a kind of fuel cell using methanol solution or gas as the anode, oxygen or air as the oxidants. Passive DMFCs have some advantages such as higher reliability, low cost, higher fuel utilization and higher energy density due to the absence of external devices such as a pump or fan. Therefore, passive DMFCs are regarded as one of the most promising candidate for lithium ion batteries as the power for portable devices. This thesis is aimed to improve the water flood in the cathode and methanol crossover in the anode. Cathode water flood is improved by optimizing the operating parameter, studying the long-time stability of different cell orientations and designing novel flow field. The influencing factors of methanol crossover are investigated by changing methanol concentration, the total amount of methanol and the opening area of anode flow field.
     The factors influencing the performance of passive DMFCs are investigated in detail. The operating conditions are optimized. The best performance of passive DMFCs could be obtained when the membrane electrode assembly (MEA) is activated at a constant voltage of 0.25 V for 36 h. The maximum power density at 30℃is 13 mW·cm~(-2) with the optimal methanol concentration of 1.5~(-2).0 mol·L-1. The cathode oxygen transportation is the key factor influencing the cell performance, which could be improved by increasing the temperature. The cell temperature could be raised by increasing the cathode catalyst load and thus increasing the electrochemical reaction rate and the diffusion rate. The optimal value of catalyst load for the anode and cathode are both 4.0 mg·cm~(-2). The humidity of air has small effect on the power density of the cell but strongly affects the long-term performance. It is found that better performance could be obtained by using perforated flow field for the cathode but parallel one for the anode.
     The effects of water flood on the long-term performance are studied. Better performance could be obtained with anode facing upward which is good for water removal in cathode with the help of gravity. The shortage of the cell with anode facing downward is that CO2 bubbles produced in the anode block methanol pathway. On the other hand, the key factor influencing the long-term performance of the cell with vertical orientation is the water flood in the cathode. A novel flow field is designed to improve the cathode flood. The potential loss is 9.9 % for the novel flow field while 15.3 % for the traditional one at a constant current density of 22.2 mA·cm~(-2) for 10 h. The cell with novel flow field is not sensitive to the environmental humidity. When the relative humidity increases from 10 % to 90 %, the potential loss increases by 4.4 % after discharging at 33.3 mA·cm~(-2) for 5 h.
     The effects of methanol crossover are discussed. Methanol crossover rate decreases when reducing the opening area of anode flow field and improve the cell performance with high concentration of methanol. By using high concentration of methanol, better performance at higher current density could be obtained owing to the fast diffusion rate of methanol. The Faradic efficiency decreases when using low concentration of methanol due to the serious crossover effect. The total amount of methanol will not influence the working time and the Faradic efficiency.
     The passive DMFC stacks are fabricated. Long-term performance is influenced by the corrosion of gold-plated PCB flow field. The performance of each single cell is uniform. The maximum power density reaches 480 mW. The stack operate stably at both constant or varied current densities. The Faradic efficiency is 44.6 % when the stack is operating at 200 mA. The stack displays good continuous operating performance in 5 cycles. The Faradic efficiency is 43.5 % when the stack is under intermittent discharge mode.
