基于平面火焰携带流反应器的煤粉富氧燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富氧燃烧技术作为一项可以实现大规模CO_2富集的新型燃烧技术,近十年来受到了业内人士的广泛关注。由于实验系统的差异,富氧燃烧技术独具的高CO_2气氛对煤粉燃烧过程的影响及作用机理仍然没有得到一致的结论。本文借助自行搭建的平面火焰携带流反应器,对煤粉在接近真实炉膛的模拟烟气中的脱挥发分、着火及燃尽过程展开了详细的实验研究。
     本文首先在平面火焰携带流反应器中开展了煤粉的脱挥发分实验,研究了煤粉在富氧燃烧和常规空气燃烧条件下的脱挥发分特性和所制备煤焦的物理化学特性及反应性。实验结果表明:富氧燃烧气氛下高浓度CO_2的存在会抑制高挥发分煤(褐煤和烟煤)的挥发分释放,但会导致低挥发分煤脱挥发分产率的增加。同时,对比CO_2焦和N_2焦的物理结构和化学结构发现,高挥发分煤焦的比表面积增加,而低挥发分煤焦的比表面积降低。CO_2焦表面化学结构的活性均要高于N_2焦。但相比于化学结构,物理结构对煤焦表观反应性起主要作用。
     继而结合FF-EFR和高速CCD摄像机研究了煤粉在富氧燃烧和常规空气燃烧条件下着火和挥发分燃尽特性,着重对煤粉的着火延迟,着火稳定性和挥发分燃尽时间进行了探讨。实验结果表明:着火延迟时间反比于YO_2,sn,n约为0.15~0.2。高浓度CO_2的存在会导致高挥发分煤粉着火延迟增加和着火稳定性降低。但与之相反,可以改善低挥发分无烟煤的着火延迟和着火稳定性。同时,高浓度CO_2的存在会导致高挥发分煤粉的脱挥发分和挥发分燃尽时间延长。
     在FF-EFR上结合采用沿程急冷颗粒采样技术,研究了中美典型动力煤在O_2/CO_2和O_2/N_2气氛下的燃尽特性,并根据实验数据求解了其基于煤焦氧化反应的表观反应动力学参数和基于四步反应的详细反应动力学参数。研究结果表明:高氧浓度条件下,高浓度CO_2对煤焦燃尽的抑制作用大于气化反应对煤焦燃尽的促进作用。降低环境氧浓度可以提高CO_2气化反应对煤焦燃尽的贡献。低氧浓度条件下,高浓度CO_2气化反应对煤焦燃尽有着明显的促进作用。CO_2气化反应对无烟煤的燃尽作用不明显。煤焦与CO_2的气化反应所产生的煤焦表面对O的化学吸附,进而导致了煤粉在富氧燃烧条件下的氧元素释放速率减慢。煤粉燃尽过程实际上是原始无定形碳的消耗与新无定形碳的生成相竞争的过程。在脱挥发分阶段,大芳香环系统(微晶石墨)保持稳定,脂肪链的芳构化反应导致了小芳香环系统的生成(无定形碳)。在焦炭燃尽的早期和后期,煤焦氧化反应的发生使得无定形碳的生成和消耗分别占主要作用。同时,研究发现在高转化率条件下由于灰壳的屏蔽效应,仍然有一定量的无定形碳和微晶石墨残余在总灰中。
     最后,通过动力学求解,为相应煤种的数值模拟研究和工业应用提供了表观反应动力学和详细反应动力学数据。
Oxy-fuel combustion technology (also named O_2/CO_2combustion technology) ofpulverized coal has received considerable attention as one of the potential approaches toachieve a sequestration ready CO_2gas stream from coal fired power plants. Due to thedifferenced in the experamental conditions, it was inconsistent that the effects and actionmechanisms of high content CO_2on the combustion process of pulverized coal. Thedevolatilization, ignition and burnout processes of pulverized coal were investigated indetail under the simulated flue gas, which was close to the industrial furnace and wasprovided by the flat-flame assisted entrained flow reactor.
     A flat-flame assisted entrained flow reactor was used to conduct the devolatilizationexperiment. The chars were prepared under oxy-fuel and air combustion conditions. Theapparent volatile yields, the physical-chemical properties and reactivites were studied. Theresults indicate that the high content CO_2inhibits the volatile release of high volatile coal(lignite and bituminous coal) and increases the apparent volatile yield of low volatile coal(anthracite coal). The high content CO_2also increases the specific surface area of highvolatile coal and decreases the specific surface area of low volatile coal. Meanwhile, theactivity of chemical structrues of char-CO_2is higher than that of char-N_2. Compared to thechemical characteristics, the physical characteristics of char play a major role on theapparent reactivity.
