矩形钢管混凝土短柱的数值试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,随着建筑材料和技术的发展,钢管混凝土结构逐渐被应用于建筑结构尤其是在高层建筑结构中。钢管混凝土按截面形式不同,可分为圆钢管混凝土,方、矩形钢管混凝土和多边形钢管混凝土等。矩形钢管混凝土相比圆形钢管混凝土有着与梁连接简单;稳定性能好:防火造价低等优势。
     矩形钢管混凝土柱在受压时,钢管和混凝土之间的相互作用相当复杂,因此,在受压的过程中,钢管和混凝土的受力和破坏情况都无法通过计算或者分析得出,在试验时,由于不能将钢管破坏掉观察内部情况,只能在试验结束后进行切割观测,在加载中的各个过程中,钢管和混凝土分别是怎么破坏的,钢管和混凝土之间的相互作用也无从判断。
     本文采用材料细观单元强度具有weibull分布的假设,认为细观非均匀性是造成准脆性材料宏观非线性的根本原因,通过使用利用该原理开发的RFPA软件对已经做过的矩形钢管混凝土柱轴压试验进行模拟试验,利用软件的功能,对钢管混凝土柱进行切剖观察,详细分析在整个加载过程中,钢管和混凝土之间的相互作用,以及在加载的各个阶段钢管和混凝土的破坏情况和受力情况。研究结果表明:(1)矩形钢管混凝土轴心受压柱具有良好的承载力和抗变形能力。(2)在N-ε曲线的第一下降段出现了钢管与混凝土的剥离的现象,下降段的快慢与钢管与混凝土之间的粘结力有关。(3)进入平缓段以后,构件的承载力与钢材的抗压强度有关系。
     同时,本文还对一种前人没有研究过的矩形钢管混凝土柱的偏心受载情况,采用适于轴压数值模拟试验的模型参数,进行了数值实验,并对此种受载情况下的钢管混凝土柱的极限荷载、破坏形态、过程、机理等特点进行了详细的分析。(1)刚开始加载时,最大应力集中在搭接面以下的一个三角形区域内。(2)这种情况的极限荷载是发生在钢管在搭接处的“撕裂”的时候。(3)在整个加载过程中混凝土出现了两条主要裂纹。(4)这种偏心受压造成的柱身的变形与偏心率有关。由于在矩形钢管混凝土方面,对偏心的研究相当少,希望以此来代替或者部分代替真实试验,以对钢管混凝土偏心的研究提出一些参考。
In recent 20 years, as the architectural material and technical developments, the concrete-filled steel structures has gradually been applied in the architectural structure especially in the high buildings. According to different sections, concrete-filled steel tubular can be classified as concrete-filled circular, square, rectangle and polygon steel tubular etc. Compared with the circular concrete-filled steel tubular, concrete-filled rectangular steel tubular have some advantages: easier to connect with beams; better stability; and the low cost of fire prevention etc.
     When the concrete-filled rectangular steel tubular columns are compressed the interactions between steel pipe and concrete is very complicatedly, therefore, in the loading process, the stress and crack complexion of steel pipe and concretes can't be attained by calculation or analysis. Because the steel pipe can't be broken to observe the internal circumstance during the experiments, the results only are observe by incising the pipes after the experiments. In each stadge of loading process, the crack and interaction reasons of steel pipe and concrete respectively between steel pipe and concrete can't be confirmed .
     In this literary, the assumption is used that the thin view unit material strength with Weibull distribution is used to explain reason of the submicroscopic non- linearity of quasi-brittle material is the thin view non- homogenization .By using the software which is developed on this theory, the experiment of concrete-filled rectangular steel tubular columns under axial compression is simulated. Using the software incising the concrete-filled rectangular steel tubular columns are observed, also the interaction between steel pipe and concrete, and the crack and stress circumstance of steel pipe and concrete in each step of loading process are analyzed . The research results indicate that: (1) The concrete-filled rectangular steel tubular columns have good abilities to resist loadings and transmutation.(2) The process of steel pipe peeling off the concrete columns appear in the first declining phase in the N -εcurve (3) When the entering the mild phase, the ultimate bearing capacity of the component is depended on the compress strength of steel pipe.
