工业机器人智能运动控制方法的分析与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业机器人工作在结构化的工业现场环境中,可将人类从繁重、单调与重复的体力劳动中部分解脱出来,目前已大量应用于汽车、电子、信息产品等现代制造业。中国作为制造业大国,在走向制造业强国的过程中,工业机器人已成为其中不可或缺的重要组成部分。工业机器人是一个多输入多输出的非线性系统,具有时变、强耦合和非线性的特点。目前工业机器人控制器通常忽略了机器人的动力学效应,但是当工业机器人高速运动时,其动力学效应十分显著,不可忽略。这就要求控制器在的速度和有效载荷变化的情况下实时改变其增益系数,以提高机器人的控制精度。本论文分别对机器人工作轨迹已知情况下的高速运动以及工作轨迹未知条件下的高速运动控制问题开展研究。本课题研究项目获国家863计划重点项目(项目编号:2009AA043901)资助。
     论文针对负载为10kg的搬运机器人平台,进行了运动学、静力学与动力学分析。提出了多关节传递函数的推导方法。代入由轨迹而获得的部分数值解,对机器人的动力学方程进行简化,进而建立机器人的多关节传递函数表达式,将关节间的动力学效应包含入传递函数之中。
     本文提出了构建机器人关节非线性PID以及神经网络模型的新方法,解决“工作轨迹已知条件下”搬运机器人的高速运动控制,其中“工作轨迹已知”对于搬运机器人是指物料的取放位置确定,工作轨迹通过示教获得。对高速运动情况下的机器人动力学参量进行深入分析,得出影响机器人动力学效应的状态参量—机器人的关节角位置向量θ、角速度向量θ?与角加速度向量θ??。结合研究项目机器人样机的PID主控制器,探索机器人动力学状态参量与PID增益系数间的关系。
     首先通过实验,操纵机器人末端沿已知的轨迹运动,利用光电编码器在采样时刻内获取机器人在采样点的角位置、角速度与角加速度信息,并同时获取机器人在采样点的PID增益系数。然后初步选取了机器人的关节角位置向量θ作为影响PID增益变化的状态参量,利用最小二乘法推导了机器人的PID增益系数与各关节角位置的非线性表达式,构建机器人的关节非线性PID控制器。
     在此基础上,进一步考虑机器人关节角速度向量θ?与角加速度向量θ??对控制器参数的影响。利用神经网络建模技术构建了机器人的动力学状态参量(关节角位置向量θ、角速度向量θ?与角加速度向量θ?? )与PID增益系数(比例系数k p、积分系数k i与微分系数k d)间的BP神经网络模型。
     论文设计了改进型的免疫克隆与DNA控制器,解决“工作轨迹未知条件下”搬运机器人的高速运动控制。其中“工作轨迹未知”对于搬运机器人是指对散乱物料的高速抓取功能,工作轨迹需由相关传感器(如视觉传感器)实时检测获得。针对工作轨迹未知条件下,机器人的关节角位置、角速度与角加速度只能实时获取;要达到高速高精度目标则要求机器人的主控制器参数必须时刻最优的特点。提出机器人关节模型的实时辨识加上控制器增益系数实时自整定的控制方案。
     基于已建立的关节传递函数,利用加权指数最小二乘法实时辨识机器人关节的被控对象模型。进而借鉴了DNA计算与免疫算法工作机制,并对其进行了一些局部的改进,创造性地设计了改进型的免疫克隆与DNA控制器,用于控制器增益系数的实时自整定。这种控制方案能较好地抑制工作现场各种不确定性干扰的影响,同时又能确保控制器参数的时刻最优性,且具有一定的自适应性与智能性,适用于运动轨迹时变、由机器人本身去实时识别轨迹的高速工作场合。
     论文进行了相关的仿真与运动控制对比实验,利用Visual C#高级编程语言实现了所研究的控制算法,将其嵌入控制系统中,进行了相关的实验分析。实验结果表明,新方法较传统的单关节PID控制在速度、精度方面均有较大提高。
     对于非线性PID控制与神经网络模型,其算法运算时间分别为1.8ms与3ms,跟踪精度分别为±0.28mm与±0.1mm,神经网络模型比非线性PID的跟踪精度有较大提高,实时性好,适用于工作轨迹固定、通过示教获知轨迹的机器人高速运动控制。
     对于改进后的免疫克隆与DNA计算,其算法运算时间为72ms与50ms,跟踪精度分别为±0.08mm与±0.06mm,改进后的DNA计算在算法的实时性与跟踪精度方面均较免疫算法有提高,适用于工作轨迹多变、由机器人自己实时识别轨迹的高速运动控制。
     本论文的创造性成果有:
     1、机器人关节建模方面,不同于传统的单关节建模方式,考虑了机器人关节间的耦合效应,推导机器人多关节传递函数模型。
     2、对机器人的动力学表达式进行了深入分析,得出了影响机器人动力学效应的状态参量—机器人的关节角位置向量θ、角速度向量θ?与角加速度向量θ??。
     3、结合项目机器人样机的主PID控制器,定性与定量探索机器人的动力学状态参量与控制器增益之间的关系规律,设计了非线性PID控制器与神经网络模型。
     4、设计了改进型的免疫克隆与DNA计算算法。
     论文的研究成果可以解决机器人高速高精度运动难题,促进机械工业中自动化的发展和社会生产率的提高
Industry robot works in a structural environment and can free human being from the heavy, boring, repetition physical labor. Nowadays, robot has been widely used in the field of automobile, electronics, information production and so on. China as a big production country, industry robot has become its important part during the process to be a strong production country. Industry robot is a very complicated non-linear system, which has multiple input and output. It has the character of time-varying, strong couple and non-linear. The controller, which is used in robot nowadays, usually ignores the robot’s dynamic effect. However, when robot runs in the high speed condition, its dynamics effect is very huge, which can’t be ignored. At this time, the speed and payload of robot varies greatly. In order to improve robot’s working accuracy, the controller’s parameters, should change, too. Therefore, to solve the control problems when robot runs at a high speed under an unknown working trajectory and runs at a high speed under a known working trajectory, the paper make a deeply research. The research work has been supported by the national 863 important project. The project number is 2009AA043901.