引文
1江泽民.对中国能源问题的思考.中国能源. 2008, 30(4): 5-19
    2陈定江,余亚东,胡山鹰等.后石油经济时代中国能源化工的选择.化工进展2009, 29(1): 1-6
    3吴巧生,王华.技术进步与中国能源-环境政策.中国地质大学学报(社会科学版). 2005, 5(1): 1-9
    4衣宝廉.燃料电池——原理·技术·应用.化学工业出版社. 2004: 25-30
    5 R. K. Ahluwalia, X. H. Wang. Fuel Cell Systems for Transportation: Status and Trends. Journal of Power Sources. 2008, 177(1): 167-176
    6毛宗强.燃料电池.化学工业出版社. 2005: 15-18
    7黄倬,屠海令,张冀强,詹锋.质子交换膜燃料电池的研究开发与应用.冶金工业出版社. 2002: 1-3
    8 S. J. Seo, H. I. Joh, H. T. Kim, et al. Properties of Pt / C Catalyst Modified by Chemical Vapor Deposition of Cr as a Cathode of Phosphoric Acid Fuel Cell. Electrochimica Acta. 2006, 52(4): 1676-1682
    9 S. Campanari. Carbon Dioxide Separation from High Temperature Fuel Cell Power Plants. Journal of Power Sources. 2002, 112: 273-289
    10 S. C. Singhal. Advances in Solid Oxide Fuel Cell Technology. Solid State Ionics. 2000, 135: 305-306
    11 K. Sopian, W. R. W. Daud. Challenges and Future Developments in Proton Exchange Membrane Fuel Cells. Renewable energy. 2006, 31(5): 719-727
    12 S. Gamburzev, A. J. Appleby. Recent Progress in Performance Improvement of the Proton Exchange Membrane Fuel Cell (PEMFC). Journal of Power Sources. 2002, 107(1): 5-12
    13 X. M. Ren, M. S. Wilson. S. Gottesfeld. High Performance Direct Methanol Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society. 1996, 143(1): L12-L15
    14 A. Kuver, W. Vielstich. Investigation of Methanol Crossover and Single Electrode Performance during PEMDMFC Operation - A Study Using a Solid Polymer Electrolyte Membrane Fuel Cell System. Journal of Power Sources. 1998, 74(2): 211-218
    15 F. Davis, S. P. J. Higson. Biofuel Cells-Recent Advances and Applications. Biosensors and Bioelectronics. 2007, 22(7): 1224-1235
    16衣宝廉.俞红梅.质子交换膜燃料电池关键材料的现状与展望.电源技术, 2003, 27: 175-176
    17汪国雄,孙公权,辛勤等.直接甲醇燃料电池.物理学与新能源材料专题. 2004, 33(3): 165-169
    18 C. S. Lin, T. T. Wang, F. Ye, et al. Effects of Microporous Layer Preparation on the Performance of a Direct Methanol Fuel Cell. Electrochemistry Communication. 2008, 10(2): 255-258
    19 C. Cremers, M. Scholz, W. Seliger, et al. Developments for Improved Direct Methanol Fuel Cell Stacks for Portable Power. Fuel Cells. 2007, 7(1): 21-31
    20 R. Dillon, S. Srinivasan, A. S. Aricò, et al. International Activities in DMFC R&D: Status of Technologies and Potential Applications. Journal of Power Sources. 2004, 127(1-2): 112-126
    21吴韬,齐亮,郭建伟等.直接甲醇燃料电池在军事领域上的应用.兵工自动化. 2007, 26(1): 79-88
    22 M. Watanabe, Y. M. Zhu, H. Igarashi, et al. Mechanism of CO Tolerance at Pt-Alloy Anode Catalysts for Polymer Electrolyte Fuel Cells. Electrochemistry. 2000, 68(4): 246-250
    23陈维民,孙公权,赵新生等.直接甲醇燃料电池电催化剂性能衰减研究.高等学校化学学报. 2007, 28(5): 928-931
    24 H. S. Liu, C. J. Song, L. Zhang, et al. A Review of Anode Catalysis in the Direct Methanol Fuel Cell. Journal of Power Sources. 2006, 155(2): 95-110
    25 C. H. Lee, C. W. Lee, D. I. Kim, et al. Characteristics of Methanol Oxidation on Pt-Ru Catalysts Supported by HOPG in Sulfuric Acid. Journal of Hydrogen Energy. 2002, 27(4): 445-450
    26 J. H. Han, H. T. Liu. Real Time Measurements of Methanol Crossover in a DMFC. Journal of Power Sources. 2007, 164(1): 166-173
    27 C. H. Rhee, H. K. Kim, H. Chang, et al. Nafion/Sulfonated Montmorillonite Composite: a New Concept Electrolyte Membrane for Direct Methanol Fuel Cells. Chemical Materials. 2005, 17(7): 1691-1697
    28张淳,李新海,张云河. DMFC甲醇渗透问题的研究进展.稀有金属. 2006,
    30(3): 380-383 29 D. Chu, R. Z. Jiang. Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) Stacks Part I. Evaluation and Simulation of An Air-Breathing PEMFC Stack. Journal of Power Sources. 1999, 83: 128-133