     Using the model parameters which are suit to columns under axial compression numerical simulative experiment, the numerical experiment of a kind of concrete-filled rectangular steel tubular columns under non-axial compression which haven't been studied is made in this literary. And also the crack forms, compress strength, process, behaviors of concrete-filled rectangular steel tubular columns are analyzed detailedly. (1)At the beginning of loading, the major principal stress centralize in a triangle area under the lap.(2) The limit load of this case happens when the steel pipe is mangled in the lap area.(3)Two cracks appear in the loading process.(4) The deformation of column under this kind of non-axial compression is depended on the eccentric ratio. Because there is little research about concrete-filled rectangular steel tubular columns under non-axial compression, the numerical experiment is hoped to replace the true experiment partially or wholly, and put forward some references to the research on concrete-filled rectangular steel tubular under non-axial compression.
引文
[1] 钟善桐.钢管混凝土结构.北京:清华大学出版社,2003.6:26—33页
    [2] 韩林海.钢管混凝土结构.理论与实践.北京:科学出版社,2004:5—22页
    [3] 蔡绍怀.现代钢管混凝土结构.北京:人民交通出版社,2003.3:12—14
    [4] Bradford M A. Design Strength of Slender Concrete-Filled RectangularSteel Tubes. ACI Structural Journal, 1996,93(2): 229-235P
    [5] 蔡绍怀,焦占栓.钢管混凝土短柱的基本性能和强度计算.建筑结构学报.1984.6:13-29页
    [6] 蔡绍怀,顾万黎.钢管混凝土长柱的性能和强度计算.建筑结构学报.1985(1):32-40页
    [7] 蔡绍怀,邸小坛.钢管混凝土偏压柱的性能和强度计算.建筑结构学报.1985(4):32-41页
    [8] GARDNER N J, JACOBSON E R. Structure behavior concrete filled steel tubes. Journal of American Concrete Institute, 1967,64(7): 404-412P
    [9] Mathias Johnsson, Kent Gylltoft. Mechanical Behavior of Circular Steel-Concrete Composite Stub Columns, Journal of Structural Engineering, ASCE, 2002(8): 1073-1081P
    [10] Kilpatrick A E, Rangan B V. Tests on high strength composite concrete columns. School of Civil Engineering Research Report No. 1/97. Curtin University of Technology, Perth, Western Australia, 1997.3: 268-274P
    [11] 李继读.钢管混凝土轴压承载力的研究.工业建筑.1985(2):25—31 页
    [12] O'Shea, M. D. and Bridge, R. Q. (1997). Behavior of thin-walled box sections with lateral restraint. Department of civil engineering research report, No. R739, the University of Sydney. March, 1997
    [13] 韩林海,钟善桐.钢管混凝土力学.大连:大连理工大学出版社,1996:23-26页
    [14] 周毅姝.矩形钢管混凝土半刚性节点有限元分析.河北农业大学硕士学位论文.2005.6:8-21页
    [15] SCHNEIDER S P. Axially loaded concrete-filled steel tubes. Journal of Structural Engineering, ASCE, 1998,10:1125-1138P
    [16] SHAKIR KHALIL H, ZEGHICHE J. Experimental behavior of concrete-filled roiled rectangular hollow-section columns. The Structural Engineering, 1989,67(19):346-353P
    [17] SHAKIR KHALIL H,MOULI M.Further tests on concrete-filled rectangular hollow-section columns. The structural Engineering, 1990,68(20):405-413P
    [18] LIANG Q Q, UY B. Parametric study on the structural behavior of steel plates in concrete-filled fabricated thin-walled box coIumns .Advanced in Structural Engineering, 1998,2(1): 57-71P
    [19] Cederwall, K, Engstrom, B. and Grauers, M. "High-Strength Concrete Used in Composite Columns." HighStrength Concrete, SP121-11:195-210P