     To the transport robot whose payload is 10kg, the kinematics, static and dynamics analysis of the robot are performed in this paper. Different from the traditional single joint modeling, the paper proposed a new method to set up the multiple joints’transfer function. The dynamic function of robot can be simplified by some numerical solution obtained in the trajectory and the multiple joints’transfer functions can be set up, which takes the joints’dynamic effect into consideration.
     The paper proposed a new method to setup a joints’nonlinear PID controller and neural network, to solve the problem when robot run in a high speed condition whose working trajectory is known. To transport robot, the working trajectory is known means that the material’s putting position is determined and can be obtained by teaching. The dynamic parameters of robot have been deeply researched when it runs under a high speed condition. Then the state parameters affecting the robot’s dynamic effect can be obtained, which is the robot’s angular position vetorθ, the angular speed vectorθ? and the angular acceleration vectorθ?? .To the PID main controller of the robot platform in the project, the relationship between the dynamic parameters and the PID coefficients has been deeply researched.
     The tip of the robot is firstly manipulated running along a known trajectory in experiment. At the sample time, the robot’s joints’angular position, the angular velocity and the angular acceleration can be obtained by the photoelectric encoder. The PID parameters at the sampling point can be attained, too. The joints’angular positionθis firstly chosen to be the controller’s state parameter. Then the nonlinear expression between the robot’s PID parameters and the joints’angular position can be inferred by the least square method. So the robot’s joints’nonlinear PID controllers can be set up.
     Moreover, the robot joints’angular speed vectorθ? and the angular acceleration vectorθ?? , which may affect the PID controllers, have been taken into consideration. The neural network intelligent modeling technology is used to setup the BP neural model between the robot’s joints’angular position vectorθ, angular speed vectorθ?, angular accelerationθ?? the PID parameters k p, k i, k d.
     The paper has designed the improving immune clone select and DNA controllers to deal with the problem when the transport robot working in a high speed motion condition whose trajectory is unknown. To the transport robot, the working trajectory is unknown means that robot fetches the scattering material in high speed and the trajectory can be detected in real-time by some sensors, such as the visual sensor and so on. Due to the unknown working trajectory means that the robot joints’angular position, angular velocity and angular acceleration can only obtained in real time. The high accuracy and high speed goal request the main controller’s parameters should optimistic at any time. Due to this characteristic, the paper proposed a control scheme which is the robot joints’model’s real-time recognition and the controller’s parameters’real-time self tuning.