     The ignition and devolatilization behaviors of pulverized coals under oxy-fuel and aircombustion conditions were investigated using the high speed camera. The ignition delaytime, ignition stability and delay of devolatilization were analyzed. The results indicatedthat the ignition delay time is inversely proportional to YO_2,sn,n is0.15~0.2. The present ofhigh content CO_2lead to the increase of ignition delay time and ignition stability of highvolatile coal. To the contrary, the present of high content CO_2lead to the decrease ofignition delay time and ignition stability of low volatile coal. Meanwhile, the high contentCO_2lead the delay of devolatilization procedure.
     The burnout behaviors of selected Chinese and U.S. typical power coals under O_2/CO_2and O_2/N_2atmospheres were investigated in the flat-flame assisted entrained flow reactor.And the reaction kinetic parameters based on the char oxidation reaction (C+0.5O_2→CO)and four steps detail reactions were respectively solved from the burnout curves. The results indicated that the suppression effect of high content CO_2on char burnout is morethan promotion effect of CO_2gasificaition reaction on char consumption at the high oxygencondition. The contribution of CO_2gasificaition reaction on char consumption can beenhanced through reducing the oxygen concentration. At the low oxygen conditions, thepromotion effect of CO_2gasificaition reaction on char consumption is obvious. But thepromotion effect cann’t be observed on JC anthracite coal. The oxygen atoms chemicallyadsorbedon char surface, resulted by the char-CO_2gasification reaction, leads the reduce ofrelease rate of oxygen element. The coal burnout process was found to be the competitiveprocess between elimination of the original amorphous mass and formation of newamorphous materials. At the stage of pyrolysis, the large aromatic ring system (microcrystalgraphite) keep stable, and the aromatization of aliphatic chain caused the increase of smallaromatic ring system (amorphous carbon). At the early and late stage of char burnout, thegeneration and consumption of amorphous carbon respectively play a dominant rolebecause of oxidation reaction. This finding is important for analyzing the change of charreactivity during char burnout.
     Finally, the reaction kinetic data were collected, which can be used to build a databaseand incorporated into a computational fluid dynamics model for subsequent design andscale-up purposes.
引文
[1] Solomon, S., Qin, D., Manning, M., et al. IPCC,2007: climate change2007: thephysical science basis. Contribution of working group I to the fourth assessmentreport of the intergovernmental panel on climate change. Cambridge, UnitedKingdom and New York, NY, USA: Cambridge University Press.2007.
    [2] Annual energy review2009, U.S.E.I. Administration, Editor.2010.
    [3] Toftegaard, M. B., Brix, J., Jensen, P. A., et al. Oxy-fuel combustion of solid fuels.Progress in Energy and Combustion Science.2010,36(5):581-625.
    [4] Molburg, J. C., Doctor, R. D., Brockmeier, N. F., et al. CO2capture from Pc boilerswith O2-firing, in Eighteenth annual international Pittsburgh coal conference.2001:Newcastle, NSW, Australia.
    [5] Chen, L., Yong, S. Z., Ghoniem, A. F. Oxy-fuel combustion of pulverized coal:Characterization, fundamentals, stabilization and CFD modeling. Progress in Energyand Combustion Science.2012,38(2):156-214.
    [6] WebBook: N. C., thermophysical properties of fluid systems, http://webbook.nist.gov/chemistry/;.2009.
    [7] Incropera, F. P., Dewitt, D. P. Fundamentals of heat and mass transfer.5th ed. NewYork: Wiley,2002.
    [8] IAPWS release on surface tension of ordinary water substance, in InternationalAssociation for the Properties of Water and Steam.1994.
    [9] Chun, B. S., Wilkinson, G. T. Interfacial tension in high-pressure carbon dioxidemixtures. Industrial&Engineering Chemistry Research.1995,34(12):4371-4377.
    [10]初伟,周月桂,许杨杨等. O2/CO2和O2/N2气氛下不同煤种的热解与燃烧试验研究.热力发电.2012(12):33-38.
    [11]段伦博,赵长遂,李庆钊等. O2/CO2气氛下煤焦燃烧实验研究.燃料化学学报.2009,37(6):654-658.