    30 S. Gamburzev, A. J. Appleby. Recent Progress in Performance Improvement of the Proton Exchange Membrane Fuel Cell (PEMFC). Journal of Power Sources.2002, 107: 5-12
    31林才顺,张红飞,王淑燕等.自呼吸式直接甲醇燃料电池的研究.有色金属. 2007, 4: 36-38
    32 R. Borup, J. Meyers, B. Pivovar, et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chemical Reviews. 2007, 107: 3904-3951
    33 J. G. Liu, T. S. Zhao, R. Chen, et al. The Effect of Methanol Concentration on the Performance of a Passive DMFC.Electrochemistry Communication.2005, 7(3): 288-294
    34 S. W. Ku. Toshiba Unveils Prototype DMFC for Portable PCs. Fuel Cells Bulletin. 2003, 2003(5): 1-2
    35 J. Pavio, J. Hallmark, J. Bostaph, et al. Developing Micro-Fuel Cells for Wireless Communications. Fuel Cells Bulletin. 2002, (4): 8-11
    36 L. S. Sarma, C. H. Chen, G. R. Wang, et al. Investigations of Direct Methanol Fuel Cell (DMFC) Fading Mechanisms. Journal of Power Sources. 2007, 167(2): 358-365
    37 S. S. Gupta, S. S. Mahapatra, J. Datta. A Potential Anode Material for the Direct Alcohol Fuel Cell. Journal of Power Sources. 2004, 131(1-2): 169-174
    38 S. Litster, G. Mclean. PEM Fuel Cell Electrodes. Journal of Power Sources. 2004, 130(1-2): 61-76
    39 Y. C. Tsai, Y. H. Hong. Electrochemical Deposition of Platinum Nanoparticles in Multiwalled Carbon Nanotube-Nafion Composite for Methanol Electrooxidation. Journal of Solid State Electrochemisty.2008,12(10): 1293-1299
    40 A. Bayrakceken, A. Smirnova, U. Kitkamthorn, et al. Pt-Based Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells Prepared by Supercritical Deposition Technique. Journal of Power Sources. 2008, 179(2): 532-540
    41 T. T.Wang, C. S. Lin, F. Ye, et al. MEA with Double-Layered Catalyst Cathode to Mitigate Methanol Crossover in DMFC. Electrochemistry Communications. 2008, 10(9): 1261-1263
    42 J. Marie, S. B. Fabry, P. Achard, et al. Highly Dispersed Platinum on Carbon Aerogels as Supported Catalysts for PEM Fuel Cell-Electrodes: Comparison of Two Different Synthesis Paths. Journal of Non-Crystalline Solids. 2004, 350: 88-96
    43 G. G. Park, Y. J. Sohn, T. H. Yang, et al. Effect of PTFE Contents in the Gas Diffusion Media on the Performance of PEMFC. Journal of Power Sources.2004, 131(1-2): 182-187
    44 S. W. Tay, X. Zhang, Z. Liu, et al. Composite Nafion (R) Membrane Embedded with Hybrid Nanofillers for Promoting Direct Methanol Fuel Cell Performance. Journal of Membrane Science. 2008, 321(2): 139-145
    45 M. S. Wilson,J. A. Valerio, S. Gottesefld. Low Platinum Loading Electrodes of Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers. Electrochim. Acta. 1995, 40 (3): 355-363
    46 S. Hirano, J. Kim, S. Srinivasan. High Performance Proton Exchange Membrane Fuel Cell with Sputter-Deposited Pt Layer Electrode. Electrochimica Acta. 1997, 42(10): 1587-1593
    47 A. Missiroli, F. Soavi, M. Mastragostino.Increased Performance of Electrodeposited PtRu/C-Nafion Catalysts for DMFC. Electrochem. Solid-State Lett. 2005, 8 (2): A110-A114
    48毛庆,孙公权,杨少华等.直接甲醇燃料电池模型研究进展.电源技术. 2005, 29(12): 840-844
    49 M. S. Wilson, S. Gottesfeld. Thin-film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes. Journal of Applied Electrochemistry. 1992, 22(1): 1-7
    50 T. Schultz, S. Zhou, K. Sundmacher. Current Status of and Recent Developments in the Direct Methanol Fuel Cell.Chemical Engineering & Technology. 2001, 24(12):1223-1233
    51刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题.电源技术. 2001, 25(5): 363-366
    52 J. T. Müller, P. M. Urban. Characterization of Direct Methanol Fuel Cells by AC Impedance Spectroscopy. Journal of Power Sources. 1998, 75(1): 139-143