     Based on the joints’transfer functions set up, the model of the robot’s joints can be identified by the weighted type least square method. The working mechanism of the DNA compute and immune algorithm has been deeply researched and improve partly. Then the improving immune clone select and improving DNA algorithm have been creatively designed and used to tune the controllers’parameters in real time. The control scheme can restrain the effect of various uncertain factors’disturb and can make sure the control parameter’s optimality at any time, which has some adaptability and intelligence. This control scheme can be used in the condition that the moving trajectory is time-varying which is recognized by the robot itself in real time, and the demand of accuracy and speed is very high.
     In the end of the paper, several simulation experiments have been caught out to test the researched intelligent control algorithm. All of the algorithm are coded by the Visual C# program language and embedded into the control system. Then some motion control experiments are performed. The final experiment results show that, the new method is better than the traditional single PID control in the aspect of speed and accuracy.
     The running time of nonlinear PID control and the neural network model is 1.8ms and 3ms. The final tracking error of the algorithm is±0.28mm and±0.1mm. The neural network model has a stronger real-timing character, which can be used to several robots requiring running in a high speed condition when working trajectory is regular and can be known by teaching.
     The running time of improving Immune clone selection algorithm and DNA compute is 72ms and 50ms, and the final tracking error is±0.08mm and±0.06mm. The improving DNA compute need less running time and can reached a higher tracking accuracy than that of the immune clone select algorithm, which is suitable for high speed motion command when working trajectory is varying and be recognized by the robot itself
     The creative achievements can be shown as following:
     1. In the aspect of robot joints’modeling, different from the traditional modeling manner, the robot’s multiple joints transfer functions have been inferred, which take the robot joints’coupling effect into consideration.
     2. The dynamic expression has been deeply analyzed, and the state parameters affecting the robot’s dynamic effect are obtained, which are the robot’s joint angular position vectorθ, the angular velocity vectorθ? and the angular acceleration vectorθ?? .
     3. To the robot platform’s main PID controllers, the relationship between the robot dynamic state parameters and the controllers’coefficients in qualitative and quantitative analysis.
     4. The improving immune select clone algorithm and DNA computing algorithm.
     The research achievement can solve the problem of the high accuracy requirement when robot run in a high speed motion condition, promote the automation in mechanic industry and boost the social productivity.
引文
[1]徐敏.机器人技术在机械加工中的应用[J].洪都科技, 2007(3): 27-31.
    [2]蔡自兴.机器人学[M].第三版.北京:清华大学出版社,2000:1-159.
    [3] Nearchou A. C., Aspragathos N. A., Sofotassios D. P.. Reducing the Complexity of Robot’s Scene for Faster Collision Detection[J]. Journal of Intelligent and Robotic Systems, 1999, 26(1): 79-89.
    [4] Nonami K., Yuasa R., Waterman D., et al. Preliminary Design and Feasibility Study of a 6-Degree of Freedom Robot for Excavation of Unexploded Landmine[J]. Autonomous Robots, 2005, 18(3): 293-301.
    [5]宋健,张铁中,徐丽明,等.果蔬采摘机器人研究进展与展望[J].农业机械学报, 2006, 37(5): 158-162.
    [6]徐方.工业机器人产业现状与发展[J].机器人技术与应用,2007(5):2-4.
    [7]徐文福,梁斌,刘宇等.一种新的PUMA类型机器人奇异回避算法[J].自动化学报, 2008,34(6):670-676.
    [8] Ali T. Hasan , N. Ismail, A.M.S. Hamouda. Artificial neural network-based kinematics Jacobian solution for serial manipulator passing through singular configurations [J]. Advances in Engineering Software, 2009, 41(2):359-367.
    [9]丁学恭著.机器人控制研究[M].浙江:浙江大学出版社,2006:1-139.
    [10] Yukitomo Masanori, Shigemasa Takashi, Baba Yasushi, et al. A Two Degrees of Freedom PID Control System, its Features and Applications[A]. Asian Control Conference. 2004 5th Asian Control Conference [C]. Piscataway, N.J.: Institute of Electrical and Electronics Engineers Inc. . 2004: 456-459.