    [12]黄晓宏,柳朝晖,刘敬樟等. O2/CO2条件下煤粉燃烧火焰特性的实验研究.工程热物理学报.2009,30(7):1245-1248.
    [13]李庆钊,赵长遂. O2/CO2气氛煤粉燃烧特性试验研究.中国电机工程学报.2007,262(35):39-43.
    [14]李庆钊,赵长遂,武卫芳等. O2/CO2气氛下煤粉燃烧反应动力学的试验研究.动力工程.2008,165(3):447-452.
    [15]骆仲泱,毛玉如,吴学成等. O2/CO2气氛下煤燃烧特性试验研究与分析.热力发电.2004,33(6):14-18.
    [16] Essenhigh, R. H., Howard, J. B. Toward a Unified Combustion Theory. Industrial&Engineering Chemistry Process Design and Development.1966,18:14-23.
    [17] Rathnam, R. K., Elliott, L., Moghtaderi, B., et al. Differences in Coal Reactivity inAir and Oxy-fuel Conditions and Implications for Coal Burnout, in The ClearwaterCoal Conference: The31st International Technical Conference on Coal Utilizationand Fuel Systems.2006.
    [18] Rathnam, R.K., Elliott, L.K., Wall, T.F., et al. Differences in reactivity of pulverisedcoal in air (O2/N2) and oxy-fuel (O2/CO2) conditions. Fuel Processing Technology.2009,90(6):797-802.
    [19] Borrego, A.G., Alvarez, D. Comparison of chars obtained under oxy-fuel andconventional pulverized coal combustion atmospheres. Energy&Fuels.2007,21(6):3171-3179.
    [20] Al-Makhadmeh, L., Maier, J., Scheffknecht, G. Coal pyrolysis and char combustionunder oxy-fuel conditions, in The34th international technical conference on coalutilization&fuel systems. Clearwater, Florida,2009.
    [21] Brix, J., Jensen, P. A., Jensen, A. D. Coal devolatilization and char conversion undersuspension fired conditions in O2/N2and O2/CO2atmospheres. Fuel.2010,89(11):3373-3380.
    [22] Shaddix, C. R., Molina, A. Particle imaging of ignition and devolatilization ofpulverized coal during oxy-fuel combustion. Proceedings of the Combustion Institute.2009,32(2):2091-2098.
    [23] Molina, A., Shaddix, C. R. Ignition and devolatilization of pulverized bituminouscoal particles during oxygen/carbon dioxide coal combustion. Proceedings of theCombustion Institute.2007,31(2):1905-1912.
    [24] Pohlmann, J. G., Osorio, E., Vilela, A. C. F., et al. Reactivity to CO2of charsprepared in O2/N2and O2/CO2mixtures for pulverized coal injection (PCI) in blastfurnace in relation to char petrographic characteristics. International Journal of CoalGeology.2010,84(3–4):293-300.
    [25] Li, Q., Zhao, C., Chen, X., et al. Properties of char particles obtained under O2/N2and O2/CO2combustion environments. Chemical Engineering and Processing:Process Intensification.2010,49(5):449-459.
    [26] Wang, B., Sun, L., Su, S., et al. Char Structural Evolution during Pyrolysis and ItsInfluence on Combustion Reactivity in Air and Oxy-Fuel Conditions. Energy&Fuels.2012,26(3):1565-1574.
    [27] Faraday, M., Lyell, C. Explosions in coal mines. Phil Mag.1845,26:16-35.
    [28] Wall, T. F., Gupta, R. P., Gururajan, V. S., et al. The ignition of coal particles. Fuel.1991,70(9):1011-1016.
    [29] Zhang, D. K., Wall, T. F. Ignition of coal particles: the influence of experimentaltechnique. Fuel.1994,73(7):1114-1119.
    [30]岑可法,姚强,骆仲泱等.高等燃烧学.杭州:浙江大学出版社.2002.
    [31]吴乐. O2/N2和O2/CO2燃烧方式下煤粉着火特性研究:[博士学位论文].武汉:华中科技大,2010.
    [32] Essenhigh, R. H., Howard, J. B. Toward a Unified Combustion Theory. Industrial&Engineering Chemistry Process Design and Development.1966,18:14-23.
    [33] Essenhigh, R. H. On the inter-influence of classical heterogeneous combustionresearch and related aerospace problems. Symposium (International) on Combustion.1967,11(1):291-308.