    53 J. T. Müller, P. M. Urban, W. F. H?lderich. Impedance Studies on Direct Methanol Fuel Cell Anodes. Journal of Power Sources. 1999, 84(2): 157-160
    54 S. C. Thomas, X. M. Ren, S. Gottesfeld, et al. Direct Methanol Fuel Cells: Progress in Cell Performance and Cathode Research. Electrochimica Acta. 2002, 47(22-23): 3741-3748
    55 S. Surampudi, S. R. Narayanan, E. Vamos, et al. Advances in Direct Oxidation Methanol Fuel Cells. Journal of Power Sources. 1994, 47(3): 377-385
    56 M. Baldauf, W. Preidel. Status of the Development of a Direct Methanol Fuel Cell. Journal of Power Sources. 1999, 84(2): 161-166
    57李建玲,毛宗强,徐景明.直接甲醇燃料电池性能研究.电池. 2002, 32(2): 72-74
    58 F. Q. Liu, C. Y. Wang. Water and Methanol Crossover in Direct Methanol FuelCell-Effect of Anode Diffusion Media. Electrochimica Acta. 2008, 53(17): 5517-5522
    59田立朋,李伟善.直接甲醇燃料电池研究进展.现代化工. 1998, 15(5): 14-17
    60赵安中.韩开发出大容量燃料电池.功能材料信息. 2007, 4(1): 49-50
    61徐维正.国外甲醇燃料电池技术开发概况.精细与专用化学品. 2006, 14(3-4): 26-29
    62 C. Y. Chen, P. Yang. Performance of an Air-Breathing Direct Methanol Fuel Cell. Journal of Power Sources. 2003, 123: 37-42
    63 W. Lee, H. Kim, T. K. Kim, et al. Nation Based Organic/Inorganic Composite Membrane for Air-Breathing Direct Methanol Fuel Cell. Journal of Power Sources. 2007, 292(1-2): 29-34
    64 T. V. Reshetenko, H. T. Kim, H. J. Kweon. Cathode Structure Optimization for Air-Breathing DMFC by Application of Pore-Forming Agents. Journal of Power Sources.2007, 171(2): 433-440
    65 S. U. Jeong, E. A. Cho, H. J. Kim, et al. A Study on Cathode Structure and Water Transport in Air-Breathing PEM Fuel Cells. Journal of Power Sources. 2006, 159(2): 1089-1094
    66 Z. Guo, A. Faghri. Miniature DMFCs with Passive Thermal-fluids Management System.Journal of Power Sources. 2006, 160(2): 1142-1155
    67 Z. Guo, A. Faghri. Development of Panar Air Breathing Direct Methanol Fuel Cell Stacks. Journal of Power Sources. 2006, 160(2): 1183-1194
    68 R .Chen, T. S. Zhao. Performance Characterization of Passive Direct Methanol Fuel Cells. Journal of Power Sources. 2007,167(2):455-460
    69 N. Torresa, J. Santander, J. P. Esquivela, et al. Performance Optimization of a Passive Silicon-based Micro-direct Methanol Fuel Cell. Sensors and Actuators B-Chemical. 2008:132(2):540-544
    70 D. P. Wilkinson, H. H. Voss, K. Prater. Water Management and Stack Design for Solid Polymer Fuel Cells. Journal of Power Sources. 1994, 49(1-3): 117-127
    71 R. K. Raman, S. K. Prashant, A. K. Shukla. A 28-W Portable Direct Borohydride–Hydrogen Peroxide Fuel-Cell Stack. Journal of Power Sources. 2006, 162(2): 1073-1076
    72 A. Hermann, T. Chaudhuri, P. Spagnol. Bipolar Plates for PEM Fuel Cells: A review. Journal of Hydrogen Energy. 2005, 30(12): 1297-1302
    73 Y. H. Chan, T.S. Zhao, R. Chen, et al. A Small Mono-Polar Direct Methanol Fuel Cell Stack with Passive Operation. Journal of Power Sources. 2008, 178(1): 118-124
    74 Y. Liu, X. F. Xie, Y. M. Shang, et al. Power Characteristics and Fluid Transfer in 40 W Direct Methanol Fuel Cell Stack. Journal of Power Sources. 2007, 164(1): 322-327
    75 F. Urbani, G. Squadrito, O. Barbera, et al. Polymer Electrolyte Fuel Cell Mini Power Unit for Portable Application. Journal of Power Sources. 2002, 169(2): 344-337
    76 S. Andrian, J. Meusinger. Process Analysis of a Liquid-Feed Direct Methanol Fuel Cell System. Journal of Power Sources. 2000, 91(2): 193-201
    77 X. G. Zhang, D. Zheng, T. Wang, et al. A Preliminary Study of a Miniature Planar 6-Cell PEMFC Stackcombined with a Small Hydrogen Storage Canister. Journal of Power Sources. 2007, 166(2): 441-444