    [11] Yu Junzbi, Wang Shuo, Tan Min. Basic Motion Control of a Free-swimming Biomimetic Robot Fish[A]. Proceedings of the IEEE Conference on Decision and Control[C]. Piscataway, N.J.:Institute of Electrical and Electronics Engineers Inc. ,2003: 1268-1273.
    [12]边宇枢,高志慧,员超. 6自由度水下机器人动力学分析与运动控制[J].机械工程学报, 2007, 43(7): 87-92.
    [13] JoséM Alonso, Luis Magdalena, Serge Guillaume, et al. Knowledge-based Intelligent Diagnosis of Ground Robot Collision with Non Detectable Obstacles[J]. Journal of Intelligent and Robotic Systems, 2007, 48(4): 539-566.
    [14] Farooq M., Wang Daobo. Adaptive fuzzy control for robot arm manipulator with 5-DOF [J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2007, 24(1): 43-47.
    [15] Al Shalfan, Khalid A.. Development of autonomous navigation wheelchairs based on fuzzy control [J]. Neural Network World, 2009,19(2): 223-233.
    [16] Mehmet Haklidir, Isa Tasdelen. Modeling, simulation and fuzzy control of an anthropomorphic robot arm by using Dymola [J]. Journal of Intelligent Manufacturing, 2009,20(2): 177-186.
    [17] Garcia-Hernandez Ramon, Ruz-Hernandez Jose A., Sanchez Edgar N., et al. Real-time Takagi-Sugeno fuzzy control of a robot manipulator[J]. International Journal of Intelligent Systems, 2009, 24(11): 1174-1201.
    [18]方道星,余跃庆,陈炜.基于模糊控制的2R欠驱动机器人位置控制[J].机械工程学报, 2008, 44(1): 144-149.
    [19] Wang Xian-lun, Cui Yu-xia, Huang Jing. Intelligent Force/Position Control of Robotic Manipulators Based on Fuzzy Logic[J]. Journal of System Simulation, 2008, 19(11):2467-2471.
    [20] Kong, Jung-Shik, Lee Eung-Hyuk, Lee Bo-Hee, et al. Study on the real-time walking control of a humanoid robot using fuzzy algorithm[J]. International Journal of Control, Automation and Systems, 2008, 6(4):551-558.
    [21] Loo Chu Kiong, Mandava Rajeswari, Rao M.V.C.. A Hybrid Intelligent Active Force Controller for Articulated Robot Arms Using Dynamic Structure Neural Network[J]. Journal of Intelligent and Robotic Systems : Theory and Applications, 2004, 40(2): 113-145.
    [22] Wang Hong-Rui, Yang Li, Wei Li-Xin. Intelligent position/force control for uncertain robot using neural network compensation[A]. John W. T. Lee, H.K.. 2005 International Conference on Machine Learning and Cybernetics, ICMLC 2005[C]. Piscataway, NJ:Institute of Electrical and Electronics Engineers Computer Society, 2005: 1175-1179.
    [23] Wang Junsong , Lu Shengli, Xie Chao . Intelligent control of robotic elbow joint based on RBF neural network[A]. Max Q.-H. Meng. Proceedings of the 7th World Congress on Intelligent Control and Automation, WCICA'08[C]. Piscataway, NJ: Institute of Electrical and Electronics Engineers Inc.,2008: 4853-4858.
    [24] Jiang Zhao-Hui, Nie Shiliang, Ishita Taiki. A neural network and linear feedback based trajectory control method for robot manipulators[A]. Max Q.-H. Meng. Proceedings of the 7th World Congress on Intelligent Control and Automation, WCICA'08. Piscataway, NJ,USA:Institute of Electrical and Electronics Engineers Inc.,2008: 1603-1608.
    [25] Ren Xuemei, Rad A.B., Lewis Frank L.. Neural network-based compensation control of robot manipulators with unknown dynamics[A]. Mark J. Balas. Proceedings of the 2007 American Control Conference, ACC[C]. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc.:13-18.
    [26] Subudhi B., Morris A.S.. Soft computing methods applied to the control of a flexible robot manipulator[J]. Applied Soft Computing Journal, 2009, 9(1): 149-158.