    [34] Jüntgen, H., Van Heek, K. H. An update of german non-isothermal coal pyrolysiswork. Fuel Processing Technology.1979,2(4):261-293.
    [35] Gururajan, V. S., Wall, T. F., Gupta, R. P., et al. Mechanisms for the ignition ofpulverized coal particles. Combustion and Flame.1990,81(2):119-132.
    [36] Steven, P., Thomas, M., Fletcher, H., et al. Heat and Mass Transfer in the Vicinity ofa Devolatilizing Coal Particle. Combustion Science and Technology.1986,45(5-6):289-307.
    [37]章明川.煤粉着火及切圆燃烧火焰稳定性分析:[博士学位论文].北京:清华大学,1990.
    [38] Howard, J. B., Essenhigh, R. H. Mechanism of solid-partical combustion withsimultaneous gas-phase volatiles combustion. Symposium (International) onCombustion.1967,11(1):399-408.
    [39] Howard, J. B., Essenhigh, R. H. The mechanism of ignition of pulverized coal.Combustion and Flame.1965,9(3):337-339.
    [40] Howard, J. B., Essenhigh, R. H. Pyrolysis of Coal Particles in Pulverized FuelFlames. Industrial&Engineering Chemistry Process Design and Development.1967,6(1):74-84.
    [41] Essenhigh, R. H., Misra, M. K., Shaw, D. W. Ignition of coal particles: A review.Combustion and Flame.1989,77(1):3-30.
    [42] Fuertes, A. B., Hampartsoumian, E., Williams, A. Direct measurement of ignitiontemperatures of pulverized coal particles. Fuel.1993,72(9):1287-1291.
    [43] Kiga, T., Takano, S., Kimura, N., et al. Characteristics of pulverized-coal combustionin the system of oxygen/recycled flue gas combustion. Energy Conversion andManagement.1997,38:129-134.
    [44] Khatami, R., Stivers, C., Levendis, Y. A. Ignition characteristics of single coalparticles from three different ranks in O2/N2and O2/CO2atmospheres. Combustionand Flame.2012,159(12):3554-3568.
    [45] Qiao, Y., Zhang, L., Binner, E., et al. An investigation of the causes of the differencein coal particle ignition temperature between combustion in air and in O2/CO2. Fuel.2010,89(11):3381-3387.
    [46]刘彦,周俊虎,方磊等. O2/CO2气氛煤粉燃烧及固硫特性研究.中国电机工程学报.2004,24(8):224-228.
    [47]李庆钊,赵长遂. O2/CO2气氛煤粉燃烧特性试验研究.中国电机工程学报.2007,27(35):39-43.
    [48] Zhang, L., Binner, E., Qiao, Y., et al. In situ diagnostics of Victorian brown coalcombustion in O2/N2and O2/CO2mixtures in drop-tube furnace. Fuel.2010,89(10):2703-2712.
    [49] Riaza, J., Gil, M. V., Alvarez, L., et al. Oxy-fuel combustion of coal and biomassblends. Energy.2012,41(1):429-435.
    [50] Jovanovic, R., Milewska, A., Swiatkowski, B., et al. Numerical investigation ofinfluence of homogeneous/heterogeneous ignition/combustion mechanisms onignition point position during pulverized coal combustion in oxygen enriched andrecycled flue gases atmosphere. International Journal of Heat and Mass Transfer.2011,54(4):921-931.
    [51] Liu, H., Zailani, R., Gibbs, B. M. Pulverized coal combustion in air and in O2/CO2mixtures with NOx recycle. Fuel.2005,84(16):2109-2115.
    [52] Hj rtstam, S., Andersson, K., Johnsson, F., et al. Combustion characteristics oflignite-fired oxy-fuel flames. Fuel.2009,88(11):2216-2224.
    [53] Smart, J., Lu, G., Yan, Y., et al. Characterisation of an oxy-coal flame through digitalimaging. Combustion and Flame.2010,157(6):1132-1139.
    [54] Man, C. K., Gibbins, J. R. Factors affecting coal particle ignition under oxyfuelcombustion atmospheres. Fuel.2011,90(1):294-304.
    [55] Huang, X., Jiang, X., Han, X., et al. Combustion characteristics of fine-andmicro-pulverized coal in the mixture of O2/CO2. Energy&Fuels.2008,22(6):3756-3762.
    [56] Fan, Y.-s., Zou, Z., Cao, Z., et al. Ignition characteristics of pulverized coal underhigh oxygen concentrations. Energy&Fuels.2008,22(2):892-897.