    [20] GE H B, USAMI T. Strength of concrete-filled thinwalled steel box columns : experiment .ASCE, Journal of Structural Engineering, 1992, 118: 3036-3054P
    [21] Bridge R Q. Webb J. Thin Wall Circular Concrete Filled Steel Tubular Columns. Building for the 21st Century, Ed : Y.C. Loo, EASEC-5 Secretariat, 1995:427-432P
    [22] GE H B, USAMI T. Strength analysis of concretefilled thin-walled steel box columns. Journal of Constructional Steel Research, 1994, 30:259-281P
    [23] Song, J.Y. and Kwon, Y.B. (1997) ."Structural Behavior of Concrete-Filled Steel Box Sections." International Conference Report on Composite Construction-Conventional and Innovative, Innsbruck, Austria. 795-801P
    [24] ZHANG Sumei, ZHOU Ming. Stress strain behavior of concretefilled-steel tubes. Proceeding of 6th ASCCS International Conference on Steel-Concrete Composite Structures .Los Angeles: 2000. 403-409P
    [25] 张正国,左明生.方钢管混凝土轴压短柱在短期—次静载下的性能研究.郑州工学院院报.1985(2):19—32页
    [26] 张正国.方钢管混凝土中长轴压柱稳定分析和实用计算方法.建筑结构学报.1993(4):28—39页
    [27] 韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究.土木工程学报.2001(4):22—31页
    [28] 蒋涛,沈之容,余志伟.矩形钢管混凝土轴压短柱承载力计算.特种结构.2002(2):4—6页
    [29] 唐春安 朱万成.混凝土损伤与断裂:数值试验.北京:科学出版社,2003:24—44页
    [30] 陈立保.方钢管混凝土力学性能有限元分析.武汉大学硕士学位论文.2004.5:13—30页
    [31] 叶再利.方形、矩形钢管高强混凝土轴压短柱基本力学性能研究.哈尔滨工业大学硕士学位论文.2001:18—23页
    [32] 蔡绍怀.我国钢管混凝土结构技术的最新进展.土木工程学报.1999(4):32-35页
    [33] 余勇,吕西林.方钢管混凝土柱的三维非线性分析.地震工程与工程震动.199l(1):57—64页
    [34] 韩林海,陶钟.方形截面钢管混凝土构件的设计计算.钢结构.1998(4):39-45页
    [35] 钟善桐,苗若愚.钢管混凝土轴心受压构件承载力计算的研究.建筑结构学报.1984(6):38-48页
    [36] Lubliner J,J. Oliver, S. Oller, and E. Onate. APlastic-Damage Modle for Concrete International Journal of Solids and Structures, 1989(25):229-326P
    [37] M. Shams and M.A. Saadeghvaziri. Nonlinear Evaluation of Axial Loaded Concrete Filled Steel Tubular Columns. ACI Structural Journal. 1999,96(6): 777-786P
    [38] Schneider S.P. Axially laoded Concrete-Filled steel Tubes. Journal of Structural Engineering. ASCE. 1998,124(lO) : 1125-1138P
    [39] Knowle K, Park R Streength of concrete filled tubular. ASCE 1969,95(12): 1732-1738P
    [40] Kupfer, H Hilsdorf, H.K, and Rusch, Behavior of congcrete under biaxial stresses. ACI 2 1969 66(8): 656-666P
    [41] 韩林海.恒高温下钢管混凝土的轴压力学性能研究.哈尔滨建筑大学学报.1997(5):64-70页
    [42] 王蕾,江雪.矩形钢管混凝土短柱承载力计算.桂林工学院学报.2003.10(4):441-444页
    [43] 余勇.方钢管混凝土结构受力性能研究.同济大学硕士学位论文.1999:18—24页
    [44] 郝艳娥.矩形钢管混凝土短柱轴压性能分析.长安大学硕士学位论文.2005.4:10—20页
    [45] 宋天霞.有限元法理论及应用基础教程.湖北:华中工学院出版社,2003.6:214—218页
    [46] 朱万成,唐春安,杨天鸿等.岩土破裂过程分析RFPA2~(2D)系统的细观单元本构关系及验证.岩石力学与工程学报.2003.1:24~29页
    [47] 芮勇勤,唐春安.岩土剪切破裂过程的RFPA~(2D) 数值模拟.岩石力学与工程学报.2002:364-368页
    [48] 徐涛,于世海,王述红,唐春安.岩石细观损伤演化与损伤局部化的数值研究.东北大学学报.2005.2:160-163页
    [49] 唐春安,李连崇等.岩土工程稳定性分析RFPA强度折减法.岩石力学与工程学报.2006.8:1522-1530页
    [50] 蒋友琼.非线性有限元.北京:北京工业出版社.1988:23-25页
    [51] 周明.方钢管混凝土构件力学性能研究.哈尔滨工业大学硕士学位论文.2001:13-17页
    [52] 江见鲸,陆新征,叶列平.混凝土结构有限元分析.北京:清华大学出版社,2005:44—63页
    [53] 李运光,李自林,张献民等.结构工程有限元法.北京:中国建材工业出版社,2002:13—18页
    [54] 陈洪涛.各种截面钢管混凝土轴压短柱基本性能连续性的理论研究.哈尔滨工业大学博士学位论文.2001:45—65页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700