    [27] Moufid Harb, Rami Abielmona, Emil Petriu. Speed control of a mobile robot using neural networks and fuzzy logic[A]. Liu Derong. 2009 International Joint Conference on Neural Networks, IJCNN 2009[C]. Piscataway, NJ, USA:Institute of Electrical and Electronics Engineers Inc.,2009: 1115-1121.
    [28]刘延斌,张宏敏,赵新华. 3-RRRT型并联机器人自适应神经网络滑模控制[J].系统仿真学报, 2009, 21(11):3398-3400.
    [29]王传江,苏学成,樊炳辉,等. PJR-X小型喷浆机器人滑模变结构控制系统[J].煤炭学报, 2008, 32(5):548-551
    [30]李香军,余星火,王常虹,等.机械臂系统的一种自适应滑模控制方法[J].系统仿真学报,2006,18(19):2895-2897.。
    [31]Chang Ming-Kun, Yuan Tsan-Hsiu. Experimental implementations of adaptive self-organizing fuzzy slide mode control to a 3-DOF rehabilitation robot[A]. 3rd International Conference on Innovative Computing Information and Control, ICICIC'08[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society, 2008:503-503.
    [32] Dong Sang Yoo. A comparison of sliding mode and integral sliding mode controls for robot manipulators[J]. Transactions of the Korean Institute of Electrical Engineers, 2009, 58(1):168-172.
    [33] Capisani Luca Massimiliano, Ferrara Antonella, Magnani Lorenza. Design and experimental validation of a second-order sliding-mode motion controller for robot manipulators[J]. International Journal of Control, 2009, 82(2):365-377.
    [34] Shi J., Liu H., Bajcinca N.. Robust control of robotic manipulators based on integral sliding mode[J].International Journal of Control, 2008, 81(10):1537-1548.
    [35] Thinh Ngo Ha Quang, Shin Jin-Ho, Kim Won-Ho. Fuzzy sliding mode control for a robot manipulator[J]. Artificial Life and Robotics, 2008, 13(1):124-128.
    [36] Yagiz Nurkan, Hacioglu Yuksel. Robust control of a spatial robot using fuzzy sliding modes[J].Mathematical and Computer Modelling, 2009,49(1): 114-127.
    [37] Liao Qinwu, Wang Chaoli, Mei Yingchun. Sliding mode control for multi-robot formation [A]. 2008 IEEE International Conference on Robotics, Automation and Mechatronics, RAM 2008[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society,2008:395-398.
    [38] Jia Qiuling, Xing Xiaojun, Li Guangwen. Formation path tracking controller of multiple robot system by high order sliding mode[A]. Proceedings of the IEEE International Conference on Automation and Logistics, ICAL 2007[C]. Piscataway, NJ, USA:Institute of Electrical. and Electronics Engineers Computer Society,2007:623-927
    [39] Mohammad Ataei, Ehsan Shafiei. Sliding mode PID-controller design for robot manipulators by using fuzzy tuning approach[A]. Proceedings of the 27th Chinese Control Conference, CCC[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society, 2008:170-174.
    [40] Lee K.J. , Choi, J.J., Kim, J.S. A proportional-derivative-sliding mode hybrid control scheme for a robot manipulator[J]. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2004, 218(8): 667-674.
    [41] Chang Chen-Tien, Huang Han-Pang, Kuan Jiun-Yi. Independent joint sliding mode control of a humanoid robot arm[A]. Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society, IECON[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society, 2007: 2754-2759.
    [42] Huang Qingjiu. Sliding mode control based on virtual suspension model for controlling posture and vibration of six-legged walking robot[A]. 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO 2006[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society,2006: 642-647.
    [43]朱奇光.不确定机器人鲁棒自适应控制[J].仪器仪表学报, 2006,27(6):1881-1882
    [44]保宏,段宝岩,陈光达.输入不确定的6自由度悬索并联机器人位置控制[J].机械工程学报,2007,43(7):128-132.
    [45]赵慧,张辉,张尚盈,等.μ理论在柔顺力控制中的应用[J].机械工程学报,2007,43(12):97-102.
    [46] Zhang Shang-ying, Han Jun-wei, Zhao Hui, et al. Application ofμTheory in Compliant Force Control [J].Chinese Journal of Aeronautics, 2006, 19(1):89-96.