    [57] Riaza, J., Alvarez, L., Gil, M. V., et al. Effect of oxy-fuel combustion with steamaddition on coal ignition and burnout in an entrained flow reactor. Energy.2011,36(8):5314-5319.
    [58] Arias, B., Pevida, C., Rubiera, F., et al. Effect of biomass blending on coal ignitionand burnout during oxy-fuel combustion. Fuel.2008,87(12):2753-2759.
    [59] Molina, A., Hecht, E. S., Shaddix, C. R. Ignition of a group of coal particles inoxyfuel combustion with CO2recirculation, in The34th international technicalconference on coal utilization and fuel systems. Cleanwater, FL, USA.2009.
    [60] Stivers, C., Y, A. L. Ignition of single coal particles in O2/N2/CO2atmospheres, inProceedings of the35th Coal Utilization and Fuel Systems. Clearwater, Florida.2010.
    [61] Liu, H., Zailani, R., Gibbs, B. M. Comparisons of pulverized coal combustion in airand in mixtures of O2/CO2. Fuel.2005,84(7–8):833-840.
    [62] Suda, T., Masuko, K., Sato, J., et al. Effect of carbon dioxide on flame propagationof pulverized coal clouds in CO2/O2combustion. Fuel.2007,86(12–13):2008-2015.
    [63] Toporov, D., Bocian, P., Heil, P., et al. Detailed investigation of a pulverized fuelswirl flame in CO2/O2atmosphere. Combustion and Flame.2008,155(4):605-618.
    [64] Heil, P., Toporov, D., Stadler, H., et al. Development of an oxycoal swirl burneroperating at low O2concentrations. Fuel.2009,88(7):1269-1274.
    [65] Bejarano, P. A., Levendis, Y. A. Single-coal-particle combustion in O2/N2andO2/CO2environments. Combustion and Flame.2008,153(1–2):270-287.
    [66] Liu, H. Combustion of coal chars in O2/CO2and O2/N2mixtures: A ComparativeStudy with Non-isothermal Thermogravimetric Analyzer (TGA) Tests. Energy&Fuels.2009,23(9):4278-4285.
    [67] Várhegyi, G., Till, F. Comparison of temperature-programmed char combustion inCO2/O2and Ar/O2mixtures at elevated pressure. Energy&Fuels.1998,13(2):539-540.
    [68] Várhegyi, G., Szabo, P., Jakab, E., et al. Mathematical modeling of char reactivity inAr/O2and CO2/O2mixtures. Energy&Fuels.1996,10(6):1208-1214.
    [69] Harris, D.J., Smith, I.W. Intrinsic reactivity of petroleum coke and brown coal charto carbon dioxide, steam and oxygen. Symposium (International) on Combustion,1991.23(1):1185-1190.
    [70] Mann, A. P., Kent, J. H. A computational study of heterogeneous char reactions in afull-scale furnace. Combustion and Flame.1994,99(1):147-156.
    [71] Stanmore, B. R., Visona, S. P. The contribution to char burnout from gasification byH2O and CO2during pulverized-coal flame combustion. Combustion and Flame.1998,113(1–2):274-276.
    [72] Shurtz, R. C., Hogge, J. W., Fowers, K. C., et al. Coal swelling model for pressurizedhigh particle heating rate pyrolysis applications. Energy&Fuels.2012,26(6):3612-3627.
    [73]徐国良,王晓墨,邬田华等.工程传热学.北京:中国电力出版.2005.
    [74] Shaddix, C. R. Correcting thermocouple measurements for radiation loss: A criticalreview, A.S.o.M.E. National Heat Transfer Conference NHTC'9933rd, Editor.Albuquerque, NM, USA.1999.
    [75] Ranz, W. E., Marshall, W. R. Chem. Engr. Progress.1952,48:141-180.
    [76] Tsai, C.-Y., Scaroni, A.W. The structural changes of bituminous coal particles duringthe initial stages of pulverized-coal combustion. Fuel.1987,66(2):200-206.
    [77] Mitchell, R. E., Hurt, R. H., Baxter, L.L., et al. Compilation of Sandia coal charcombustion data and kinetic analyses-Milestone Report.. Sandia NationalLaboratories.1992.
    [78] Ko, G. H., Sanchez, D. M., Peters, W.A., et al. Correlations for effects of coal typeand pressure on tar yields from rapid devolatilization. Symposium (International) onCombustion.1989,22(1):115-124.