    78 A. L. M.Reddy, S. Ramaprabhu. Design and Fabrication of Carbon Nanotube-Based Microfuel Cell and Fuel Cell Stack Coupled with Hydrogen Storage Device. Journal of Hydrogen Energy. 2007, 32(17): 4272-4278
    79 S. J. Kim, J. Lee, K. Y. Kong, et al. Hydrogen Generation System Using Sodium Borohydride for Operation of a 400 W-scale Polymer Electrolyte Fuel Cell Stack. Journal of Power Sources. 2007, 170(2): 412-418
    80 K. Singh, V. K. Shahi. Electrochemical Studies on Nafion Membrane. Journal of Membrane Science. 1998, 140 (1): 51-56
    81 H. W. Carla. Recent Advances in Perfluorinated Ionomer Membranes: Structure, Properties and Applications. Journal of Membrane Science. 1996, 120(1): 1-33
    82 Y. M. Kim, K. W. Park, J. H. Chio. A Pd-Impregnated Nanocomposite Nafion Membrane for Use in High-concentration Methanol Fuel in DMFC. Electrochemistry Communications.2003, 5(7): 571-574
    83 S. H. Kwak, T. H. Yang, C. S. Kim, et al. The Effect of Platinum Loading in the Self-Humidifying Polymer Electrolyte Membrane on Water Uptake. Journal of Power Sources. 2003, 118(1-2): 200-204
    84 Z. Q. Ma, P. Cheng, T. S. Zhao. A Palladium-Alloy Deposited Nafion Membrane for Direct Methanol Fuel Cells. Journal of Membrane Science. 2003, 215(1-2): 327-336
    85 H. S. Park, Y. J. Kim, W. H. Hong. Physical and Electrochemical Properties of Nafion/Polypyrrole Composite Membrane for DMFC. Journal of Membrane Science. 2006, 272(1-2): 28-36
    86 M. A. Smit, A. L. Ocampoa, M. A. E. Medina. A Modified Nafion Membrane with in Situ Polymerized Polypyrrole for the Direct Methanol Fuel Cell. Journal of Power Sources. 2003, 124(1): 59-64
    87 J. Zhu, R. R. Sattler, A. Garsuch. Optimisation of Polypyrrole/NafionComposite Membranes for Direct Methanol Fuel Cells. Electrochimica Acta. 2006, 51(19): 4052-4060
    88 H. L. Lin, T. L. Yu, L. N. Huang. Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cell Applications. Journal of Power Sources.2005, 150(4): 11-19
    89李磊,张军,吴洪等.直接甲醇燃料电池新型聚合物膜的研究.电化学. 2002, 8(2): 177-181
    90吴洪,王宇新,王世昌.新型阻醇质子导电聚合物膜PVA/Nafion共混膜的制备及性能研究.高校化学工程学报. 2002, 16(3): 326-330
    91 L. Li, J. Zhang, Y. X. Wang. Sulfonated Poly (Ether ether ketone) Membranes for Direct Methanol Fuel Cell. Journal of Membrane Science. 2003, 226(1-2): 159-167
    92 R. T. S. M. Lakshmi, J. M. Haack, K. Schlenstedt, et al. Sulphonated Poly (Ether ether ketone) Copolymers: Synthesis, Characterisation and Membrane Properties. Journal of Membrane Science. 2005, 261(1-2): 27-35
    93 Y. S. Kim, L. Dong, M. A. Hicknera, et al. Processing Induced Morphological Development in Hydrated Sulfonated Poly (Arylene ether sulfone) Copolymer Membranes. Polymer. 2003, 44(19): 5729-5736
    94 D. S. Kim, H. B. Park, J. W. Rhim, et al. Preparation and Characterization of Crosslinked PVA/SiO2 Hybrid Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Applications. Journal of Membrane Science. 2004, 240(1-2): 37-48
    95 T. Frey, K. A. Friedrich, L. Jorissen, J. Garche. Preparation of Direct Methanol Fuel Cells by Defined Multilayer Structures. Journal of the Electrochemistry Society. 2005, 152 (3): A545-A551
    96 A. Kazim, H. T. Liu, P. Forges. Model of Performance of PEM Fuel Cells with Conventional and Interdigitated Flow Fields. Journal of Applied Electrochemistry, 1999 , 29 :1409 -1416
    97 H. S. Chu, C. Yeh, F. L. Chen. Effects of Porosity Change of Gas Diffuser on Performance of Proton Exchange Membrane Fuel Cell. Journal of Power Sources. 2003 ,123 :1-9
    98 S. H. Ge, B. L. Yi. A Mathematical Model for PEMFC in Different Flow Modes. Journal of Power Sources. 2003 ,124 :1-11
    99 A. Schmitz, M. Tranitz, S. Eccarius, et al. Influence of Cathode Opening Size and Wetting Properties of Diffusion Layers on the Performance of Air-Breathing PEMFCs. Journal of Power Sources. 2006, 154: 437-447