    [47]叶正茂,赵慧,张尚盈,等.基于位置内环的柔顺力控制的研究[J].控制与决策, 2006, 21(6):651-655.
    [48]周兵,许艳.并串联复合机器人的鲁棒控制[J].机械工程学报, 2006,42(5):229-232.
    [49]周景雷,张维海.带有摩擦的机器人鲁棒控制[J].机械工程学报, 2007,43(9):102-105.
    [50]闫建国,贾秋玲,李广文.机器人系统自适应鲁棒H∞跟踪控制器设计[J].西北工业大学学报, 2006, 24(4): 414-417.
    [51]陈国栋,贾培发.基于扩张状态观测的机器人分散鲁棒跟踪控制[J].自动化学报, 2008,34(7):828-832.
    [52]梁霄,李晔,万磊,等.基于鲁棒神经网络的水下机器人运动控制.[J]东南大学学报, 2006, 36(增刊):1-4.
    [53]赵东亚,李少远,高峰.六自由度并联机器人分散鲁棒非线性控制[J].控制理论与应用, 2008, 25(5):867-872.
    [54]丰保民,马广程,温奇咏,等.任务空间内空间机器人鲁棒智能控制器设计[J].宇航学报, 2007, 28(4):914-919.
    [55]唐晓腾,陈力.双臂空间机器人关节运动的一种增广鲁棒控制方法[J].空间科学学报,2007,27(5):435-440.
    [56]郭益深,陈力.双臂空间机器人姿态与关节协调运动的自适应控制鲁棒控制[J].中国机械工程,2008,19(6):636-639.
    [57] Huang Panfeng, Yan Jie, Yuan Jianping, et al. Robust control of space robot for capturing objects using optimal control method[A]. 2007 International Conference on Information Acquisition, ICIA[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society, 2007:397-402.
    [58] Feng Baomin, Ma Guangcheng, Wen Qiyong, Wang Changhong. Adaptive robust control of space robot in task space[A]. 2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society,2006: 1571-1576.
    [59]郑柏超,王银河.一类互联机器人系统的鲁棒分散跟踪控制[J].动力学与控制学报, 2008,(6)1: 5-8.
    [60] Lin Shield B., Wang Sheng-Guo. Modeling and robust control of two-link planar nonlinear robotic systems[A]. Proceedings of the 26th IASTED International Conference on Modelling, Identification, and Control, MIC 2007[C]. Calgary, AB, T3E 7J9, Canada :Acta Press,2007: 45-50.
    [61] Yeon Je Sung, Park Jong Hyeon. Practical robust control for flexible joint robot manipulators [A]. 2008 IEEE International Conference on Robotics and Automation, ICRA 2008[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Inc., 2008: 3377-3382.
    [62]Bascetta Luca, Rocco Paolo. Revising the robust control design for rigid robot manipulators[A]. 2007 IEEE International Conference on Robotics and Automation, ICRA'07[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Inc.,2007:4478-4483.
    [63] Yim Jong-Guk, Sung Yeon Je, Park Jong Hyeon, et al. Robust control using recursive design method for flexible joint robot manipulator[A]. 2007 IEEE International Conference on Robotics and Automation, ICRA'07[C]. Piscataway, NJ, USA:Institute of Electrical. and Electronics Engineering Inc.,2007: 3805-3810.
    [64] Kim Dong Hwan, Oh Won Ho. Robust control design for flexible joint manipulators: Theory and experimental verification[J]. International Journal of Control, Automation and Systems, 2006, 4(4): 495-505.
    [65] Ha Tae-Jun, Lee Jaeyoung, Park Jong Hyeon. Robust control by inverse optimal PID approach for flexible joint robot manipulator[A]. 2007 IEEE International Conference on Robotics and Biomimetics, ROBIO[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society, 2008: 336-341.
    [66] Chen G-Yi, Cheng M. Hung-Ming, Yang Cheng-Fu, Chen Jeng-Shi. Robust adaptive control for robot manipulators with friction[A]. 3rd International Conference on Innovative Computing Information and Control, ICICIC'08[C]. Piscataway, NJ, USA: Institute of Electrical. and Electronics Engineers Computer Society, 2008:422-422.