    [79] Chen, L., Zeng, C., Guo, X., et al. Gas evolution kinetics of two coal samples duringrapid pyrolysis. Fuel Processing Technology.2010,91(8):848-852.
    [80] Suuberg, E.M., Peters, W. A., Howard, J. B. Product compositions in rapidhydropyrolysis of coal. Fuel.1980,59(6):405-412.
    [81] Anthony, D. B., Howard, J. B., Hottel, H. C., et al. Rapid devolatilization andhydrogasification of bituminous coal. Fuel.1976,55(2):121-128.
    [82] Brix, J. Coal char reactivity: a thermogravimetric study on chars obtained in O2/N2and O2/CO2in an entrained flow reactor under suspension fired conditions and in aTGA. In press.
    [83] Brunauer, S., Emmett, P. H., Teller, E. Adsorption of gases in multimolecular layers.J. Am. Chem. Soc.,1938,60:309~315.
    [84] Smith, J. M. Chemical engineering kinetics. New York: McGraw-Hill Book Co., Inc.1956.
    [85] Fletcher, T. H. Swelling properties of coal chars during rapid pyrolysis andcombustion. Fuel.1993,72(11):1485-1495.
    [86] Terminology, I.C.o.C. Amorphous carbon.2nded. International Union of Pure andApplied Chemistry.1997.
    [87] Li, X., Hayashi, J. I., Li, C. Z. FT-Raman spectroscopic study of the evolution ofchar structure during the pyrolysis of a Victorian brown coal. Fuel.2006,85(12-13):1700-1707.
    [88] Bayarsaikhan, B., Hayashi, J., Shimada, T., et al. Kinetics of steam gasification ofnascent char from rapid pyrolysis of a Victorian brown coal. Fuel.2005,84(12–13):1612-1621.
    [89] Li, X. J., Li, C. Z. FT-Raman spectroscopic characterisation of chars from thepyrolysis of coals of varying rank. Ranliao Huaxue Xuebao/Journal of FuelChemistry and Technology.2005,33(4):385-390.
    [90] Tuinstra, F., Koenig, J. L. Raman Spectrum of Graphite. The Journal of ChemicalPhysics.1970,53(3):1126-1130.
    [91] Sonibare, O.O., Haeger, T., Foley, S.F. Structural characterization of Nigerian coalsby X-ray diffraction, Raman and FTIR spectroscopy. Energy.2010,35(12):5347-5353.
    [92] Zerda, T. W., John, A., Chmura, K. Raman studies of coals. Fuel.1981,60(5):375-378.
    [93] Van Doorn, J., Vuurman, M. A., Tromp, P. J. J., et al. Correlation between Ramanspectroscopic data and the temperature-programmed oxidation reactivity of coals andcarbons. Fuel Processing Technology.1990,24:407-413.
    [94] Potgieter-Vermaak, S., Maledi, N., Wagner, N., et al. Raman spectroscopy for theanalysis of coal: a review. Journal of Raman Spectroscopy.2011,42(2):123-129.
    [95] Chabalala, V. P., Wagner, N., Potgieter-Vermaak, S. Investigation into the evolutionof char structure using Raman spectroscopy in conjunction with coal petrography;Part1. Fuel Processing Technology.2011,92(4):750-756.
    [96] Urban, O., Jehlicka, J., Pokorny, J., et al. Influence of laminar flow on preorientationof coal tar pitch structural units: Raman microspectroscopic study. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy.2003,59(10):2331-2340.
    [97] Dong, S., Alvarez, P., Paterson, N., et al. Study on the effect of heat treatment andgasification on the carbon structure of coal chars and metallurgical cokes usingFourier Transform Raman Spectroscopy. Energy&Fuels.2009,23(3):1651-1661.
    [98] Green, P. D., Johnson, C. A., Thomas, K. M. Applications of laser Ramanmicroprobe spectroscopy to the characterization of coals and cokes. Fuel.1983,62(9):1013-1023.
    [99] Solomon, P. R., Carangelo, R. M. FTIR analaysis of coal.1. techniques anddetermination of hydroxyl concentrations. Fuel.1982,61(7):663-669.
    [100] Shim, H. S., Hurt, R. H. Thermal annealing of chars from diverse organic precursorsunder combustion-like conditions. Energy&Fuels.2000,14(2):340-348.