    100 Y. Zhang, J. Lu, S. Shimano, et al. Development of MEMS-Based DirectMethanol Fuel Cell with High Power Density Using Nanoimprint Technology. Electrochemistry Communications. 2007, 9(6): 1365-1368
    101 X. M. Ren, T. E. Springer, T. A. Zawodzinski, et al. Methanol Transport through Nafion Membranes - Electro-Osmotic Drag Effects on Potential Step Measurements. Journal of the Electrochemical Society. 2000, 147(2): 466-474
    102 T. A. Zawodzinski, J. Davey, J. Valerio, et al. The Water-Content Dependence of Electroosmotic Drag in Proton-Conducting Polymer Electrolytes. Electrochimica Acta. 1995, 40(3): 297-302
    103 G. Q. Lu, P. C. Lim, F. Q. Liu, et al. On Mass Transport in an Air-Breathing DMFC Stack. Journal of Energy Research. 2005, 29: 1041-1050
    104 U. H. Jung, S. U. Jeong, K. T. Park, et al. Improvement of Water Management in Air-Breathing and Air-Blowing PEMFC at Low Temperature Using Hydrophilic Silica Nano-Particles. Journal of Hydrogen Energy. 2007, 32(17): 4459-4465
    105 A. Faghri, Z. Guo. An Innovative Passive DMFC Technology. Applied Thermal Engineering. 2008,28:1614-1622
    106 J. G. Liu, G. Q. Sun, F. L. Zhao, et al. Study of Sintered Stainless Steel Fiber Felt as Gas Diffusion Backing in Air-Breathing DMFC. Journal of Power Sources. 2004, 133(2): 175-180
    107 D. J. Jones, J Roziere. Recent Advances in the Functionalisation of Polybenzimidazole and Polyetherketone for Fuel Cell Applications. Journal of Membrane Science. 2001, 185(1): 41-58
    108 M. L. Ponce, L. A. S. A. Prado, V. Silva, et al. Membranes for Direct Methanol Fuel Cell Based on Modified Heteropolyacids. Desalination. 2004, (162): 383-391
    109 K. Scott, W. M. Taama, P. Argyropoulos. Engineering Aspects of the Direct Methanol Fuel Cell System. Journal of Power Sources.1999, 79(1): 43-59
    110 H. J. Doo, H. L. Chang, S. K. Chang. Performance of a Direct Methanol Polymer Electrolyte Fuel Cell. Journal of Power Sources.1998, 71(1-2): 169-173
    111 M. Baldauf, W. Preidel. Experimental Results on the Direct Electrochemical Oxidation of Methanol in PEM Fuel Cells. Journal of Applied Electrochemistry. 2001, 31(7): 781-786
    112 U. Pasaogullari, C. Y. Wang. Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society. 2004, 151(3): A399-A406
    113 X. M. Ren, P. Zelenay, S. Thomas, et al. Recent Advances in Direct Methanol Fuel Cells at Los Alamos National Laboratory. Journal of Power Sources. 2000, 86(1-2): 111-116
    114 K. Scott, W. Taama. Performance of a Direct Methanol Fuel Cell. Journal of Applied Electrochemistry. 1998, 28 (3): 289-297
    115 X. M. Ren, M. S. Wilson. S. Gottesfeld. High Performance Direct Methanol Polymer Electrolyte Fuel Cells. Journal of the Electrochemical Society. 1996, 143(1): L12-L15
    116 A. Kuver, W. Vielstich. Investigation of Methanol Crossover and Single Electrode Performance During PEMDMFC Operation - AStudy Using a Solid Polymer Electrolyte Membrane Fuel Cell System. Journal of Power Sources. 1998, 74(2): 211-218
    117 B. K. Kho, I. H. Oh, S. A. Hong, et al. The Effect of Pretreatment Methods on the Performance of Passive DMFCs.Electrochimica Acta. 2004, 50 (2-3):781-785
    118林才顺,王新东,张红飞et al. Effect of PTFE Contents on Performance of a Passive DMFC in Diffusion Layer.化工新型材料. 2006,34(12):44-47
    119 R. Chen, T. S. Zhao. A Novel Electrode Architecture for Passive Direct Methanol Fuel Cells. Electrochemistry Communications. 2007, 9(4):718-724
    120 H. K. Kim, J. M. Oh, J. H. Kim, et al. Membrane Electrode Assembly for Passive Direct Methanol Fuel Cells. Journal of Power Sources. 2006, 162(1): 497-501.