    [67] Ufuk Ozbay, Türker Sahin H., Erkan Zergeroglu. Robust tracking control of kinematically redundant robot manipulators subject to multiple self-motion criteria[J]. Robotica, 2008, 26(6): 711-728.
    [68] Li Z., Melek W.W., Clark C..Decentralized robust control of robot manipulators with harmonic drive transmission and application to modular and reconfigurable serial arms[J]. Robotica, 2009, 27(2): 291-302.
    [69] Mohammad Deghat, Khayatian Ali Reza, Mohammad Eghtesad. Experimental study of arobust-adaptive controller design for two cooperating RLED robot manipulators carrying a rigid payload[A]. IEEE 2009 International Conference on Mechatronics, ICM 2009[C]. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Computer Society,2009: 1-6.
    [70] Wang Jian-Zhong, Ji Jiang-Tao, Wang Hong-Ru.Grey prediction fuzzy control of the target tracking system in a robot weapon[J]. Journal of Beijing Institute of Technology, 2007, 16(4): 424-429.
    [71]孙海军,赵成明,李俊,郭庆鼎,李润霞.灰色预测法PMSM无传感器控制系统[J].电机与控制学报, 2007, 11(6):604-608.
    [72]孙海军,郭庆鼎,高松巍,杨理践.系统辨识法永磁同步电机无传感器控制[J].电机与控制学报, 2008,12(3):244-247.
    [73]聂宏飞,李小平.基于灰色辨识的光刻机恒温控制系统建模[J].机械工程学报, 2008, 44(1):98-101.
    [74]赵庆波,赵德安,姬伟等.采摘机器人视觉伺服控制系统设计[J].农业机械学报, 2009,40(1):152-156.
    [75]张晓超,张立勋.基于模糊自整定PID的下肢康复训练步态机器人变负载控制[J].测控技术,2009,28(2):43-46.
    [76] Sun Zhijun , Xing Rentao, Zhao Chunsheng, et al. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors[J]. Ultrasonics, 2007, 46(4): 303-312.
    [77] Khoury G.M., Saad M., Kanaan, H.Y.. Fuzzy PID control of a five DOF robot arm[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2004, 40(3): 299-320
    [78] Malki Heidar A., Misir Dave, Feigenspan Denny. Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads[J]. IEEE Transactions on Control Systems Technology, 1997, 5(3): 371-378.
    [79] Carvajal James, Chen Guanrong, Ogmen Haluk. Fuzzy PID controller: Design, performance evaluation, and stability analysis[J]. Information sciences, 2000,3(123): 249-270.
    [80] Li, W., Chang X.G. , Wahl F.M.. Hybrid fuzzy P+ID control of manipulators under uncertainty[J]. Mechatronics, 1999, 9(3): 301-315.
    [81]曾祥进,黄心汉,王敏等.基于改进Smith预估器的显微视觉伺服[J].华中科技大学学报, 2008,36(增刊):8-11.
    [82]昝鹏,颜国正,于莲芝.基于神经网络PID控制的柔性微机器人系统[J].机器人, 2007, 29(3): 219-223.
    [83] Ye Jun. Adaptive control of nonlinear PID-based analog neural networks for a nonholonomic mobile robot[J]. Neurocomputing, 2008, 71(7-9): 1561-1565.
    [84] Ren Tsai-Jiun , Chen Tien-Chi, Chen Chun-Jung. Motion control for a two-wheeled vehicle using a self-tuning PID controller[J]. Control Engineering Practice, 2008, 16(3): 365-375.
    [85] Chen Peter C., Mills, James K.. Synthesis of neural networks and PID control for performance improvement of industrial robots[J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 1997, 20(2-4): 157-180.
    [86]王永祥,黄筱调.基于神经网络移动机器人PID控制[J].控制工程, 2005, 12(5):458-460.
    [87]郭吉丰,王光庆,沈润杰等.航天用系列行波型超声波电机的研制[J].宇航学报,2007,28(1):171-177.
    [88]陈虹,董航飞,李宗宝等.混合GA-BP算法在机器人地面控制中的应用[J].控制工程, 2009, 16(1):91-94.