    [101] Carpenter, A., Skorupska, N. Coal combustion: analysis and testing. IEA CoalResearch.1993.
    [102] Seeker, W. R., Samuelsen, G. S., Heap, M. P., et al. The thermal decomposition ofpulverized coal particles. Symposium (International) on Combustion.1981,18(1):1213-1226.
    [103] Gale, T. K., Bartholomew, C. H., Fletcher, T. H. Decreases in the swelling andporosity of bituminous coals during devolatilization at high heating rates.Combustion and Flame.1995,100(1-2):94-100.
    [104] Naredi, P., Pisupati, S. Effect of CO2during coal pyrolysis and char burnout inoxy-coal combustion. Energy&Fuels.2011,25(6):2452-2459.
    [105] Lorenz, H., Carrea, E., Tamura, M., et al. The role of char surface structuredevelopment in pulverized fuel combustion. Fuel.2000,79(10):1161-1172.
    [106] Zaida, A., Bar-Ziv, E., Radovic, L. R., et al. Further development of Ramanmicroprobe spectroscopy for characterization of char reactivity. Proceedings of theCombustion Institute.2007,31(2):1881-1887.
    [107] Li, X., Hayashi, J. I., Li, C. Z. Volatilisation and catalytic effects of alkali andalkaline earth metallic species during the pyrolysis and gasification of Victorianbrown coal. Part VII. Raman spectroscopic study on the changes in char structureduring the catalytic gasification in air. Fuel.2006,85(10–11):1509-1517.
    [108] Sekine, Y., Ishikawa, K., Kikuchi, E., et al. Reactivity and structural change of coalchar during steam gasification. Fuel.2006,85(2):122-126.
    [109] Sheng, C. Char structure characterised by Raman spectroscopy and its correlationswith combustion reactivity. Fuel.2007,86(15):2316-2324.
    [110] Ferrari, A. C., Robertson, J. Interpretation of Raman spectra of disordered andamorphous carbon. Physical Review B.2000,61(20):14095-14107.
    [111] Wang, S. H., Griffiths, P. R. Resolution enhancement of diffuse reflectance i.r.spectra of coals by Fourier self-deconvolution:1. C-H stretching and bending modes.Fuel.1985,64(2):229-236.
    [112] Painter, P. C., Snyder, R. W., Starsinic, M., et al. Concerning the application of FT-IRto the study of coal: A critical assessment of band assignments and the application ofspectral analysis programs. Applied Spectroscopy.1981,35:475-485.
    [113] Ibarra, J., Mu oz, E., Moliner, R. FTIR study of the evolution of coal structureduring the coalification process. Organic Geochemistry.1996,24(6-7):725-735.
    [114] Solomon, P. R., Carangelo, R. M. FT-i.r. analysis of coal:2. Aliphatic and aromatichydrogen concentration. Fuel.1988,67(7):949-959.
    [115] Pandolfo, A. G., Johns, R. B., Dyrkaczet, G. R., et al. Separation and preliminarycharacterization of high-purity maceral group fractions from an Australianbituminous coal. Energy&Fuels.1988,2(5):657-662.
    [116] Ibarra, J., Moliner, R., Bonet, A. J. FT-i.r. investigation on char formation during theearly stages of coal pyrolysis. Fuel.1994,73(6):918-924.
    [117] Wang, S., Tang, Y., Schobert, H. H., et al. FTIR and13C NMR investigation of coalcomponent of Late Permian coals from southern China. Energy&Fuels.2011,25(12):5672-5677.
    [118] Lang, I., Hájek, M. Twenty-five years of Brown and Ladner's parameters. Fuel.1985,64(11):1630-1631.
    [119]石金明,孙路石,向军等.兖州煤气化半焦表面官能团特征试验研究.中国电机工程学报.2010,05:17-22.
    [120] Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature.1964,201(4914):68-69.
    [121] Li, X., Rathnam, R. K., Yu, J., et al. Pyrolysis and combustion characteristics of anIndonesian low-rank coal under O2/N2and O2/CO2conditions. Energy&Fuels.2009,24(1):160-164.
    [122] Li, H., Elliott, L., Rogers, H., et al. Reactivity study of two coal chars produced in adrop-tube furnace and a pulverized coal injection rig. Energy&Fuels.2012,26(8):4690-4695.
    [123] Draper, T. S., Zeltner, D., Tree, D. R., et al. Two-dimensional flame temperature andemissivity measurements of pulverized oxy-coal flames. Applied Energy.2012,95(0):38-44.