    121 G. Jewett, Z. Guo, A. Faghri. Water and Air Management Systems for a Passive Direct Methanol Fuel Cell. Journal of Power Sources. 2007, 168(2):434-446
    122 J. G.Liu, T. S. Zhao, Z. X. Liang, et al. Effect of Membrane Thickness on the Performance and Efficiency of Passive Direct Methanol Fuel Cells. Journal of Power Sources. 2006, 153(1): 61-67
    123 B. C. Bae, B. K. Kho, T. H. Lim, et al. Performance Evaluation of Passive DMFC Single Cells. Journal of Power Sources. 2006, 158(2): 1256-1261
    124 Y. J. Kim, B. Bae, M. A. Scibioh, et al. Behavioral Pattern of a Monopolar Passive Direct Methanol Fuel Cell Stack. Journal of Power Sources.2006. 157 (1): 253-259
    125 J. G. Liu, T. S. Zhao, R. Chen, et al. The Effect of Methanol Concentration on the Performance of a Passive DMFC. Electrochemistry Communications. 2005,7 (3): 288-294
    126 D. Kim, E. A. Cho, S. A. Hong, et al. Recent Progress in Passive Direct Methanol Fuel Cells at KIST.Journal of Power Sources. 2004, 130 (1-2):172-177
    127 B. K. Kho, B. C. Bae, M. A. Scibioh, et al. On the Consequences of Methanol Crossover in Passive Air-breathing Direct Methanol Fuel Cells. Journal of Power Sources. 2005,142(1-2): 50-55
    128 D. Chu, R. Z. Jiang. Effect of Operating Conditions on Energy Efficiency for a Small Passive Direct Methanol Fuel Cell. Electrochimica Acta. 2006, 51(26): 5829-5835.
    129曾毓群,陈杰,许瑞等. Effect of Methanol Concentration on Performance of Passive DMFC.中国有色金属学报. 2005, 15 (9) :141-144.
    130 Z. Guo, Y. Cao. A Passive Fuel Delivery System for Portable Direct Methanol Fuel Cells. Journal of Power Sources. 2004,132 (1-2): 86-91
    131 Z. Guo, A. Faghri. Development of a 1 W passive DMFC.International Communications in Heat and Mass Transfer. 2008, 35 (3): 225-239
    132 Q. Ye, T. S. Zhao. A Natural-circulation Fuel Delivery System for Direct Methanol Fuel Cells.Journal of Powers Sources. 2005, 147(1-2):196-202
    133 M. A. Abdelkareem, N. Morohashi, N. Nakagawa. Factors Affecting Methanol Transport in a Passive DMFC Employing a Porous Carbon Plate. Journal of Power Sources. 2007, 172 (2): 659-665
    134 Y. Yang, Y. C. Liang. A Direct Methanol Fuel Cell System with Passive Fuel Delivery Based on Liquid Surface Tension. Journal of Power Sources. 2007,165 (1): 185-195
    135 Z. Guo, A. Faghri.Vapor Feed Direct Methanol Fuel Cells with Passive Thermal-fluids Management System.Journal of Power Sources. 2007, 167 (2): 378-390
    136 H. K. Kim. Passive Direct Methanol Fuel Cells Fed with Methanol Vapor.Journal of Power Sources. 2006 ,162(2): 1232-1235