    [89] Hwang Chih-Lyang, Han Song-Yu, Yu Yuan-Sheng. A network-based fuzzy decentralized sliding-mode control for car-like mobile robots[A]. IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2005[C], Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc., 2005: 61-66
    [90]罗忠,柳洪义,王菲等.基于规则的仿人智能控制方法及其应用[J].控制工程, 2009,16(1):83-87.
    [91] Trusca Mirela, Lazea Gheorghe. An adaptive PID learning controller for periodic robot motion[A]. Proceedings of 2003 IEEE Conference on Control Applications[C], Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers Inc., 2003: 686-689.
    [92] Parra-Vega Vicente, Arimoto Suguru, Liu Yun-Hui. Dynamic sliding PID control for tracking of robot manipulators: Theory and experiments[J]. IEEE Transactions on Robotics and Automation, 2003, 19(6): 967-976
    [93]卜仁祥,刘正江,李铁山.船舶航向非线性迭代滑模变结构PID控制[J].大连海事大学学报, 2006, 32(2):9-11.
    [94] Jafarov E.M., Parlak?i M.N.A., Istefanopulos, Y.. A new variable structure PID-controller design for robot manipulators[J]. IEEE Transactions on Control Systems Technology, 2005, 13(1): 122-130.
    [95]何秀然,谢寿生,邹仕军等.基于PID趋近律的航空发动机滑模变结构控制[J].空军工程大学学报,2009, 10(3):15-19.
    [96] Wang Jian-Zhong, Ji Jiang-Tao, Wang Hong-Ru.Grey prediction fuzzy control of the target tracking system in a robot weapon[J]. Journal of Beijing Institute of Technology, 2007, 16(4): 424-429.
    [97]蒋陵平,傅强.灰色PID控制在航空发动机中的应用研究[J].机械设计与制造, 2006(5):129-131.
    [98]许可军,白建伟,黄培成.灰色PID在电液伺服系统位置跟踪控制中的应用[J].液压与气动,2008(4):45-47.
    [99]张远深,徐正华,张文涛,董仲斌.基于灰色PID的摆动气缸伺服系统位置跟踪研究[J].液压气动与密封, 2007(4):27-29.
    [100]訾斌,段宝岩,杜敬利.一种柔索并联机器人的动力学建模与主动控制[J].振动与冲击, 2007, 26(3): 96-100.
    [101] Oh Tae Seok, Lee Wang Heon, Kim II Hwan. Parameter optimization of 2-DOF-PID controller using genetic algorithm[J]. International Journal of Applied Electromagnetics and Mechanics. 2006, 24(4): 131-145.
    [102]霍伟编著.机器人动力学与控制[M].北京:高等教育出版社,2005:5-119.
    [103] (美)John J.Craig著.机器人学导论[M].第三版.贠超等译.北京:机械工业出版社,2006:14-159.
    [104]王东署,迟健男.机器人动力学标定综述.机床与液压,2006(12):234-236.
    [105]万遇良.机电一体化系统的设计与分析[M].北京:中国电力出版社,1998:128-135.
    [106] Y.X. Su, Dong Sun, B.Y.Duan. Design of an enhance nonlinear PID controller[J]. Mechatronic, 2005,15(8):1005-1024.
    [107]李红.数值分析[M].武汉:华中科技大学出版社,2003:63-72.
    [108]朱大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社,2006:1-63.
    [109]高隽.人工神经网络原理及仿真实例[M].第二版.北京:机械工业出版社,2003:1-73.
    [110] Hagan Martin T., Demuth Howard B., Beale Mark. Neural Network Design[M]. Beijing:China Machine Press,2002:1-244.
    [111]邓自立,王欣,高媛编著.建模与估计[M].北京:科学出版社,2007:60-115.
    [112]肖人彬,曹鹏彬,刘勇.工程免疫计算[M].北京:科学出版社,2007:3-105.
    [113]焦李成,杜海峰,刘芳,等.免疫优化计算、学习与识别[M].北京:科学出版社,2006:16-90.
    [114]胡选子.基于人工免疫系统的移动机器人路径规划研究[D].广州:华南理工大学,2008:20-85.
    [115]丁永生编著.计算智能—理论、技术与应用[M].北京:科学出版社,2004:280-322.
    [116] Peun G., Rozengerg G., Salomaa A.. DNA Computing[M]. Bei Jing: Tsinghua University Press, 2004:3-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700