    [124] McLean, W. J., Hardesty, D. R., Pohl, J. H. Direct observations of devolatilizingpulverized coal particles in a combustion environment. Symposium (International)on Combustion.1981,18(1):1239-1248.
    [125] Chi, T., Zhang, H., Yan, Y., et al. Investigations into the ignition behaviors ofpulverized coals and coal blends in a drop tube furnace using flame monitoringtechniques. Fuel.2010,89(3):743-751.
    [126] Binner, E., Zhang, L., Li, C. Z., et al. In-situ observation of the combustion ofair-dried and wet Victorian brown coal. Proceedings of the Combustion Institute.2011,33(2):1739-1746.
    [127] Zhang, L., Binner, E., Chen, L., et al. Experimental investigation of the combustionof bituminous coal in Air and O2/CO2mixtures:1. Particle imaging of thecombustion of coal and char. Energy&Fuels.2010,24(9):4803-4811.
    [128] Annamalai, K., Durbetaki, P. A theory on transition of ignition phase of coal particles.Combustion and Flame.1977,29:193-208.
    [129] Du, X., Annamalai, K. The transient ignition of isolated coal particle. Combustionand Flame.1994,97(3-4):339-354.
    [130] Law, C. K. Combustion Physics. Cambridge: Cambridge University Press.2006.
    [131] Smoot, L. D. Fundamentals of coal combustion: For clean and efficient use (CoalScience and Technology). Elsevier Science Publishers.1993.
    [132] Liu, X., Xu, M., Si, J., et al. Effect of sodium on the structure and reactivity of thechars formed under N2and CO2atmospheres. Energy&Fuels.2011,26(1):185-192.
    [133] Therssen, E., Gourichon, L., Delfosse, L. Devolatilization of coal particles in a flatflame—experimental and modeling study. Combustion and Flame.1995,103(1–2):115-128.
    [134] Kobayashi, H., Howard, J. B., Sarofim, A. F. Coal devolatilization at hightemperatures. Symposium (International) on Combustion.1977,16(1):411-425.
    [135] McCreery, R. L. Raman spectroscopy for chemical analysis, John Wiley&Sons.2005.
    [136] Yoshida, A., Kaburagi, Y., Hishiyama, Y. Full width at half maximum intensity of theG band in the first order Raman spectrum of carbon material as a parameter forgraphitization. Carbon.2006,44(11):2333-2335.
    [137] Bar-Ziv, E., Zaida, A., Salatino, P., et al. Diagnostics of carbon gasification by ramanmicroprobe spectroscopy. Proceedings of the Combustion Institute.2000,28(2):2369-2374.
    [138]于娟.挥发分、CO火焰与炭粒燃烧的相互作用及其模化:[博士学位论文].上海:上海交通大学,2003.
    [139] http://kinetics.nist.gov/kinetics/index.jsp.
    [140]章明川,相大光,王春昌.无烟煤粉燃烧动力学参数及着火温度的测定.“六五”科技攻关成果文集.水利电力部科学技术司.1986.
    [141] Field, M.A., Gill, D. W., Morganet, B. B., et al著.煤粉燃烧.章明川,许方洁,许传凯译.北京:水利电力出版社.1989.
    [142] Murphy, J. J., Shaddix, C. R. Combustion kinetics of coal chars in oxygen-enrichedenvironments. Combustion and Flame.2006,144(4):710-729.
    [143] Hu, S., Zeng, D., Sayreet, A. N., et al. Effects of moisture on char burnout duringwarm-recycle oxy-coal combustion. in International Pittsburgh Coal Conference.Pittsburgh, Pennsylvania, U.S.A.2011.
    [144] Shaddix, C., Molina, A. Effect of O2and high CO2concentrations on PC charburning rates during oxy-fuel combustion, in The33rd international technicalconference on coal utilization and fuel system. Clearwater, FL, USA.2008.
    [145] Fletcher, T. H., Kerstein. A. R., Pugmire, R. J., et al. Chemical percolation model forcoal devolatilization-Milestone Report. Sandia National Laboratories.1992.
    [146] Field, M. A., Gill, D. W., Morganet, B. B., et al. Combustion of pulverised coal.Banbury, England: Cheney&Sons Ltd.1967.
    [147] Raphael, B., Smith, I. F. C. A direct stochastic algorithm for global search. AppliedMathematics and Computation.2003,146(2-3):729-758.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700