    137 A. Faghri, Z. Guo. An Innovative Passive DMFC Technology. Applied Thermal Engineering. 2008, 28 (13) :1614-1622.
    138 W. M. Yang, S. K. Choub, C. Shua. Effect of Current-collector Structure on Performance of Passive Micro Direct Methanol Fuel Cell. Journal of Power Sources. 2007 .164(2): 549-554
    139 C. Litterst, S. Eccarius, C. Hebling, et al. IncreasingμDMFC Efficiency by PassiveCO2 Bubble Removal and Discontinuous Operation. Journal of Micromech. Microeng. 2006,16 (9): S248-S253
    140 Y. J. Chuang, C. C. Chieng, C. Pan, et al. A Spontaneous and Passive Waste-management Device (PWMD) for a Micro Direct Methanol Fuel Cell. Journal of Micromech. Microeng. 2007 ,17(5): 915-922
    141刘建国,顾军,于涛等.空气自呼吸式直接甲醇燃料电池的环境适应性研究.电化学. 2008,14(2):159-165
    142 R. Chen, T. S. Zhao, J. G. Liu. Effect of Cell Orientation on the Performance of Passive Direct Methanol Fuel Cells. Journal of Power Sources. 2006, 157(1): 351-357
    143 R. Chen, T. S. Zhao. Porous Flow fields for Passive Direct Methanol Fuel Cells. Electrochimica Acta. 2007 ,52(13) : 4317-4324
    144 J. J. Hwang, C. H. Chao. Species-Electrochemical Transports in a Free-Breathing Cathode of a PCB-Based Fuel Cell.Electrochimica Acta. 2007, 52 (5): 1942-1950
    145 J. J. Martin, W. Qian, H. Wang, et al. Design and Testing of a Passive Planar Three-cell DMFC.Journal of Power Sources. 2007,164 (1): 287-292
    146 Y. H. Chan, T. S.Zhao, R. Chen, et al. Small Monopolar Direct Methanol Fuel Cell Stack with Passive Operation.Journal of Power Sources. In press
    147 V. Baglio, A. Stassi, F. V. Matera, et al. Investigation of Passive DMFC Mini-stacks at Ambient Temperature. Electrochimica Acta. In press
    148 J. W. Guo, X. F. Xie, J. H. Wang, et al. Effect of Flow field Corrosion Made from Printed Circuit Board (PCB) on the Degradation of Self-breathing Direct Methanol Fuel Cell Stack. Electrochimica Acta. 2008, 53 (7) : 3056-3064
    149 L. H. Jiang, G. Q. Sun, X. S. Zhao, et al. Preparation of Supported PtRu/C Electrocatalyst for Direct Methanol Fuel Cells. Electrochimica Acta. 2005, 50(12): 2371-2376
    150朱科,陈延禧,韩佐青等.质子交换膜燃料电池膜电极活化工艺及机理.电源技术. 2002, 26(4): 267-325
    151张健,尹鸽平,邵玉艳等.直接甲醇燃料电池活化过程中膜电极变化.稀有金属材料与工程. 2007, 37(3): 476-479
    152 J. Zhang, G. P. Yin, Z. B. Wang, et al. Effects of MEA Preparation on the Performance of a Direct Methanol Fuel Cell. Journal of Power Sources. 2006, 160(2): 1035-1040
    153 V. Radmilovic, H. A. Gasteiger, P. N. Ross. Structure and Chemical-Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation. Journal of Catalysis. 1995, 154(1): 98-106
    154 T. V. Reshetenko, H. T. Kim, H. J. Kweon. Modification of Cathode Structure by Introduction of CNT for Air-breathing DMFC. Electrochimica Acta. 2008, 53(7): 3043-3049
    155 Z. B. Wang, G. P. Yin, P. F. Shi. Stable Pt-Ru/C Catalysts Prepared from NewPrecursors by Thermal Reduction for Direct Methanol Fuel Cell. Journal of the Electrochemical Society. 2005, 152(12): A2406-A2412
    156 V. M. Barragán, A. Heinzel. Estimation of the Membrane Methanol Diffusion Coefficient from Open Circuit Voltage Measurements in a Direct Methanol Fuel Cell. Journal of Power Sources. 2002, 104 (1): 66-72
    157 N. Munichandraiah, K. M. Grath, G. K. S. Prakash, et al. A Potentiometric Method of Monitoring Methanol Crossover through Polymer Electrolyte Membranes of Direct Methanol Fuel Cells. Journal of Power Sources. 2003, 117 (1-2): 98-101
    158 V. M. Barragan, C. R. Bauza, J. P. G. Villaluenga. Transport of Methanol and Water through Nafion Membranes. Journal of Power Sources.2004, 130 (1-2): 22-29
    159 Y. H. Pan. Advanced Air-breathing Direct Methanol Fuel Cells for Portable Applications. Journal of Power Sources.2006, 161(1): 282-289
    160 H. Hoster, T. Iwasita, H. Baumgartner, et al. Pt-Ru Model Catalysts for Anodic Methanol Oxidation: Influence of Structure and Composition on the Reactivity. Phys. Chem. Chem. Phys. 2001, 3(3): 337-346
    161 T. Seiler, E. R. Savinova, K. A. Friedrich, et al. Poisoning of PtRu/C Catalysts in the Anode of a Direct Methanol Fuel Cell: a DEMS Study. Electrochimica Acta.2004, 49(22-23): 3927-3936
    162张军.液体进料直接甲醇燃料电池膜电极的研究.天津大学博士学位论文. 2002: 20-21
    163 J. Rongzhong, R. Charles, D. Chu.Determination of Energy Efficiency for a Direct Methanol Fuel Cell Stack by a Fuel Circulation Method. Journal of Power Sources. 2004, 126:119-124
    164张连洪,揭伟平,谢春刚等.温度、压力和湿度对PEMFC堆电效率的影响.天津大学学报. 2007, 40(5):594-598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700